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Existence of nontrivial solutions for a class of elliptic systems

Lotrri LASSOUED AND AL1 MAALAQUI

ABSTRACT. We establish several existence results for a class of nonlinear elliptic systems of
Schrodinger type. The proofs are mainly based on topological degree arguments.
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1. Preliminaries

Let E a Banach space. Let P C E be a cone, that is, if z,y € P, A € Ry then
Ax € Pand z+y € P, with PN (—P) = {0}. We know that E become an ordered
Banach space by the order induced by P, ie., x> y<=x—y € P.

[e]

A cone is said to be solid if P # 0, and total if P — P = E. The cone P is called
normal, if there exist C' > 0 such that if z <y then ||z| < C||y]| .

E is said to have the lattice structure if for z,y € P, inf {z,y} and sup {z, y} exist
and belong to E. We denote then z7 = sup{x,0} and x~ = sup{—=,0} and we
define |z| = 27 + 2.

In all that will follow, we will call a set M or an operator T' is admissible if the
topological degree d(I—T, M, 0) is well defined i.e. 0 € (I —T') (OM). And we remind
the reader that a completely continuous operator in a Banach space is a continuous
operator that transforms bounded sets on relatively compact sets. Also if T is a
smooth completely continuous operator then the differential of the operator on any
point where it is smooth, is a compact linear operator.

Lemma 1.1. Let M be a bounded open set which contain 0, of a Banach spaces and
let T : M +—— FE be a compact operator, If

Tu # u, Yu € OM, YA > 1
Then d(I — T, M,0) = 1.

Proof. Let H be the homotopy defined by H(t,u) = u — tT'u; by the assumption
imposed on OM we have the compatibility hypothesis of H so we have

d(H(1,.), M,0)=d(H(0,.), M,0) = d(id, M, 0) = 1.
This completes our proof. O
Lemma 1.2. Let T be a linear compact operator in E such that 1 € o(T), then
d(I —T,M,0) = (-1)",
where « the sum of multiplicity of the eigenvalues of DT (z) in ]1,400].
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Proof. Let A1, ..., \;; be the eigenvalues of T' greater than one and F1, ..., E}, the corre-
sponding eigenspaces. Let P, ..., P, denote the projectors on the previous subspaces.
k

We consider P = > P;, then P commutes with 7" and is a projector on Ej the direct
i=1

sum of the E;. Remark that dim Ey = a. Now we take the following homotopy:
H(t,x) =z —[2tPx+ (1 —¢)TPx] — (1 —¢)T(I — P)x

it is easy to see that this homotopy is admissible on B(0, 1). Thus, we have

d(I —T,B(0,1),0) = d(I — 2P, B(0,1),0),

and since P is a finite rank operator, then we have

d(I —T,B(0,1),0) = d(I — 2P, B(0,1),0) = (=1)“.
This completes the proof. O

Lemma 1.3 (Homotopy criteria). Let M be a bounded set, let Ty and Ty be two
completely continuous operator, without fixzed point on . If

IThx — Tox|| < ||z — Tz, Vo € M,
Then I — Ty and I — Ty are homotopic in M.
Proof. Consider the linear homotopy
H(t,z) =2 — (tThe + (1 — t)Tex), Vo € M, Vt € [0,1]
and notice that
|H(t, z)|| = ||l — Tox + t(Tox — Tha)|| > (1 —t) || — Tax|| ,Vz € M, Vt € [0,1],

thus H is compatible, which proves the result. O

Now, we focus on the research of a non trivial solution for the problem

—Au = f(u) on Q
u =0 on 90f) (1)

where f is in C! (R™,R"), and (2 is a bounded domain of R?. And we let E denote
the space C3(Q,R").

here we suppose that f satisfies the following assumptions :

H1) limsup,, fils) a;; , liminf,, &f) =b; ;.

55 ———oc0 3
ofi
H2) 511(0) = a?; > 0.
i (0
Let A denote the matrix (ai7j)1gi,j§n
of A.

We add now the remaining assumptions :
H?))ﬂl >\ > 52.

A Ao
H4) B2 B

Theorem 1.1. Suppose that r(|a; ;|) < A\ and r(|b;;|) < A1, then, under the as-
sumptions H1-Hj the problem (1) has at least one positive solution.

. And (1 > (B2 > ... > (2 be the eigenvalues

<0
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2. Proof of theorem 4

We split the proof into several steps. STEP 1. B B

Let B = (max (|ai |, [bij]) sz » T = (=A)7" f: C(QR") — C(Q,R"),
and H = (—A)~' B, then we have,

|Tx| < H |z| + zo,Vz € C (Q,R"),

Since r(H) < 1, the operator I — H is a positive invertible operator, let K =
{x eC (ﬁ, R”) iTe = pz, > 1} then K is bounded, in fact, consider x € K, then
there exist © > 1 such that

Tr = px
so we have
|z < plzf = |[Ta| < H[z] + o

so (I — H)|z| < xo and it follows that |z < (I — H) " 2 which implies the bound-
edness of K, and if we take Ry > 0 such that K C B(0, Ry) we have

Tz # px,Vx € 0B(0, Ry),Vu > 1,
finally using lemma (1) we have the existence of Ry > 0 such that

d(I —T,B(0,R),0)=1,YR > Ry.

STEP 2. Let us consider now the operator L defined by
Lz = DT(0)z = (—A) "' Df(0)z,Vx € C (Q,R").
Lemma 2.1. I — L is homotopic to T in a small neighborhood of 0.
Proof. : Remark first that the assumptions imply that 1 is not an eigenvalue of L.
Thus there exist § > 0 such that
o — La|l = 0], Va € B,

because of the Fredholm alternative applied to the compact operator L. In the other

hand we have
Tz = Lz + o(||z]),

therefore there exist rg > 0 such that for every 0 < r < r,
0
lz = Tz|| 2 Jla = Lz || = llo(lz DIl = 5 llz]|, Y= € B(0,r),

And that proves that the domain B(0,r) for r sufficiently small is admissible. Now
we have 5
1Tz — Lal| = o(lzDIl < 5 ll2ll < |l = La]],

therefore, using lemma(3) we get the desired result. O

STEP 3. Let us study the spectrum of L.
1

Here we denote ®; = ¢; | : | , where ¢;, i > 1 are the eigenfunctions of the 1

1
dimensional Laplace operator. Since they form an orthonormal basis of L?(£2) we can
write every u € L% (2, R") as

u = ZAj(I)j, (2)
j=1
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where the A; € M, (R) are diagonal.
Note that the decomposition (2) is not unique if we remove the diagonal condition.

But we can give it a more settled sens in the following way :
Let F : M, (R) — R", defined for every M = (m; ;) € M, (R) by

Jj=1
F(M) = )
n
> Mnj
j=1
and consider the space
M, (R) = M, (R) /kerF,

Then (2) is unique if we take A; € M, (R). So for M € M, (R) we will write M its

class in M, (R).
Now let us consider the following eigenvalue problem:

—Au = pAu in
{ w=0in o0 ®)

We know that this problem has an increasing sequence of eigenvalue (p;);~,. Let ¥;
be an eigenfunction that correspond to the eigenvalue p;, then we have ¥; = >~ A,;®;
and if we plug it in the equation (3) we get :

D ONAD = i AA;D; (4)

, thus
AA, =N
Hi

—_~—

Now consider the operator operators £ : M, (R) — M, (R) defined by LM = AM

and L : M, (R) — M, (R) defined by LM = AM. We can easily verify that the

operator L is well defined and thus 2—’ are eigenvalues of £ so let us find its spectrum.

Let 3 be an eigenvalue of £, then there exist B € M)\ {0} such that
AB = 3B.

Thus
AB=06B+C
where C' € ker F', therefore
(A—pI)B=C,
so if 3 is not an eigenvalue of £ then B = (A — 3I)”" C, thus F(B) = F(C) = 0 and
B = 0 which yields to a contradiction, so ( is an eigenvalue of £ but we know that

the eigenvalues of L are the same as A, therefore the spectrum of L is included in the
spectrum of A and the other inclusion is obvious, thus the eigenvalues p; have the

s
form 6—], where j > 1 and 1 < k < n. Therefore,
k
M1 = 31

Notice that since £ acts on a finite dimensional vector space then there exist jo > 1
such that A; =0, Vj > jo.
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Let us now find the multiplicity of p1. Let U be an eigenfunction corresponding to
11, using the same process as in (4), we get

s —
AA; = “LA;
M1
therefore, g =0,Vj > 2 and thus ¥ = A;®; where A, € M, (R) is an eigenvector
of L associated to S1. So u; has the same multiplicity as 51 but since A is a positive
irreductible matrix the spectral radius r(A4) = (1 is of multiplicity one, thus the
multiplicity of uq is 1.
Now using H3) and H4) we get ps = % > 1 thus, the only eigenvalue of L in

J1, +oo is u% Therefore using lemma(2) we get the existence of € > 0 such that

d(I —T,B(0,¢),0) = —1.
Now using the topological degree excision property we have the existence of a non
trivial solution for the problem (1).

Remark 2.1. We can replace the hypothesis H3) by 81 > A1 and ma}tcxz la; ; — aix] <
ik 5

Aag.

[£(s)—As|
t S

o] — 0 and

Now let us assume there exist Ay = (a;;),<; j<, such tha
T(A()) > A1

Theorem 2.1. Under the previous assumption and the assumptions H2-H/, the prob-
lem (1) has a non trivial solution.

Proof. The proof is almost the same as the previous one. In fact we need only to
worry about the degree of the operator T' for a large neighborhood of zero. But we
have the existence of R sufficiently large such that

d(I —T,B(0,R),0) = d(I — T, B(0,R),0)
where T = (—A)_1 o Ap. In fact, we have the existence of § > 0 such that
Hm — fx” >4, Vx € E.
We also have for R sufficiently large
HTx - fo < dlz|| < Hx - TxH , Vs ||z]| > R.

Using lemma(3) And since o(T') C ]0, 1] we have using lemma(2) that d(I-T, B(0, R),0) =
d(I-T,B(0,R),0) = 1. And we conclude by comparing with the degree near the ori-
gin. U

Theorem 2.2. Suppose that there exist a partition I,J of {1,...,n} such that uy —
fur,vy) is nondecreasing and vy — f(ur,vy) is nonincreasing. We suppose in
addition that there exist 1 > « > 0 such that for t €]0,1[, f(tur, %’UJ) >t f(ur,vy).
then the problem (1) have one and only one positive solution.

3. Proof of theorem 8.

Here E is equipped with the slotwise partial order on C{ ().
Let T : E x E — FE defined by

T(u,v) = (_A)71 0 f(UI,UJ),
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then T satisfies
1
T(u,v) > T(tu, ;v) > t*T(u,v), Vt €]0,1[, ¥V (u,v) € E x E.

we construct now the approximation sequence (u,,v,) defined by

{ Unt1 = T (Un, vp)

Upt1 = T (n,un)

with (UO, ’Uo) eF
We choose ty > 0 sufficiently small such that
toxg < xo < %J)Q
toxo < Yo < %xo

1—a 1 11—
(to) ro < T(i[:o, {Eo) < o X0

let ug = towg and vy = %xo, it follows that uwy < T'(ug,vo) and T (vo,uo) < vp.
And finally we have

ug < up < oo < Uy < v, <o < v <0y, VR EN

Lets show that the two sequences are Cauchy sequences.
for any n > 0 there exist A > 0 such that A\v,, < u, < v,, so lets take

tn, =sup{l > > 0; v, <up <oy},
we see that t,, € ]0,1], and ¢,, is increasing, so let

t*= lim t
n—>+oo ns

suppose that t* < 1 then using the fact that t,v, < u, and v, < tlun we have

1 t t* 1
Unt1 = T(un,vn) > T(tnvn, t_un) = T(t_zt*’l)na t_t_*un)
n n
B
t 1 t 1
> (t—”> T(t vn, un) > t—ZT(t*vn, —tin)
t —
> )T W wn) 2 60 ()7 v

so we have ¢, (t*)ﬁ*1 < ty41,and if n — 400 we have (t*)ﬁ

so we have t* = 1.
For any positive integer n and p we have

Ogun-l—p_ungvn_ungvn_tnvnS(l_tn)vo (5)

< t* which is impossible,

so we have
[untp = tnllog < (1= tn) [Jvolloo
and it follows that (u,) is a Cauchy sequence, the same for (v,,). And since E is a
Banach space we have the convergence of (u,,) to «* and (v,) to v*. and using (5) we
have v* = u* and by continuity of T" we have we obtain the desired fixed point.
Unicity : Let u* and v* be two positive fixed points of T, and denote

1
a= sup{)\ >0 0" <ut < X’U*}
suppose that a < 1, then we have

1
u' =T(u"u*)>T (av*, —v*) > dPT (v, v") = aPv*
a
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it follows from the definition of a that a > af which is impossible so a = 1 and we
have v* = u*.
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