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Existence of nontrivial solutions for a class of elliptic systems

Lotfi LASSOUED and Ali MAALAOUI

Abstract. We establish several existence results for a class of nonlinear elliptic systems of
Schrödinger type. The proofs are mainly based on topological degree arguments.
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1. Preliminaries

Let E a Banach space. Let P ⊂ E be a cone, that is, if x, y ∈ P , λ ∈ R+ then
λx ∈ P and x + y ∈ P , with P ∩ (−P ) = {0} . We know that E become an ordered
Banach space by the order induced by P , i.e., x ≥ y ⇐⇒ x − y ∈ P.

A cone is said to be solid if
◦
P �= 0, and total if P − P = E. The cone P is called

normal, if there exist C > 0 such that if x ≤ y then ‖x‖ ≤ C ‖y‖ .
E is said to have the lattice structure if for x, y ∈ P, inf {x, y} and sup {x, y} exist

and belong to E. We denote then x+ = sup {x, 0} and x− = sup {−x, 0} and we
define |x| = x+ + x−.

In all that will follow, we will call a set M or an operator T is admissible if the
topological degree d(I−T,M, 0) is well defined i.e. 0 ∈ (I − T ) (∂M). And we remind
the reader that a completely continuous operator in a Banach space is a continuous
operator that transforms bounded sets on relatively compact sets. Also if T is a
smooth completely continuous operator then the differential of the operator on any
point where it is smooth, is a compact linear operator.

Lemma 1.1. Let M be a bounded open set which contain 0, of a Banach spaces and
let T : M �−→ E be a compact operator, If

Tu �= λu, ∀u ∈ ∂M, ∀λ ≥ 1

Then d(I − T,M, 0) = 1.

Proof. Let H be the homotopy defined by H(t, u) = u − tTu; by the assumption
imposed on ∂M we have the compatibility hypothesis of H so we have

d(H(1, .),M, 0) = d(H(0, .),M, 0) = d(id,M, 0) = 1.

This completes our proof. �

Lemma 1.2. Let T be a linear compact operator in E such that 1 ∈ σ(T ), then

d(I − T,M, 0) = (−1)α ,

where α the sum of multiplicity of the eigenvalues of DT (x0) in ]1, +∞[ .
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Proof. Let λ1, ..., λk be the eigenvalues of T greater than one and E1, ..., Ek the corre-
sponding eigenspaces. Let P1, ..., Pk denote the projectors on the previous subspaces.

We consider P =
k∑

i=1

Pi, then P commutes with T and is a projector on E0 the direct

sum of the Ei. Remark that dim E0 = α. Now we take the following homotopy:

H(t, x) = x − [2tPx + (1 − t)TPx] − (1 − t)T (I − P )x

it is easy to see that this homotopy is admissible on B(0, 1). Thus, we have

d(I − T, B(0, 1), 0) = d(I − 2P, B(0, 1), 0),

and since P is a finite rank operator, then we have

d(I − T, B(0, 1), 0) = d(I − 2P, B(0, 1), 0) = (−1)α .

This completes the proof. �

Lemma 1.3 (Homotopy criteria). Let M be a bounded set, let T1 and T2 be two
completely continuous operator, without fixed point on Ω. If

‖T1x − T2x‖ ≤ ‖x − T2x‖ , ∀x ∈ M,

Then I − T1 and I − T2 are homotopic in M.

Proof. Consider the linear homotopy

H(t, x) = x − (tT1x + (1 − t)T2x), ∀x ∈ M, ∀t ∈ [0, 1]

and notice that

‖H(t, x)‖ = ‖x − T2x + t(T2x − T1x)‖ ≥ (1 − t) ‖x − T2x‖ , ∀x ∈ M, ∀t ∈ [0, 1] ,

thus H is compatible, which proves the result. �

Now, we focus on the research of a non trivial solution for the problem

−Δu = f(u) on Ω
u = 0 on ∂Ω (1)

where f is in C1 (Rn, Rn) , and Ω is a bounded domain of Rd. And we let E denote
the space C1

0 (Ω, Rn).
here we suppose that f satisfies the following assumptions :
H1) lim supsi−→+∞

fi(s)
sj

= ai,j , lim infsi−→−∞
fi(s)

sj
= bi,j .

H2) ∂fi

∂xj
(0) = a0

i,j ≥ 0.

Let A denote the matrix
(
a0

i,j

)
1≤i,j≤n

. And β1 > β2 ≥ ... ≥ β2 be the eigenvalues
of A.

We add now the remaining assumptions :
H3)β1 > λ1 > β2.

H4)
∣∣∣∣λ1 λ2

β2 β1

∣∣∣∣ < 0

Theorem 1.1. Suppose that r(|ai,j |) < λ1 and r(|bi,j |) < λ1, then, under the as-
sumptions H1-H4 the problem (1) has at least one positive solution.
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2. Proof of theorem 4

We split the proof into several steps. Step 1.
Let B = (max (|ai,j | , |bi,j |))1≤i,j≤n , T = (−Δ)−1

f : C
(
Ω, Rn

) −→ C
(
Ω, Rn

)
,

and H = (−Δ)−1
B, then we have,

|Tx| ≤ H |x| + x0, ∀x ∈ C
(
Ω, Rn

)
,

Since r(H) < 1, the operator I − H is a positive invertible operator, let K ={
x ∈ C

(
Ω, Rn

)
; Tx = μx, μ ≥ 1

}
then K is bounded, in fact, consider x ∈ K, then

there exist μ ≥ 1 such that
Tx = μx

so we have
|x| ≤ μ |x| = |Tx| ≤ H |x| + x0

so (I − H) |x| ≤ x0 and it follows that |x| ≤ (I − H)−1
x0 which implies the bound-

edness of K, and if we take R0 > 0 such that K ⊂ B(0, R0) we have

Tx �= μx,∀x ∈ ∂B(0, R0), ∀μ ≥ 1,

finally using lemma (1) we have the existence of R0 > 0 such that

d(I − T, B(0, R), 0) = 1, ∀R ≥ R0.

Step 2. Let us consider now the operator L defined by

Lx = DT (0)x = (−Δ)−1 Df(0)x, ∀x ∈ C
(
Ω, Rn

)
.

Lemma 2.1. I − L is homotopic to T in a small neighborhood of 0.

Proof. : Remark first that the assumptions imply that 1 is not an eigenvalue of L.
Thus there exist δ > 0 such that

‖x − Lx‖ ≥ δ ‖x‖ , ∀x ∈ E,

because of the Fredholm alternative applied to the compact operator L. In the other
hand we have

Tx = Lx + o(‖x‖),
therefore there exist r0 > 0 such that for every 0 < r < r0,

‖x − Tx‖ ≥ ‖x − Lx‖ − ‖o(‖x‖)‖ ≥ δ

2
‖x‖ , ∀x ∈ B(0, r),

And that proves that the domain B(0, r) for r sufficiently small is admissible. Now
we have

‖Tx − Lx‖ = ‖o(‖x‖)‖ ≤ δ

2
‖x‖ ≤ ‖x − Lx‖ ,

therefore, using lemma(3) we get the desired result. �

Step 3. Let us study the spectrum of L.

Here we denote Φi = ϕi

⎛
⎜⎝

1
...
1

⎞
⎟⎠ , where ϕi, i ≥ 1 are the eigenfunctions of the 1

dimensional Laplace operator. Since they form an orthonormal basis of L2(Ω) we can
write every u ∈ L2 (Ω, Rn) as

u =
∞∑

j=1

AjΦj , (2)
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where the Aj ∈ Mn (R) are diagonal.
Note that the decomposition (2) is not unique if we remove the diagonal condition.

But we can give it a more settled sens in the following way :
Let F : Mn (R) �−→ Rn, defined for every M = (mi,j) ∈ Mn (R) by

F (M) =

⎛
⎜⎜⎜⎜⎜⎝

n∑
j=1

m1,j

...
n∑

j=1

mn,j

⎞
⎟⎟⎟⎟⎟⎠ ,

and consider the space

M̃n (R) = Mn (R) � kerF,

Then (2) is unique if we take Aj ∈ M̃n (R). So for M ∈ Mn (R) we will write M̃ its

class in M̃n (R).
Now let us consider the following eigenvalue problem:{ −Δu = μAu in Ω

u = 0 in ∂Ω (3)

We know that this problem has an increasing sequence of eigenvalue (μi)i≥1. Let Ψi

be an eigenfunction that correspond to the eigenvalue μi, then we have Ψi =
∑

AjΦj

and if we plug it in the equation (3) we get :∑
λjAjΦj =

∑
μiAAjΦj (4)

, thus

ÃAj =
λj

μi
Ãj .

Now consider the operator operators L̃ : M̃n (R) �−→ M̃n (R) defined by L̃M̃ = ÃM
and L : Mn (R) �−→ Mn (R) defined by LM = AM. We can easily verify that the
operator L̃ is well defined and thus λj

μi
are eigenvalues of L̃ so let us find its spectrum.

Let β be an eigenvalue of L̃, then there exist B̃ ∈ M̃n (R)� {0} such that

ÃB = βB̃.

Thus
AB = βB + C

where C ∈ kerF , therefore
(A − βI) B = C,

so if β is not an eigenvalue of L then B = (A − βI)−1
C, thus F (B) = F (C) = 0 and

B̃ = 0 which yields to a contradiction, so β is an eigenvalue of L but we know that
the eigenvalues of L are the same as A, therefore the spectrum of L̃ is included in the
spectrum of A and the other inclusion is obvious, thus the eigenvalues μi have the

form
λj

βk
, where j ≥ 1 and 1 ≤ k ≤ n. Therefore,

μ1 =
λ1

β1
.

Notice that since L̃ acts on a finite dimensional vector space then there exist j0 ≥ 1
such that Ãj = 0, ∀j ≥ j0.
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Let us now find the multiplicity of μ1. Let Ψ be an eigenfunction corresponding to
μ1, using the same process as in (4), we get

ÃAj =
λj

μ1
Ãj

therefore, Ãj = 0, ∀j ≥ 2 and thus Ψ = Ã1Φ1 where Ã1 ∈ M̃n(R) is an eigenvector
of L̃ associated to β1. So μ1 has the same multiplicity as β1 but since A is a positive
irreductible matrix the spectral radius r(A) = β1 is of multiplicity one, thus the
multiplicity of μ1 is 1.

Now using H3) and H4) we get μ2 = λ1
β2

> 1 thus, the only eigenvalue of L in
]1, +∞[ is 1

μ1
. Therefore using lemma(2) we get the existence of ε > 0 such that

d(I − T, B(0, ε), 0) = −1.

Now using the topological degree excision property we have the existence of a non
trivial solution for the problem (1).

Remark 2.1. We can replace the hypothesis H3) by β1 > λ1 and max
j,k

∑
i

|ai,j − aik| <

λ2.

Now let us assume there exist A0 = (ai,j)1≤i,j≤n such that |f(s)−As|
|s| −→ 0 and

r(A0) > λ1.

Theorem 2.1. Under the previous assumption and the assumptions H2-H4, the prob-
lem (1) has a non trivial solution.

Proof. The proof is almost the same as the previous one. In fact we need only to
worry about the degree of the operator T for a large neighborhood of zero. But we
have the existence of R sufficiently large such that

d(I − T, B(0, R), 0) = d(I − T̃ , B(0, R), 0)

where T̃ = (−Δ)−1 ◦ A0. In fact, we have the existence of δ > 0 such that∥∥∥x − T̃ x
∥∥∥ ≥ δ, ∀x ∈ E.

We also have for R sufficiently large∥∥∥Tx − T̃ x
∥∥∥ ≤ δ ‖x‖ ≤

∥∥∥x − T̃ x
∥∥∥ , ∀x; ‖x‖ > R.

Using lemma(3) And since σ(T̃ ) ⊂ ]0, 1[ we have using lemma(2) that d(I−T, B(0, R), 0) =
d(I − T̃ , B(0, R), 0) = 1. And we conclude by comparing with the degree near the ori-
gin. �
Theorem 2.2. Suppose that there exist a partition I, J of {1, ..., n} such that uI −→
f(uI , vJ ) is nondecreasing and vJ −→ f(uI , vJ ) is nonincreasing. We suppose in
addition that there exist 1 > α > 0 such that for t ∈ ]0, 1[ , f(tuI ,

1
t vJ ) ≥ tαf(uI , vJ).

then the problem (1) have one and only one positive solution.

3. Proof of theorem 8.

Here E is equipped with the slotwise partial order on C1
0 (Ω) .

Let T : E × E −→ E defined by

T (u, v) = (−Δ)−1 ◦ f(uI , vJ),
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then T satisfies

T (u, v) ≥ T (tu,
1
t
v) ≥ tαT (u, v), ∀t ∈ ]0, 1[ , ∀ (u, v) ∈ E × E.

we construct now the approximation sequence (un, vn) defined by{
un+1 = T (un, vn)
vn+1 = T (vn, un) ,

with (u0, v0) ∈ E
We choose t0 > 0 sufficiently small such that⎧⎪⎨

⎪⎩
t0x0 < x0 < 1

t0
x0

t0x0 < y0 < 1
t0

x0

(t0)
1−α

x0 < T (x0, x0) <
(

1
t0

)1−α

x0

let u0 = t0x0 and v0 = 1
t0

x0, it follows that u0 ≤ T (u0, v0) and T (v0, u0) ≤ v0.
And finally we have

u0 ≤ u1 ≤ ... ≤ un ≤ vn ≤ ... ≤ v1 ≤ v0, ∀n ∈ N,

Lets show that the two sequences are Cauchy sequences.
for any n ≥ 0 there exist λ > 0 such that λvn ≤ un ≤ vn, so lets take

tn = sup {1 ≥ λ > 0; λvn ≤ un ≤ vn} ,

we see that tn ∈ ]0, 1], and tn is increasing, so let

t∗ = lim
n−→+∞ tn,

suppose that t∗ < 1 then using the fact that tnvn ≤ un and vn ≤ 1
tn

un we have

un+1 = T (un, vn) ≥ T (tnvn,
1
tn

un) = T (
tn
t∗

t∗vn,
t∗

tn

1
t∗

un)

≥
(

tn
t∗

)β

T (t∗vn,
1
t∗

un) ≥ tn
t∗

T (t∗vn,
1
t∗

un)

≥ tn
t∗

(t∗)β
T (vn, un) ≥ tn (t∗)β−1

vn+1

so we have tn (t∗)β−1 ≤ tn+1, and if n −→ +∞ we have (t∗)β ≤ t∗ which is impossible,
so we have t∗ = 1.

For any positive integer n and p we have

0 ≤ un+p − un ≤ vn − un ≤ vn − tnvn ≤ (1 − tn) v0 (5)

so we have
‖un+p − un‖∞ ≤ (1 − tn) ‖v0‖∞

and it follows that (un) is a Cauchy sequence, the same for (vn) . And since E is a
Banach space we have the convergence of (un) to u∗ and (vn) to v∗. and using (5) we
have v∗ = u∗ and by continuity of T we have we obtain the desired fixed point.

Unicity : Let u∗ and v∗ be two positive fixed points of T, and denote

a = sup
{

λ > 0; λv∗ ≤ u∗ ≤ 1
λ

v∗
}

suppose that a < 1, then we have

u∗ = T (u∗, u∗) ≥ T

(
av∗,

1
a
v∗

)
≥ aβT (v∗, v∗) = aβv∗
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it follows from the definition of a that a ≥ aβ which is impossible so a = 1 and we
have v∗ = u∗.
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