Existence of nontrivial solutions for a class of elliptic systems

Lotfr LASSOUED and Ali MAALAOUI

[^0]
1. Preliminaries

Let E a Banach space. Let $P \subset E$ be a cone, that is, if $x, y \in P, \lambda \in \mathbb{R}_{+}$then $\lambda x \in P$ and $x+y \in P$, with $P \cap(-P)=\{0\}$. We know that E become an ordered Banach space by the order induced by P, i.e., $x \geq y \Longleftrightarrow x-y \in P$.

A cone is said to be solid if $\stackrel{\circ}{P} \neq 0$, and total if $\overline{P-P}=E$. The cone P is called normal, if there exist $C>0$ such that if $x \leq y$ then $\|x\| \leq C\|y\|$.
E is said to have the lattice structure if for $x, y \in P, \inf \{x, y\}$ and $\sup \{x, y\}$ exist and belong to E. We denote then $x^{+}=\sup \{x, 0\}$ and $x^{-}=\sup \{-x, 0\}$ and we define $|x|=x^{+}+x^{-}$.

In all that will follow, we will call a set \mathcal{M} or an operator T is admissible if the topological degree $d(I-T, \mathcal{M}, 0)$ is well defined i.e. $0 \in(I-T)(\partial \mathcal{M})$. And we remind the reader that a completely continuous operator in a Banach space is a continuous operator that transforms bounded sets on relatively compact sets. Also if T is a smooth completely continuous operator then the differential of the operator on any point where it is smooth, is a compact linear operator.
Lemma 1.1. Let \mathcal{M} be a bounded open set which contain 0 , of a Banach spaces and let $T: \overline{\mathcal{M}} \longmapsto E$ be a compact operator, If

$$
T u \neq \lambda u, \quad \forall u \in \partial \mathcal{M}, \quad \forall \lambda \geq 1
$$

Then $d(I-T, \mathcal{M}, 0)=1$.
Proof. Let H be the homotopy defined by $H(t, u)=u-t T u$; by the assumption imposed on $\partial \mathcal{M}$ we have the compatibility hypothesis of H so we have

$$
d(H(1, .), \mathcal{M}, 0)=d(H(0, .), \mathcal{M}, 0)=d(i d, \mathcal{M}, 0)=1
$$

This completes our proof.
Lemma 1.2. Let T be a linear compact operator in E such that $1 \in \sigma(T)$, then

$$
d(I-T, \mathcal{M}, 0)=(-1)^{\alpha}
$$

where α the sum of multiplicity of the eigenvalues of $D T\left(x_{0}\right)$ in $] 1,+\infty[$.

Received: 11 June 2009.

Proof. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of T greater than one and E_{1}, \ldots, E_{k} the corresponding eigenspaces. Let P_{1}, \ldots, P_{k} denote the projectors on the previous subspaces. We consider $P=\sum_{i=1}^{k} P_{i}$, then P commutes with T and is a projector on E_{0} the direct sum of the E_{i}. Remark that $\operatorname{dim} E_{0}=\alpha$. Now we take the following homotopy:

$$
H(t, x)=x-[2 t P x+(1-t) T P x]-(1-t) T(I-P) x
$$

it is easy to see that this homotopy is admissible on $\overline{B(0,1)}$. Thus, we have

$$
d(I-T, \overline{B(0,1)}, 0)=d(I-2 P, \overline{B(0,1)}, 0)
$$

and since P is a finite rank operator, then we have

$$
d(I-T, \overline{B(0,1)}, 0)=d(I-2 P, \overline{B(0,1)}, 0)=(-1)^{\alpha}
$$

This completes the proof.
Lemma 1.3 (Homotopy criteria). Let \mathcal{M} be a bounded set, let T_{1} and T_{2} be two completely continuous operator, without fixed point on Ω. If

$$
\left\|T_{1} x-T_{2} x\right\| \leq\left\|x-T_{2} x\right\|, \forall x \in \mathcal{M}
$$

Then $I-T_{1}$ and $I-T_{2}$ are homotopic in \mathcal{M}.
Proof. Consider the linear homotopy

$$
H(t, x)=x-\left(t T_{1} x+(1-t) T_{2} x\right), \forall x \in \mathcal{M}, \forall t \in[0,1]
$$

and notice that

$$
\|H(t, x)\|=\left\|x-T_{2} x+t\left(T_{2} x-T_{1} x\right)\right\| \geq(1-t)\left\|x-T_{2} x\right\|, \forall x \in \mathcal{M}, \forall t \in[0,1]
$$

thus H is compatible, which proves the result.

Now, we focus on the research of a non trivial solution for the problem

$$
\begin{gather*}
-\Delta u=f(u) \text { on } \Omega \\
u=0 \text { on } \partial \Omega \tag{1}
\end{gather*}
$$

where f is in $C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, and Ω is a bounded domain of \mathbb{R}^{d}. And we let E denote the space $C_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)$.
here we suppose that f satisfies the following assumptions :
H1) $\lim \sup _{s_{i \rightarrow+\infty}} \frac{f_{i}(s)}{s_{j}}=a_{i, j}, \lim \inf _{s_{i \rightarrow-\infty}} \frac{f_{i}(s)}{s_{j}}=b_{i, j}$.
H2) $\frac{\partial f_{i}}{\partial x_{j}}(0)=a_{i, j}^{0} \geq 0$.
Let A denote the matrix $\left(a_{i, j}^{0}\right)_{1 \leq i, j \leq n}$. And $\beta_{1}>\beta_{2} \geq \ldots \geq \beta_{2}$ be the eigenvalues of A.

We add now the remaining assumptions :
H3) $\beta_{1}>\lambda_{1}>\beta_{2}$.
H4) $\left|\begin{array}{ll}\lambda_{1} & \lambda_{2} \\ \beta_{2} & \beta_{1}\end{array}\right|<0$
Theorem 1.1. Suppose that $r\left(\left|a_{i, j}\right|\right)<\lambda_{1}$ and $r\left(\left|b_{i, j}\right|\right)<\lambda_{1}$, then, under the assumptions H1-H4 the problem (1) has at least one positive solution.

2. Proof of theorem 4

We split the proof into several steps. Step 1.
Let $B=\left(\max \left(\left|a_{i, j}\right|,\left|b_{i, j}\right|\right)\right)_{1 \leq i, j \leq n}, T=(-\Delta)^{-1} f: C\left(\bar{\Omega}, \mathbb{R}^{n}\right) \longrightarrow C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$, and $H=(-\Delta)^{-1} B$, then we have,

$$
|T x| \leq H|x|+x_{0}, \forall x \in C\left(\bar{\Omega}, \mathbb{R}^{n}\right)
$$

Since $r(H)<1$, the operator $I-H$ is a positive invertible operator, let $K=$ $\left\{x \in C\left(\bar{\Omega}, \mathbb{R}^{n}\right) ; T x=\mu x, \mu \geq 1\right\}$ then K is bounded, in fact, consider $x \in K$, then there exist $\mu \geq 1$ such that

$$
T x=\mu x
$$

so we have

$$
|x| \leq \mu|x|=|T x| \leq H|x|+x_{0}
$$

so $(I-H)|x| \leq x_{0}$ and it follows that $|x| \leq(I-H)^{-1} x_{0}$ which implies the boundedness of K, and if we take $R_{0}>0$ such that $K \subset B\left(0, R_{0}\right)$ we have

$$
T x \neq \mu x, \forall x \in \partial B\left(0, R_{0}\right), \forall \mu \geq 1
$$

finally using lemma (1) we have the existence of $R_{0}>0$ such that

$$
d(I-T, B(0, R), 0)=1, \forall R \geq R_{0}
$$

Step 2. Let us consider now the operator L defined by

$$
L x=D T(0) x=(-\Delta)^{-1} D f(0) x, \forall x \in C\left(\bar{\Omega}, \mathbb{R}^{n}\right)
$$

Lemma 2.1. $I-L$ is homotopic to T in a small neighborhood of 0 .
Proof. : Remark first that the assumptions imply that 1 is not an eigenvalue of L. Thus there exist $\delta>0$ such that

$$
\|x-L x\| \geq \delta\|x\|, \forall x \in E
$$

because of the Fredholm alternative applied to the compact operator L. In the other hand we have

$$
T x=L x+o(\|x\|)
$$

therefore there exist $r_{0}>0$ such that for every $0<r<r_{0}$,

$$
\|x-T x\| \geq\|x-L x\|-\|o(\|x\|)\| \geq \frac{\delta}{2}\|x\|, \forall x \in B(0, r)
$$

And that proves that the domain $B(0, r)$ for r sufficiently small is admissible. Now we have

$$
\|T x-L x\|=\|o(\|x\|)\| \leq \frac{\delta}{2}\|x\| \leq\|x-L x\|
$$

therefore, using lemma(3) we get the desired result.
Step 3. Let us study the spectrum of L.
Here we denote $\Phi_{i}=\varphi_{i}\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$, where $\varphi_{i}, i \geq 1$ are the eigenfunctions of the 1 dimensional Laplace operator. Since they form an orthonormal basis of $L^{2}(\Omega)$ we can write every $u \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ as

$$
\begin{equation*}
u=\sum_{j=1}^{\infty} A_{j} \Phi_{j} \tag{2}
\end{equation*}
$$

where the $A_{j} \in M_{n}(\mathbb{R})$ are diagonal.
Note that the decomposition (2) is not unique if we remove the diagonal condition. But we can give it a more settled sens in the following way :

Let $F: M_{n}(\mathbb{R}) \longmapsto \mathbb{R}^{n}$, defined for every $M=\left(m_{i, j}\right) \in M_{n}(\mathbb{R})$ by

$$
F(M)=\left(\begin{array}{c}
\sum_{j=1}^{n} m_{1, j} \\
\vdots \\
\sum_{j=1}^{n} m_{n, j}
\end{array}\right)
$$

and consider the space

$$
\widetilde{M_{n}(\mathbb{R})}=M_{n}(\mathbb{R}) / \operatorname{ker} F
$$

Then (2) is unique if we take $A_{j} \in \widetilde{M_{n}(\mathbb{R})}$. So for $M \in M_{n}(\mathbb{R})$ we will write \widetilde{M} its class in $\widetilde{M_{n}(\mathbb{R})}$.

Now let us consider the following eigenvalue problem:

$$
\left\{\begin{array}{c}
-\Delta u=\mu A u \text { in } \Omega \tag{3}\\
u=0 \text { in } \partial \Omega
\end{array}\right.
$$

We know that this problem has an increasing sequence of eigenvalue $\left(\mu_{i}\right)_{i \geq 1}$. Let Ψ_{i} be an eigenfunction that correspond to the eigenvalue μ_{i}, then we have $\Psi_{i}=\sum A_{j} \Phi_{j}$ and if we plug it in the equation (3) we get :

$$
\begin{equation*}
\sum \lambda_{j} A_{j} \Phi_{j}=\sum \mu_{i} A A_{j} \Phi_{j} \tag{4}
\end{equation*}
$$

, thus

$$
\widetilde{A A_{j}}=\frac{\lambda_{j}}{\mu_{i}} \widetilde{A_{j}}
$$

Now consider the operator operators $\widetilde{\mathcal{L}}: \widetilde{M_{n}(\mathbb{R})} \longmapsto \widetilde{M_{n}(\mathbb{R})}$ defined by $\widetilde{\mathcal{L} M}=\widetilde{A M}$ and $\mathcal{L}: M_{n}(\mathbb{R}) \longmapsto M_{n}(\mathbb{R})$ defined by $\mathcal{L} M=A M$. We can easily verify that the operator $\widetilde{\mathcal{L}}$ is well defined and thus $\frac{\lambda_{j}}{\mu_{i}}$ are eigenvalues of $\widetilde{\mathcal{L}}$ so let us find its spectrum. Let β be an eigenvalue of $\widetilde{\mathcal{L}}$, then there exist $\widetilde{B} \in \widetilde{M_{n}(\mathbb{R})} \backslash\{0\}$ such that

$$
\widetilde{A B}=\beta \widetilde{B}
$$

Thus

$$
A B=\beta B+C
$$

where $C \in \operatorname{ker} F$, therefore

$$
(A-\beta I) B=C
$$

so if β is not an eigenvalue of \mathcal{L} then $B=(A-\beta I)^{-1} C$, thus $F(B)=F(C)=0$ and $\widetilde{B}=0$ which yields to a contradiction, so β is an eigenvalue of \mathcal{L} but we know that the eigenvalues of \mathcal{L} are the same as A, therefore the spectrum of $\widetilde{\mathcal{L}}$ is included in the spectrum of A and the other inclusion is obvious, thus the eigenvalues μ_{i} have the form $\frac{\lambda_{j}}{\beta_{k}}$, where $j \geq 1$ and $1 \leq k \leq n$. Therefore,

$$
\mu_{1}=\frac{\lambda_{1}}{\beta 1}
$$

Notice that since $\widetilde{\mathcal{L}}$ acts on a finite dimensional vector space then there exist $j_{0} \geq 1$ such that $\widetilde{A_{j}}=0, \forall j \geq j_{0}$.

Let us now find the multiplicity of μ_{1}. Let Ψ be an eigenfunction corresponding to μ_{1}, using the same process as in (4), we get

$$
\widetilde{A A_{j}}=\frac{\lambda_{j}}{\mu_{1}} \widetilde{A_{j}}
$$

therefore, $\widetilde{A_{j}}=0, \forall j \geq 2$ and thus $\Psi=\widetilde{A_{1}} \Phi_{1}$ where $\widetilde{A_{1}} \in \widetilde{M_{n}(\mathbb{R})}$ is an eigenvector of $\widetilde{\mathcal{L}}$ associated to $\beta 1$. So μ_{1} has the same multiplicity as $\beta 1$ but since A is a positive irreductible matrix the spectral radius $r(A)=\beta 1$ is of multiplicity one, thus the multiplicity of μ_{1} is 1 .

Now using H3) and H4) we get $\mu_{2}=\frac{\lambda_{1}}{\beta_{2}}>1$ thus, the only eigenvalue of L in $] 1,+\infty\left[\right.$ is $\frac{1}{\mu_{1}}$. Therefore using lemma(2) we get the existence of $\varepsilon>0$ such that

$$
d(I-T, B(0, \varepsilon), 0)=-1
$$

Now using the topological degree excision property we have the existence of a non trivial solution for the problem (1).
Remark 2.1. We can replace the hypothesis H3) by $\beta_{1}>\lambda_{1}$ and $\max _{j, k} \sum_{i}\left|a_{i, j}-a_{i k}\right|<$ λ_{2}.

Now let us assume there exist $A_{0}=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ such that $\frac{|f(s)-A s|}{|s|} \longrightarrow 0$ and $r\left(A_{0}\right)>\lambda_{1}$.
Theorem 2.1. Under the previous assumption and the assumptions H2-H4, the problem (1) has a non trivial solution.
Proof. The proof is almost the same as the previous one. In fact we need only to worry about the degree of the operator T for a large neighborhood of zero. But we have the existence of R sufficiently large such that

$$
d(I-T, B(0, R), 0)=d(I-\widetilde{T}, B(0, R), 0)
$$

where $\widetilde{T}=(-\Delta)^{-1} \circ A_{0}$. In fact, we have the existence of $\delta>0$ such that

$$
\|x-\widetilde{T} x\| \geq \delta, \forall x \in E
$$

We also have for R sufficiently large

$$
\|T x-\widetilde{T} x\| \leq \delta\|x\| \leq\|x-\widetilde{T} x\|, \forall x ;\|x\|>R
$$

Using lemma(3) And since $\sigma(\widetilde{T}) \subset] 0,1[$ we have using lemma(2) that $d(I-T, B(0, R), 0)=$ $d(I-\widetilde{T}, B(0, R), 0)=1$. And we conclude by comparing with the degree near the origin.
Theorem 2.2. Suppose that there exist a partition I, J of $\{1, \ldots, n\}$ such that $u_{I} \longrightarrow$ $f\left(u_{I}, v_{J}\right)$ is nondecreasing and $v_{J} \longrightarrow f\left(u_{I}, v_{J}\right)$ is nonincreasing. We suppose in addition that there exist $1>\alpha>0$ such that for $t \in] 0,1\left[, f\left(t u_{I}, \frac{1}{t} v_{J}\right) \geq t^{\alpha} f\left(u_{I}, v_{J}\right)\right.$. then the problem (1) have one and only one positive solution.

3. Proof of theorem 8.

Here E is equipped with the slotwise partial order on $C_{0}^{1}(\Omega)$.
Let $T: E \times E \longrightarrow E$ defined by

$$
T(u, v)=(-\Delta)^{-1} \circ f\left(u_{I}, v_{J}\right)
$$

then T satisfies

$$
\left.T(u, v) \geq T\left(t u, \frac{1}{t} v\right) \geq t^{\alpha} T(u, v), \forall t \in\right] 0,1[, \forall(u, v) \in E \times E
$$

we construct now the approximation sequence $\left(u_{n}, v_{n}\right)$ defined by

$$
\left\{\begin{array}{l}
u_{n+1}=T\left(u_{n}, v_{n}\right) \\
v_{n+1}=T\left(v_{n}, u_{n}\right)
\end{array}\right.
$$

with $\left(u_{0}, v_{0}\right) \in E$
We choose $t_{0}>0$ sufficiently small such that

$$
\left\{\begin{array}{l}
t_{0} x_{0}<x_{0}<\frac{1}{t_{0}} x_{0} \\
t_{0} x_{0}<y_{0}<\frac{1}{t_{0}} x_{0} \\
\left(t_{0}\right)^{1-\alpha} x_{0}<T\left(x_{0}, x_{0}\right)<\left(\frac{1}{t_{0}}\right)^{1-\alpha} x_{0}
\end{array}\right.
$$

let $u_{0}=t_{0} x_{0}$ and $v_{0}=\frac{1}{t_{0}} x_{0}$, it follows that $u_{0} \leq T\left(u_{0}, v_{0}\right)$ and $T\left(v_{0}, u_{0}\right) \leq v_{0}$. And finally we have

$$
u_{0} \leq u_{1} \leq \ldots \leq u_{n} \leq v_{n} \leq \ldots \leq v_{1} \leq v_{0}, \forall n \in \mathbb{N}
$$

Lets show that the two sequences are Cauchy sequences.
for any $n \geq 0$ there exist $\lambda>0$ such that $\lambda v_{n} \leq u_{n} \leq v_{n}$, so lets take

$$
t_{n}=\sup \left\{1 \geq \lambda>0 ; \lambda v_{n} \leq u_{n} \leq v_{n}\right\}
$$

we see that $\left.\left.t_{n} \in\right] 0,1\right]$, and t_{n} is increasing, so let

$$
t^{*}=\lim _{n \longrightarrow+\infty} t_{n}
$$

suppose that $t^{*}<1$ then using the fact that $t_{n} v_{n} \leq u_{n}$ and $v_{n} \leq \frac{1}{t_{n}} u_{n}$ we have

$$
\begin{aligned}
u_{n+1} & =T\left(u_{n}, v_{n}\right) \geq T\left(t_{n} v_{n}, \frac{1}{t_{n}} u_{n}\right)=T\left(\frac{t_{n}}{t^{*}} t^{*} v_{n}, \frac{t^{*}}{t_{n}} \frac{1}{t^{*}} u_{n}\right) \\
& \geq\left(\frac{t_{n}}{t^{*}}\right)^{\beta} T\left(t^{*} v_{n}, \frac{1}{t^{*}} u_{n}\right) \geq \frac{t_{n}}{t^{*}} T\left(t^{*} v_{n}, \frac{1}{t^{*}} u_{n}\right) \\
& \geq \frac{t_{n}}{t^{*}}\left(t^{*}\right)^{\beta} T\left(v_{n}, u_{n}\right) \geq t_{n}\left(t^{*}\right)^{\beta-1} v_{n+1}
\end{aligned}
$$

so we have $t_{n}\left(t^{*}\right)^{\beta-1} \leq t_{n+1}$, and if $n \longrightarrow+\infty$ we have $\left(t^{*}\right)^{\beta} \leq t^{*}$ which is impossible, so we have $t^{*}=1$.

For any positive integer n and p we have

$$
\begin{equation*}
0 \leq u_{n+p}-u_{n} \leq v_{n}-u_{n} \leq v_{n}-t_{n} v_{n} \leq\left(1-t_{n}\right) v_{0} \tag{5}
\end{equation*}
$$

so we have

$$
\left\|u_{n+p}-u_{n}\right\|_{\infty} \leq\left(1-t_{n}\right)\left\|v_{0}\right\|_{\infty}
$$

and it follows that $\left(u_{n}\right)$ is a Cauchy sequence, the same for $\left(v_{n}\right)$. And since E is a Banach space we have the convergence of $\left(u_{n}\right)$ to u^{*} and $\left(v_{n}\right)$ to v^{*}. and using (5) we have $v^{*}=u^{*}$ and by continuity of T we have we obtain the desired fixed point.

Unicity : Let u^{*} and v^{*} be two positive fixed points of T, and denote

$$
a=\sup \left\{\lambda>0 ; \lambda v^{*} \leq u^{*} \leq \frac{1}{\lambda} v^{*}\right\}
$$

suppose that $a<1$, then we have

$$
u^{*}=T\left(u^{*}, u^{*}\right) \geq T\left(a v^{*}, \frac{1}{a} v^{*}\right) \geq a^{\beta} T\left(v^{*}, v^{*}\right)=a^{\beta} v^{*}
$$

it follows from the definition of a that $a \geq a^{\beta}$ which is impossible so $a=1$ and we have $v^{*}=u^{*}$.

References

[1] A. Abramovich, C. D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, Providence, 2002.
[2] M.A. Krasnosel'skii, P.P. Zabreiko, Geometric Methods of Nonlinear Analysis, Springer-Verlag, 1984.
[3] Z. Liang, L. Zhang, S. Li, Fixed point theorems for a class of mixed monotone operators, Z. Anal. Anwendungen 22 (2003), 529-542.
[4] J. Sun, X. Liu, Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations, J. Math. Anal. Appl. 348 (2008), 927-937.
[5] J. Sun, X. Liu, Computation for topological degree and its applications, J. Math. Anal. Appl. 202 (1996), 785-796.
(Lotfi LASSOUED) Department of Mathematics, University of El Manar, F.S.T. Tunis, Campus Universitaire 2029, Tunisia
E-mail address: lassoued.lotfi@gmail.com
(Ali MAALAOUI) Department of Mathematics, University of El Manar, F.S.T. Tunis, Campus Universitaire 2029, Tunisia
E-mail address: ali.maalaoui@gmail.com

[^0]: Abstract. We establish several existence results for a class of nonlinear elliptic systems of Schrödinger type. The proofs are mainly based on topological degree arguments.

 2000 Mathematics Subject Classification. Primary 35J55; Secondary 47H11.
 Key words and phrases. nonlinear elliptic system, topological degree.

