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Existence of weak solution for nonlinear elliptic system

Mounir Hsini

Abstract. In this paper, we prove the existence of weak solutions for the following nonlinear
elliptic system

−divA(x,∇u) = −a(x)|u|p(x)−2u − b(x)|u|α(x)|v|β(x)v + f(x) in Ω,

−divB(x,∇v) = −c(x)|v|q(x)−2v − d(x)|v|β(x)|u|α(x)u + g(x) in Ω,
u = v = 0 on ∂Ω,

where Ω is an open bounded domains of R
N with a smooth boundary ∂Ω. The existence of

weak solutions is proved using the theory of monotone operators.
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1. Introduction

In this study, Ω is a bounded domain in R
N , with a smooth boundary ∂Ω.

The purpose of this paper is to study the existence of weak solutions for the following
nonlinear elliptic system involving the p(x)-Laplacian⎧⎨⎩

−divA(x,∇u) = a(x)|u|p(x)−2u − b(x)|u|α(x)|v|β(x)v + f(x) in Ω,

−divB(x,∇v) = c(x)|v|q(x)−2v − d(x)|v|β(x)|u|α(x)u + g(x) in Ω,
u = v = 0 on ∂Ω.

(1.1)

The operator A (resp. B) are with p(x) (resp. q(x))-type nonstandard structural
conditions.
Examples of the operator A considered here arise from variational integrals like∫

|∇u|p(x)dx, (1.2)

the Euler-Lagrange equation of (1.2) is the p(x)-Laplacian

div( p(x)|∇u|p(x)−2∇u) = 0, (1.3)

where
A(x, ξ) = p(x)|ξ|p(x)−2ξ.

The study of various mathematical problems with variable exponent has received
considerable attention in recent years. There is an extensive literature on partial
differential equations and the calculus of variations with various nonstandard growth
conditions, for examples we cite works of X-L Fan, M. Mihailescu and V. Radulescu
[14], [22, 23]. The operator p(x)-Laplacian turns up in many mathematical settings,
e.g., non-Newtonian fluids, reaction-diffusion problems, porous media, astronomy,
quasi-conformal mappings. see [3, 4, 9].
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Problems including this operator for bounded domains have been studied in [14, 22]
and for unbounded domains in [12, 10]. Many authors have studied semilinear and
non linear elliptic systems, as a reference we cite [12, 19, 27].

The generalized formulation for many stationary boundary value problems for par-
tial differential equations leads to operator equation of type

L(u) = f

on a Banach space. Indeed, the weak formulation consists in looking for an unknown
function u from a Banach space H such that an integral identity containing u holds
for each test function v from the space H . Since the identity is linear in v, we can take
its sides as values of continuous linear functionals at the element v ∈ H . Denoting
the terms containing the unknown u as the value of an operator A, we obtain

(L(u), v) = (f, v) ∀v ∈ H,

which is equivalent to the equality of functionals on H , i.e. the equality of elements
of H ′ (the dual space of H): L(u) = f .
In this paper, we consider nonlinear systems with model L of the form

L{u, v} = {−divA(x,∇u) − a(x)|u|p(x)−2u + b(x)|u|α(x)|v|β(x)v ,

−divB(x,∇v) + c(x)|u|α(x)|v|β(x)u − d(x)|v|q(x)−2v}.
When divA(x,∇u) = Δpu and divB(x,∇v) = Δqv, the existence of solutions for
such systems was proved, using the method of sub and super solutions in [6, 7, 13].
In this study, we generalize several cases dealing with existence of solutions for non-
linear elliptic systems. To this end, we introduce the following intermediary problem{ −divA(x,∇u) = −a(x)|u|p(x)−2u + f(x), x ∈ Ω,

u = 0 on ∂Ω,
(1.4)

where p(·) ∈ C0(Ω) such that inf
x∈Ω

p(x) > 1 and a(·) is a non negative function

satisfying condition (F0).
The following Theorems are our majors results.

Theorem 1.1. The nonlinear elliptic problem (1.4) has a non trivial weak solution.

Theorem 1.2. Under assumptions (F0), (F1), (F2) and (F3) below, The nonlinear
elliptic system (1.1) have a non trivial weak solution.

This paper consists of five sections. First, we recall some elementary proprieties of
the generalized Lebesgue-Sobolev spaces and introduce the notations needed in this
work. Section 3 is devoted to the study of some preliminary results which allows us
to prove the existence of weak solutions of our problem. Particulary we give the proof
of Theorem 1.1. In the fourth section, we justify the existence of weak solutions in
the case of bounded domains. The goal of the last section is the main result, when
Ω = R

N .

2. Generalized Lebesgue-Sobolev Spaces Setting.

In order to discuss problem (1.1), we need some results about the spaces W 1,p(x)(Ω)
which we call generalized Lebesgue- Sobolev spaces. Let us shortly recall some basic
facts about the setup for generalized Lebesgue- Sobolev spaces, for more details see
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for instance [14], [25], [15] and [30].
Let

C+(Ω) = {h / h ∈ C(Ω), h(x) > 1 for any x ∈ Ω}.
For p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) = {u / u is a measurable real-valued function,

∫
Ω

|u(x)|p(x)dx < ∞}.

We define the so-called Luxemburg norm, on this space by the formula

|u|Lp(x) = inf{α > 0,

∫
Ω

∣∣∣u(x)
α

∣∣∣p(x)

dx ≤ 1}.

It’s well known, that (Lp(x)(Ω); |.|Lp(x)) is a is a separable, uniformly convex Banach
space.
(Lp(x)(Ω); |.|Lp(x)) is termed a generalized Lebesgue space. Moreover, its conjugate
space is Lp′(x)(Ω), where 1

p′(x) + 1
p(x) = 1. For u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), one

has the following inequality∣∣∣ ∫
Ω

u(x)v(x)dx
∣∣∣ ≤ ( 1

p−
+

1
p′−

)
|u|Lp(x) |v|Lp′(x) ≤ 2|u|Lp(x) |v|Lp′(x) , (2.1)

where, p− = min
Ω

p(x) and p′− = min
Ω

p′(x).

Note that Lp2(x)(Ω) ↪→ Lp1(x)(Ω), for every functions p1 and p2 in C(Ω) satisfying
p1(x) ≤ p2(x), for any x ∈ Ω. In addition this imbedding is continuous.
An important role in manipulating the generalized Lebesgue spaces is played by the
modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω

|u|p(x)dx.

If (un), u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold true.

|u|Lp(x) > 1 ⇒ |u|p−

Lp(x) ≤ ρp(x)(u) ≤ |u|p+

Lp(x) , (2.2)

|u|Lp(x) < 1 ⇒ |u|p+

Lp(x) ≤ ρp(x)(u) ≤ |u|p−

Lp(x) , (2.3)

|un − u|Lp(x) → 0 if and if ρp(x)(un − u) → 0. (2.4)

Another interesting property of the variable exponent Lebesgue space Lp(x)(Ω) is

Proposition 2.1. ( see [11]) Let p(x) and q(x) be measurable functions such that
p ∈ L∞(RN ) and 1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ R

N Let u ∈ Lq(x)(RN ), u 	= 0.
Then

|u|p(x)q(x) ≤ 1 ⇒ |u|p+

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p−

p(x)q(x),

|u|p(x)q(x) ≥ 1 ⇒ |u|p−

p(x)q(x) ≤ ||u|p(x)|q(x) ≤ |u|p+

p(x)q(x).

In particular, if p(x) = p is constant, then

||u|p|q(x) = |u|ppq.
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The generalized Lebesgue-Sobolev space is defined by:

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)}.
W 1,p(x)(Ω) can be equipped with the norm defined as follow

‖u‖p(x) = |u|Lp(x) + |∇u|Lp(x) , for all u ∈ W 1,p(x)(Ω). (2.5)

In this paper, we denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω).
It follows from Fan and Zhao [14] that the generalized Lebesgue- Sobolev spaces
W 1,p(x)(Ω) and W

1,p(x)
0 (Ω) are separable reflexive Banach spaces. On the other hand

if q ∈ C+(Ω) satisfys q(x) < p∗(x) for any x ∈ Ω, the imbedding from W 1,p(x)(Ω) into
Lq(x)(Ω) is compact and continuous. Note that Poincaré inequality is also satisfied
and we have the existence of a constant C > 0 such that

|u|Lp(x) ≤ C|∇u|Lp(x) , for all u ∈ W
1,p(x)
0 (Ω). (2.6)

In view of (2.5), it follows that |∇u|Lp(x) and ‖u‖p(x) are equivalent norms on W
1,p(x)
0 (Ω).

We refer to [21] for more properties of Lebesgue and Sobolev spaces with variable ex-
ponent. We also refer to the recent papers [22, 23, 24] for the treatment of nonlinear
boundary value problems in Lebesgue-Sobolev spaces with variable exponent.

Definition 2.1. 1 < p(x) < N and for x ∈ R
N , let us define

p∗(x) =

{
Np(x)

N−p(x) p(x) < N,

+∞ p(x) > N,

where p∗(x) is the so-called critical Sobolev exponent of p(x).

Proposition 2.2. ( see [11]) Let p(·) ∈ C0,1
+ (RN ), that is Lipshitz-continuous func-

tion defined on R
N , then there exists a positive constant c such that

|u|p∗(x) ≤ ‖u‖p(x),

for all u ∈ W
1,p(x)
0 (Ω).

We use the following compactness properties of W
1,p(x)
0 (Ω) in our existence proof.

The limit function v belongs Mazur’s Lemma, the first follows from the reflexivity
and the second form the fact that W

1,p(x)
0 (Ω) embeds compactly into Lp(x)(Ω) [21].

Through this paper we suppose that the following assumptions are satisfied.

(F0) a(x), c(x) are resp. in L∞(Ω) ∩ Lp′(x)(Ω) and L∞(Ω) ∩ Lq′(x)(Ω).

(F1) s(x) =
p(x)p∗(x)q∗(x)

p(x)p∗(x)q∗(x) − pq∗(x) − p∗(x)q∗(x)
, b(x) ∈ Ls(x)(Ω),

(F2) r(x) =
q(x)p∗(x)q∗(x)

q(x)p∗(x)q∗(x) − qq∗(x) − p∗(x)q∗(x)
, d(x) ∈ Lr(x)(Ω),

p̃(x) =
p(x)p∗(x)

p∗(x) − p(x)
; q̃(x) =

q(x)q∗(x)
q∗(x) − q(x)

,

(F3) 1 < p−, q− α+ < p− − 1, q− − 1, β+ < p− − 1, q− − 1, p+ < p∗ > 2.

Further notation will be introduced as need.
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3. Proof of Theorem 1.1

This section is devoted to the study of problems of type: Lu = f , where L is an
operator from H (Banach space) into it’s dual H

′
. The methods used are variational,

more precisely, we use the theory of monotone operators.
To this end, we introduce some technical results [5, 7, 29] which allows us to the proof
of Theorem1.1. Note that hypothesis F0) and F3) will be used in this section. First,
we give conditions needed for the operators A (resp. B).
In this note the operators A(x, ξ);B(x, ξ) : Ω × R

N −→ R
N are such that:

(A1) The mapping x 
→ A(x, ξ) (resp.B(x, ξ)) is measurable for all ξ ∈ R
N .

(A2) The mapping x 
→ A(x, ξ) (resp.B(x, ξ)) is is continuous for all x ∈ Ω.
(A3) For all x ∈ Ω and ξ ∈ R

N ; A(x,−ξ) = A(x, ξ) and B(x,−ξ) = B(x, ξ).
(A4) There exist a positive constant γ1, δ1 > 0 such that

A(x, ξ).ξ ≥ γ1|ξ|p(x), ; ∀ x ∈ Ω and ξ ∈ R
N ,

B(x, ξ).ξ ≥ δ1|ξ|q(x) ; ∀ x ∈ Ω and ξ ∈ R
N .

(A5) There exist a positive constant γ2 ≥ γ1 > 0, δ2 > δ1 such that

A(x, ξ).ξ ≤ γ2|ξ|p(x)−1, ; ∀ x ∈ Ω and ξ ∈ R
N ,

B(x, ξ).ξ ≤ δ2|ξ|q(x)−1, ; ∀ x ∈ Ω and ξ ∈ R
N .

(A6) For all x ∈ Ω and ξ, η ∈ R
N ; ξ 	= η the following inequalities hold(

A(x, ξ) −A(x, η)
)
(ξ − η) > 0,(

B(x, ξ) − B(x, η)
)
(ξ − η) > 0.

These are called the structure conditions of A (resp. B).

Definition 3.1. Let L : H → H
′
be an operator on a Banach space H. L is:

- Monotone, if 〈L(u1) − L(u2), u1 − u2〉 ≥ 0 for all u1, u2.
- Strongly continuous, if un ⇀ u implies L(un) → L(u).
- Weakly continuous, if un ⇀ u implies L(un) ⇀ L(u).
- Demi-continuous, if un → u implies L(un) ⇀ L(u).
- Said to satisfy the M0-condition, if un ⇀ u, L(un) ⇀ f and 〈L(un), un〉 → 〈f, u〉
imply L(u) = f .

The following Proposition plays an important role in the present paper. Precisely,
it gives a sufficient conditions to the existence of weak solutions for the problems
Lu = f .

Proposition 3.1. Let H be a reflexive, separable Banach space and L : H → H ′ an
operator which is: coercive, bounded, demicontinuous, and satisfies the M0-condition.
Then the equation L(u) = f admits a solution for each f ∈ H ′.

Below we write X = W
1,p(·)
0 and ‖u‖ = |∇u|p(x).

In the sequel, we introduce the operator L defined on W 1,p(x)(Ω) by

Lu = −divA(x,∇u) + a(x)|u|p(x)−2u, (3.1)

where a(x) is a non negative function satisfying assumption (F0).
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Definition 3.2. Let u ∈ X. u is called a weak solution of problem (1.4) if∫
Ω

A(x,∇u)∇vdx +
∫

Ω

a(x)|u|p(x)−2uvdx =
∫

Ω

fvdx; ∀ v ∈ X.

Remark 3.1. Using equation (3.1), L is the sum of L1 and L2, where

(L1(u), v) =
∫

Ω

A(x,∇u)∇vdx and (L2(u), v) =
∫

Ω

a(x)|u|p(x)−2uvdx.

In order to prove the existence of weak solutions of the problem (1.4), we will
employ variational methods. Precisely, we justify that the operator L satisfies the
hypothesis of Proposition 3.1. To this end, we introduce a series of Lemmas dealing
with continuity, boundness, coercivity and monotonicity.

Lemma 3.1. The operator L is a bounded.

Proof. Denot by

Ω1 = {x ∈ Ω; |u(x)| ≥ 1} and Ω2 = {x ∈ Ω; |u(x)| < 1},
then

(L2(u), v) =
∫

Ω1

a(x)|u|p(x)−2uvdx +
∫

Ω1

a(x)|u|p(x)−2uvdx.

In view of the assumption p+ − 1 < p∗(x), the following embeddings hold true:

W
1,p(x)
0 (Ω) ↪→ L(p+−1)p(x)(Ω) and W

1,p(x)
0 (Ω) ↪→ L(p−−1)p(x)(Ω).

Due to Proposition 2.1, we obtain

||u|p+−1|p(x) = |u|p+−1
p(x) ≤ c1‖u‖p+−1

p(x) . (3.2)

Take the function a(x) in Lp∗(x)/(p∗(x)−2)(Ω), |u|p+−1, v ∈ Lp∗(x)(Ω), and applying
Holder inequality, we get∣∣∣ ∫

Ω1

a(x)|u|p(x)−2uvdx
∣∣∣ ≤ c1| a(x)|p∗/(p∗−2)||u|p

+−1|p∗(x)|v|p∗(x)

≤ c2| a(x)|p∗/(p∗−2)|u|p
+−1

(p+−1)p∗(x)|v|p∗(x).

≤ c3| a(x)|p∗/(p∗−2)‖u‖p+−1
p(x) ‖v‖p(x) < ∞.

Similarly, ∣∣∣ ∫
Ω2

a(x)|u|p(x)−2uvdx
∣∣∣ ≤ c4| a(x)|p∗/(p∗−2)‖u‖p−−1

p(x) ‖v‖p(x) < ∞.

It follows that the operator L2 bounded.
Using the structure of A, Holder inequality, equations (2.2)and (2.3), we infer that∣∣∣(L1(u), v)

∣∣∣ ≤ γ2

∫
Ω

|∇u|p(x)−1|∇v|dx

≤ 2γ2

∥∥∥|∇u|p(x)−1
∥∥∥

p′(x)

∥∥∥∇vp(x)

≤ 2γ2 max
(
‖u‖p+

1,p(x), ‖u‖p−

1,p(x)

)
‖v‖1,p(x)

Hence the operator L is bounded, as we hope. �

Lemma 3.2. The operator L is dimicontinuous.
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Proof. The proof of the demicontinuity of L2 will be deduced from the following
assumptions.
First step. For all u, v ∈ Lp(x)(Ω), |u − v|p(x) → 0 ⇒ ||u − v| p(x)

p(x)−1 |p(x)−1 → 0.
Let ε > 0, η < ε and u, v ∈ Lp(x)(Ω) such that |u − v|p(x) < η, then we have

|u − v|p(x) = inf{μ ∈]0, η[;
∫

Ω

|u − v|p(x)

μp(x)
dx ≤ 1}.

On the other hand 0 < μ < η < 1, it follows∫
Ω

|u − v|p(x)

μp(x)−1
dx ≤

∫
Ω

|u − v|p(x)

μp(x)
dx

and consequently

inf{μ ∈]0, η[;
∫

Ω

|u − v|p(x)

μp(x)−1
dx ≤ 1} ≤ inf{μ ∈]0, η[;

∫
Ω

|u − v|p(x)

μp(x)
dx ≤ 1}.

Since the last term of this inequality represent |u − v|p(x) < η < ε. The proof of the
first claim will be immediately deduced if we consider the fact

||u − v| p(x)
p(x)−1 |p(x)−1 ≤ inf{μ ∈]0, η[;

∫
Ω

|u − v|p(x)

μp(x)−1
dx ≤ 1}.

Second step. We claim that the map u ∈ Lp(x)(Ω) 
−→ |u|p(x)−2 ∈ L
p(x)

p(x)−1 (Ω) is
continuous. To this end we will use the convention

up(x) =
{

up(x), for u ≥ 0;
−(−u)p(x) for u ≤ 0.

Our intention is to show the following identity:

|u − v|p(x) → 0 ⇒ |up(x)−1 − vp(x)−1| p(x)
p(x)−1

→ 0.

The result is trivial when p(x) = 2. We claim to prove the result for p(x) > 2.

ρ p(x)
p(x)−1

(up(x)−1 − vp(x)−1) :=
∫

Ω

|up(x)−1 − vp(x)−1| p(x)
p(x)−1 dx,

then, for x ∈ Ω, by Lagrange theorem applied to the function g(y) = yp(x)−1, there
exists c(x) satisfying

g(u(x)) − g(v(x))
u(x) − v(x)

= g′(c(x)).

Due to the fact that (u − v) ∈ Lp(x)(Ω), we have |u − v| p(x)
p(x)−1 ∈ Lp(x)−1(Ω) =

(L
p(x)−1
p(x)−2 (Ω))∗ and |u|, |v| ∈ Lp(x)(Ω) imply |u| p(x)(p(x)−2)

p(x)−1 , |v| p(x)(p(x)−2)
p(x)−1 ∈ L

p(x)−1
p(x)−2 (Ω).

Hence

ρ p(x)
p(x)−1

(up(x)−1 − vp(x)−1) ≤ p
+ p+

p−−1

∫
Ω

|u − v| p(x)
p(x)−1 sup(|u|, |v|) p(x)(p(x)−2)

p(x)−1 dx.

Thus the proof of the continuity by using (2.1), (2.4) and the second claim.
Next we are going to prove the demicontinuity of the operator L1. For this purpose
let (un) ⊂ W

1,p(x)
0 (Ω) such that un −→ u in W

1,p(x)
0 (Ω). Passing to a subsequence we

may assume that un −→ u and ∇un −→ ∇u pointwise almost everywhere. In view
of the continuity of the map ξ −→ A(x, ξ), it follows that A(x,∇un) −→ A(x,∇u)
almost everywhere. Using condition (A5), we obtain∫

Ω

∣∣∣A(x,∇un)
∣∣∣ p(x)

p(x)−1
dx ≤ γ2

∫
Ω

∣∣∣∇un

∣∣∣p(x)

dx < ∞
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By the convergence of the sequence (un), (A(x,∇un)) is bounded in Lp′(x)(Ω). Thus
we may pass again to a further subsequence and assume that A(x,∇un) −→ A(x,∇u)
weakly in Lp′(x)(Ω).
Let us argue by contradiction that the whole sequence converges weakly. Suppose
that we can find a neighbourhood U of A(x,∇u) and a subsequence such that
A(x,∇unk

) ⊂ Lp′(x)(Ω)\U. We may assume pointwise convergence by passing to
a further subsequence and this sub-subsequence converges weakly in Lp′(x)(Ω) to
A(x,∇u) by the earlier argument, which is a contradiction. Consequently,

(L1un, v) =
∫

Ω

A(x,∇un)∇vdx −→
∫

Ω

A(x,∇u)∇vdx = (L1u, v).

�

Lemma 3.3. The operator L is strictly monotone.

Proof. The strict monotonicity of L will be immediately deduced for the monotonicity
condition of A, precisely assumption (A6) and the following elementary identity [20]
and [28].

22−p|a − b|p ≤
(
a|a|p−2 − b|b|p−2

)
.(a − b), if p(x) ≥ 2, (3.3)

(p − 1)|a − b|2
(
|a| + |b|

)p−2

≤
(
a|a|p−2 − b|b|p−2

)
.(a − b), if 1 < p(x) < 2. (3.4)

for all a, b ∈ R
n, where . denotes the standard inner product in R

n. �

The last Lemma in this section deal with coercivity, in particular we have

Lemma 3.4. The operator L is coercive.

Proof. Using the positivity of the function a(·), the definition of L, we get

(Lu, u) ≥
∫

Ω

A(x,∇u)∇udx.

In view of assumption (A4), we can write

(Lu, u)γ1 ≥ γ1

∫
Ω

|∇u|p(x)dx := ρp(x)(|∇u|). (3.5)

Combining equations (2.2), (2.3) and (3.5), one has

(Lu, u) ≥ γ1(|∇u|p−

p(x), |∇u|p+

p(x)) = γ1 inf(‖u‖p−
, ‖u‖p+

).

Using the fact that p− > 1, one writes

(Lu, u)/‖u‖ ≥ γ1 inf(‖u‖p−−1
p(x) , ‖u‖p+−1

p(x) ) → ∞ as ‖u‖ → ∞.

Hence, the operator L is coercive as required. �

Remark. Using previous Lemmas, all conditions of Proposition 3.1 are fulfilled.
hence, the proof of Theorem 1.1 is completed.
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4. Nonlinear systems on bounded domains

The goal of this section is to prove existence of weak solutions for the system (1.1).
The operators A and B are such that conditions (A1)-(A6) fulfulled. We suppose
that p(x) and q(x) are Lipshitz-continuous functions defined on R

N . In addition,
we take p(x), q(x) ∈ C0,1(Ω). We denote by p′(x), q′(x) the conjugate exponents of
p(x), q(x) respectively. i.e.

1
p(x)

+
1

p′(x)
=

1
q(x)

+
1

q′(x)
= 1.

a, b, c, d are non negative functions satisfying condition (F0), (F1) and (F2). Finally,
α and β are regular nonnegative functions such that the assumption F3) will be
satisfied.
In the following discussions, we will use the product space

Wp(x),q(x) := W
1,p(x)
0 (Ω) × W

1,q(x)
0 (Ω), (4.1)

which is equipped with the norm

‖(u, v)‖p(x),q(x) := max{‖u‖p(x); ‖v‖q(x)}; ∀ (u, v) ∈ Wp(x),q(x), (4.2)

where ‖u‖p(x) (resp., ‖u‖q(x)) is the norm of W
1,p(x)
0 (Ω) (resp., W

1,q(x)
0 (Ω)).

The space W ∗
p(x),q(x) denotes the dual space of Wp(x),q(x) and equipped with the norm

‖.‖∗,p(x),q(x) := ‖.‖∗p(x) + ‖.‖∗,q(x),

where ‖.‖∗p(x), ‖.‖∗,q(x) are respectively the norm of W
−1,p′(x)
0 (Ω) and W

−1,q′(x)
0 (Ω),

dual resp. of W
1,p(x)
0 (Ω) and W

1,p(x)
0 (Ω).

First, we recall the following definition.

Definition 4.1. The pair (u, v) ∈ Wp(x),q(x) is called a weak solution of the system
(1.1), if∫

Ω

(A(x,∇u)∇Φ1 + B(x,∇v)∇Φ2)dx =
∫

Ω

(F1(x, u, v)Φ1 + F2(x, u, v)Φ2)dx,

for all (Φ1, Φ2) ∈ Wp(x),q(x), where F and G are defined by

F1(x, u, v) = −a(x)|u|p(x)−2u − b(x)|u|α(x)|v|β(x)v + f(x),

F2(x, u, v) = −c(x)|v|q(x)−2u − d(x)|u|α(x)|v|β(x)u + g(x).

The weak formulation of the system (1.1) is reduced to the operator form identity

L1(u, v) + L2(u, v) + B(u, v) = F, (4.3)

where L1, L2, B and F are defined on Wp(x),q(x) as follow:

(L1(u, v), (Φ1, Φ2)) : =
∫

Ω

A(x,∇u)∇Φ1dx +
∫

Ω

B(x,∇v)∇Φ2dx,

(L2(u, v), (Φ1, Φ2)) : =
∫

Ω

a(x)|u|p(x)−2uΦ1dx +
∫

Ω

c(x)|v|q(x)−2vΦ2dx,

(B(u, v), (Φ1, Φ2)) : =
∫

Ω

b(x)|u|α(x)|v|β(x)vΦ1dx +
∫

Ω

d(x)|v|β(x)|u|α(x)uΦ2dx,

(F, Φ) : = ((f, g), (Φ1, Φ2)) =
∫

Ω

fΦ1 dx +
∫

Ω

gΦ2 dx.
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Proof. of Theorem 1.2. To prove the existence of weak solutions of the system (S),
we are going to study properties of the operators L1, L2, B and F .
1. In view of the previous section, in particular Lemmas 3.1, 3.2, 3.3 we have similar
properties to the operators L1 and L2, i.e. L1 and L2 are demi-continuous, bounded
and strictly monotone, hence their sum.
2. The second remark consist in the proof of coercivity of the operator L̃ defined on
the space Wp(x),q(x) by: (L̃(u, v), (Φ1, Φ2)) = ((L1 − L2 + B)(u, v), (Φ1, Φ2)), for all
(Φ1, Φ2) ∈ Wp(x),q(x). Let (u, v) ∈ Wp(x),q(x), then

(L̃(u, v), (u, v)) ≥ γ1

∫
Ω

|∇u|p(x) +
∫

Ω

a(x)|u|p(x) + δ1

∫
Ω

|∇v|q(x) +
∫

Ω

c(x)|v|q(x)

+
∫

Ω

b(x)|u|α(x)|v|β(x)+1 +
∫

Ω

d(x)|u|α(x)+1|v|β(x).

Since, the functionals a(x), b(x), c(x) and d(x) are positive on Ω, we have

(L̃(u, v), (u, v)) ≥
∫

Ω

|∇u|p(x) +
∫

Ω

|∇v|q(x).

Using inequalities (2.2) and (2.3), we obtain

(L̃(u, v), (u, v)) ≥ min(|∇u|p+

p(x); |∇u|p−

p(x)) + min(|∇v|q+

q(x); |∇v|q−

q(x)).

Since ‖u‖p(x) = |∇u|p(x), ‖v‖q(x) = |∇v|q(x) and p−, q− > 1, therefore

(L̃(u, v), (u, v))
‖(u, v)‖p(x),q(x)

→ ∞ as ‖(u, v)‖p(x),q(x) → ∞.

The proof of the coercivity of the operator L̃ is verified.
3. The operator B(u; v) is well defined; indeed, if

Ω1 = {x ∈ Ω; |u(x)| ≥ 1, |v(x)| ≥ 1}, Ω2 = {x ∈ Ω; |u(x)| < 1, |v(x)| < 1},
Ω3 = {x ∈ Ω; |u(x)| ≥ 1, |v(x)| ≤ 1} and Ω4 = {x ∈ Ω; |u(x)| < 1, |v(x)| ≥ 1},

we have ∫
Ω

b(x)|u|α(x)|v|β(x)vφ1dx =
4∑

i=1

( ∫
Ωi

b(x)|u|α(x)|v|β(x)vdxφ1

)
.

Furthermore,∣∣∣ ∫
Ω1

b(x)|u|α(x)|v|β(x)vφ1dx
∣∣∣ ≤ ∫

Ω1

b(x)|u|α+ |v|β++1|φ1|dx.

Since α+ + 1 < p∗(x), β+ + 1 < q∗(x), then the following embeddings hold true

W
1,p(x)
0 (Ω) ↪→ Lα+p(x)(Ω) and W

1,q(x)
0 (Ω) ↪→ L(β++1)q(x)(Ω).

Then, we obtain

||u|α+ |α+p(x) ≤ c1|u|p(x) ≤ c2||u|α+ |p∗(x), and ||v|β++1|q(x) ≤ c3||v|β++1|q∗(x).

If we apply (2.2), (2.3) and Proposition 2.1 and take the functionals b ∈ Ls(x)(Ω);
d ∈ Lr(x)(Ω), then we have∣∣∣ ∫

Ω1

b(x)|u|α(x)|v|β(x)vφ1dx
∣∣∣ ≤ |b(x)|s(x)|uα+ |p∗(x)||v|β

++1|q∗(x)|φ1|p̃(x) < ∞,∣∣∣ ∫
Ω1

d(x)|v|β(x)|u|α(x)uφ2dx
∣∣∣ ≤ |d(x)|r(x)||u|α

++1|p∗(x)||v|β
+ |q∗(x)|φ2|q̃(x) < ∞,
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Ω2

b(x)|u|α(x)|v|β(x)vφ1dx
∣∣∣ ≤ |b(x)|s(x)|uα− |p∗(x)||v|β

−+1|q∗(x)|φ1|p̃(x) < ∞,∣∣∣ ∫
Ω2

d(x)|v|β(x)|u|α(x)uφ2dx
∣∣∣ ≤ |d(x)|r(x)||u|α

−+1|p∗(x)||v|β
− |q∗(x)|φ2|q̃(x) < ∞.

Repeating the same arguments we deduce∣∣∣ ∫
Ωi

b(x)|u|α(x)|v|β(x)vφ1dx
∣∣∣ < ∞,

∣∣∣ ∫
Ωi

d(x)|v|β(x)|u|α(x)uφ2dx
∣∣∣ < ∞, for i = 3, 4.

Hence, |(B(u; v), (Φ1, Φ2))| < ∞. The operator B(u; v) is well defined on Wp(x),q(x).
4. It remainds to prove the continuity of the operator B. To this end we will show
the compactness of B.
Let {(un, vn)} ⊂ Wp(x),q(x) be a sequence such that (un, vn) ⇀ (u, v) weakly in
Wp(x),q(x). We claim that B(un, vn) → B(u, v) strongly in Wp(x),q(x), i.e. for all
(Φ1, Φ2) ∈ Wp(x),q(x) we have∣∣∣(B(un, vn) − B(u, v); (Φ1, Φ2))

∣∣∣ = ◦(1) as n → ∞.

Clearly

B(un, vn) − B(u, v) = (Bu(un, vn) − Bu(u, v)) + (Bv(un, vn) − Bv(u, v)),

where

(Bu(un, vn)−Bu(u, v); (Φ1, Φ2)) =
∫

Ω

b(x)(|un|α(x)|vn|β(x)vn − |u|α(x)|v|β(x)v)Φ1dx,

and

(Bv(un, vn)−Bv(u, v); (Φ1, Φ2)) =
∫

Ω

d(x)(|vn|β(x)|un|α(x)un − |v|β(x)|u|α(x)u)Φ2dx.

Then it’s sufficient to prove the compactness of Bu(u, v) and Bv(u, v).

(Bu(un, vn) − Bu(u, v); (Φ1, Φ2)) =
∫

Ω

b(x)|vn|β(x)+1(|un|α(x) − |u|α(x))Φ1 dx

+
∫

Ω

b(x)|u|α(x)(|vn|β(x)+1 − |v|β(x)v)Φ1 dx.

In view of item 3. one writes∣∣∣(Bu(un, vn) − Bu(u, v); (Φ1, Φ2))
∣∣∣ ≤ c1|b(x)|s(x)

(
|vn|β(x)+1

q∗

∣∣∣|un|α(x) − |u|α
∣∣∣
p∗

||u|α(x)|p∗ ||vn|β(x)+1 − |v|β(x)v|q∗
)
|Φ1|p̃.

A similar calculation gives us the following inequality∣∣∣(Bv(un, vn) − Bv(u, v); (Φ1, Φ2))
∣∣∣ ≤ c2|d(x)|r(x)

(
|un|α+1

p∗(x)

∣∣∣|vn|β(x) − |v|β(x)
∣∣∣
q∗

||v|β |p∗ ||un|α(x)+1 − |u|α(x)u|p∗
)
|Φ2|q̃.

Due to the continuity of Nemytskii operators u → |u|α(x) (resp. v → |v|β(x)v) from
Lp(x)(Ω) into Lp∗(x)(Ω) (resp. from Lq(x)(Ω) into Lq∗(x)(Ω)), there exists n0 ≥ 0 such
that for all n ≥ n0 we have∣∣∣|un|α(x) − |u|α(x)

∣∣∣
p∗(x)

= ◦(1), (4.4)∣∣∣|vn|β(x)+1 − |v|β(x)v
∣∣∣
q∗(x)

= ◦(1). (4.5)
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Finally from equations (4.4) and (4.5), we have the claim and the operator B will
be compact and completely continuous. Hence, B satisfies the M0-condition and the
system (S) possess a weak solution (u, v) ∈ Wp(x),q(x), for all (f, g) in the dual of
Wp(x),q(x). The proof of the main result on bounded domains is completed.

�
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[23] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in
Sobolev spaces with variable exponent, Proceedings of the American Mathematical Society 135
(2007), 2929-2937.
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