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An Optimal Path Algorithm for Autonomous Searching
Robots
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Abstract. Constructing architecture and generating optimal paths for autonomous robots
are some of the heavily studied subjects in mobile agents applications. The aim of this pa-
per is to find and analyze a optimal path algorithm for a group of autonomous robots using
agent-based architecture in a virtual reality environment. The optimal path is determined by
a heuristic approach, A-Star algorithm. The master-slave architecture control the communi-
cation between robots (slave agents) and the mobile agent (master). The robots communicate
with the mobile agents to generate an optimal path (time and collision-free optimal path)
by presenting all the subsequent trajectories while navigating among various obstacles. The
results are conducted to show the effectiveness of the proposed architecture.
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1. Introduction

Applications in the field of autonomous robots are generally based on navigating
from a starting point to goal point in a known or unknown environment. In daily life
autonomous robots are used in many missions like planetary exploration and space
applications. In these kinds of applications the points that should be visited are
unknown. But, for an autonomous robot, consuming less energy is very important
and it is obvious that the more autonomous robot travels more energy and time is
consumed. To fulfill this constraints, a shorter path is preferred rather than a longer
path. Therefore an intelligent path planning algorithm is always required. Since the
robot works in a real and dynamic environment, the path planning algorithm should
construct the path in real time.

Agent-based approaches receive considerable attention in the literature. The agent-
based approaches applications are distributed among several agents. Zavlanos and
Pappas proposed a method to solve multi-agent assignment problems, in the nature
of mobile robots ([1]). Rushan et-al applied agent approach to a heterogeneous mobile
robot team to find a solution for localization problem ([2]). In their work some agents
are qualified as localizers. These agents localize themselves and the other mobile
robots in the environment. This localization information is passed to all members of
the team.

Mobile agent is now a popular abstraction mechanism to construct adaptable dis-
tributed systems in convenient way. To develop a system using mobile agents, one
has to overcome several new complexities (as well as security/ safety problems) in
his/her code arise from the mixed use of mobility primitives. Over the last few years,
numerous mobile agent systems [26, 24, 25, 22, 23] have been developed because this
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technology is promising for building customizable, adaptable and robust distributed
systems.

The concept of mobile agents is studied and defined by [8] and [4]. They are
processes (i.e., executing programs) that can migrate from one machine of a system
to another machine (usually in the same system) in order to satisfy requests made
by their clients [27]. They implement a computational metaphor that is analogous to
how most people conduct business in their daily lives: visit a place, use a service, and
then move on [27].

Research on robots has attracted attention in the last years since [17]. Most of
the research have been directed to the use of kinematic models of the mobile robots
to achieve and accomplished the motion control [12, 11, 14]. Later on, the research
has been focused on robots with additional sensory system to develop autonomous
guidance path planning systems [15]. Sophisticated sensory systems has been used in
[16], helping the software to learn about the operating environment and to evaluate
path constraints for a good path planning programming.

Path planning consists of determining a route joining two input configurations,
i.e., from one coordinate location to another location. Path planning algorithms are
determinant for the mobile agent behavior, including collision avoidance. Modeling
and simulation of a group of mobile robots, the controllability issue and path planning
was studied in [18]. Different other approaches including rigid formations, potential
field methods, and neural have been studied in [17]. The motion planning for mobile
robots when using a dynamic environment and moving obstacles was studied in [19].

In this paper, an agent-based approach is proposed for optimal path planning for
mobile robot. The approach consists of two agents types: the slave agent is responsible
for the path construction, and the master one is responsible for low-level control of the
mobile robot. Finding the optimal path solution is time-consuming. For this reason
a heuristic approach A-star is used. These agents communicate via a communication
module which is based on open agent architecture and is describe in Section 3.1.
The equations of motion (kinematics and dynamics) are presented, and the motion
planning with obstacle avoidance (collision free) analyzed.

2. Mathematical Model of the Autonomous Car Like Robot

An autonomous mobile car-like robot has to move on an optimal path (time and
collision-free optimal path) while navigating among various obstacles, and satisfying
the kinematic and dynamic constraints. In the next two sub-sections, the kinematic
and dynamic constraints of an autonomous car-like robot are explained in detail.

2.1. Kinematics. The autonomous car-like robot is modeled in this study as a rigid
body with four wheels. The robot motion is defined on a plane surface, with the 4
wheels making contact point with the planar ground surface.

For the study of the robot kinematics one can define the configuration of the moving
autonomous robot at every time instant by a triple (x(t), y(t), α(t)), with x(t) and
y(t) the x-coordinate and y-coordinate of the robot center of the mass (relative to the
origin of a Cartesian reference frame xOy) at the time frame t , and α(t) the robot
orientation, i.e., the angle between the robot direction (the main axis of the robot)
and the Ox axis at the same time frame t. The longitudinal speed of the autonomous
robot (velocity in the x direction) is given by its first derivative u = ẋ, while the
lateral speed of the autonomous robot (velocity in the y direction) is given by v = ẏ.
The angular speed ω of the autonomous robot is given by α̇.
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Figure 1. The Virtual Reality Defined Scene with Three Searching Robots
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Figure 2. The Autonomous Ground Car like Searching Robot

The longitudinal, lateral and the angular speed of the autonomous robot can be
determined using the angular speeds on the left and right drive wheels of the robot.
For simplicity it was considered that the left and the right angular speed of the wheels
are the same. Considering ωleft the angular speed of the left drive wheel and ωright

the angular speed of the right drive wheel, one can write,

w =
r(ωleft + ωright)

2
, α̇ =

r(ωleft − ωright)
d

(1)
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where d is the distance between the wells and r is the wheel radius as shown in Fig 2.
The longitudinal speed u = ẋ and the lateral speed v = ẏ, are calculated using

ẋ = w cos(α), ẏ = w sin(α) (2)

Using Eqs. (1) and (2) one can write

ẋ =
r cos(α)(ωleft + ωright)

2

ẏ =
r sin(α)(ωleft + ωright)

2

α̇ =
r(ωleft − ωright)

d

or equivalent

u =
r cos(α)(ωleft + ωright)

2

v =
r sin(α)(ωleft + ωright)

2

ω =
r(ωleft − ωright)

d

In order to prevent slippage, the frictional force should be greater than the acting
resultant force, where the resultant force is composed of the normal and tangential
forces. For a nonholonomic motion, the non slip condition can be written as,

ẋ sin(α) = ẏ cos(α).

2.2. Dynamics. While in motion, the autonomous robot is subjected to various
dynamic constraints (such as sliding or torque constraint), constraints that can be
described in terms of the related robot velocity and acceleration. The nonholonomic
equations of motion of the autonomous mobile robot can be written in a matrix form
based on the Euler Lagrange formulation as,⎡

⎣ m 0 0
0 m 0
0 0 I

⎤
⎦

⎡
⎣ ẍ

ÿ
α̈

⎤
⎦ =

1
r

⎡
⎣ cos(α) cos(α)

sin(α) sin(α)
−d d

⎤
⎦

[
τl

τr

]

+

⎡
⎣ sin(α)

cos(α)
0

⎤
⎦λ

(3)

where τl is the torque of the left wheel, τr is the torque of the right wheel, m is the
mass of the motor, I is the robot mass and inertia, and λ the Lagrange multipliers
of constrained forces. The friction force acting on a wheel is F . Two DC motors
are assumed to propel the robot. Each DC motor is connected to the drive wheel on
each side and generate torque. For the sake of briefness, the discussion of the DC
motor model is thus omitted here, eventhough the model is included in the simulation.
Considering are τlinear and τangular the linear and angular torques, one can write,

τlinear =
τl + τr

r

τangular =
d(τl + τr)

r
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From the previous two equations one can deduce

ẍ =
τlinear

m
cos(α) +

λ

m
sin(α)

ÿ =
τlinear

m
sin(α) − λ

m
cos(α)

α̈ =
τangular

I
(4)

Applying the second derivative to the Eq. (2) one can obtain

ẍ = −wα̇ sin(α) + ẇ cos(α)
ÿ = −wα̇ cos(α) + w sin(α)
α̈ = ω̇ (5)

Finally, from Eqs. (4) and (5) one can deduce

τlinear

m
cos(α) +

λ

m
sin(α) = −wα̇ sin(α) + ẇ cos(α)

τlinear

m
sin(α) − λ

m
cos(α) = −wα̇ cos(α) + w sin(α)

τangular

I
= ω̇

3. The Proposed Mobile Agents System

For generating an optimal path two kinds of agents are presented. A slave agent
is used to construct the path using well known heuristic A-star algorithm. The other
agent is the mobile agent responsible for low-level control of the mobile robot. Slave
agent and mobile agent communicate with each other through the Communication
Module as shown in Fig. 3.

Figure 3. The agent-based system structure
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The agent-based system consists of:
• 1 (n>0) Mobile Agent(MA),
• 3 (n>0) number of Slave Agents(SA),
• distributed data bases(DB1, DB2, DB3)
As seen from Fig. 3, slave agent sends the present coordinates and the goal co-

ordinates to mobile agent through the communication channel and asks a planned
path from the mobile agent. The mobile agent plans direction based on the partial
generated map of the environment. While constructing the path, slave agent uses the
A-star algorithm, which is explained below. A-star search is one of the widely used
informed search strategies ([3]). It is used to find a path from the starting node to
the goal node in a graph. In this study, the environment is divided into 1m. by 1m.
square grids. The center point of each square is considered as a node of the graph.
Then the A-star algorithm uses this graph to construct the path. The cost for each
grid is calculated as the sum of two costs: f(n) = h(n) + g(n) where g(n) is the
associated cost of the starting node to the node n path, and h(n) is the associated
cost of the node n to the goal node path. Since g(n) gives the path cost from the
start node to node n and h(n) is the heuristic distance which is the estimated cost
of the closest path from n to goal, f(n) becomes the estimated cost of the shortest
solution through node n. The A-star algorithm is an optimal search strategy if h(n)
is an admissible heuristic provided such as h(n) never overestimates the exact cost
of the goal. The input of the A-star search algorithm is the graph and the output is
a back-pointer path which is a sequence of nodes starting from the goal and back to
the start. If O is the open set priority queue and C is the closed set containing all
processed nodes, the A-star search algorithm can be expressed as below (1).

Algorithm 1 A-star search algorithm

while O is not empty do
Find nbest from O such that f(nbest) ≤ f(n) for all n in O;
Remouve nbest from O;
Add nbest to C;
if nbest = ngoal then

EXIT ;
end if
Expand nbest for all x, neighour of nbest and not in C;
if x is not in O then

Add x to O;
end if
if g(nbest) + dist(nbestx) < g(x) then

Update x’s back-pointer to point the nbest;
end if

end while

The neighborhood of a grid cell uses eight-point connectivity relation and the
heuristic distance (h(n) ) is calculated by using Euclidean distance which is always
smaller than or equal to the actual distance.

3.1. The Communication Module. The system must be able to make possible the
agents communication, including the communication protocols. The communication
protocols should allow message understanding and wireless transmission. Message
understanding implies decision acceptance or rejection based on the collected sensors
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information and other mobile agents information. Mobile agents communication is
based on sending (action) and receiving (perception) messages.

The mobile agents will communicate to each other to achieve the defined goals. The
degree of coherence and coordination comes from the extent to which the system avoid
redundant actions, competition on resources, bottlenecks and the unsafe operating
conditions. The goal is to maintain an overall coherence, without having always a
global control in place. The coordination between mobile agents not entering the
competition is based on cooperation. For the agents entering in the competition, or
those having reciprocal dependence, the coordination is based on negotiation.

In our system, the communication language has two levels:
• Level 1: communication between agents and sensors;
• Level 2: communication between agents.
Communication between agents and sensors (level 1) is in one sense: from sensor

to agent. The agent receive informations from sensor and make decision.
Communication between agents (MA and SA), level 2, is done via messages. An

agent can communicate with other agent by message passing. An agents that wants
to communicate with another agent first has to create a message object, then send it
to the target agent. A message object has a kind and an optional argument object.
The receiver agent determine what to do by checking the kind of received message
and get parameters as the argument object. For system implementation one can use
a subset of a standard indicators ([21]) of the Knowledge Query and Manipulation
Language (KQML):

tell
: content < expression >
: language < word >
: ontology < word >
: in − reply − to < expression >
: force < word >
: sender < word >
: receiver < word >

This indicators can be used when an mobile agent found an object and announce
its finding. The message agents of our system act somewhat like the active packets
in the capsule tradition of active networking research; they are minimal programs
that carry a payload of communications data across the network. They make their
decisions about where they need to go based on information that routing agents, with
which they share the network, accumulate and cache.

3.2. Autonomous Robots Obstacle Avoidance and Sensors. Obstacle avoid-
ance was integrated on the mobile agent software. The software adjust the direction of
the robot based on any obstacles in its path. While the robot executes the searching,
if any obstacles is found on the robot path, the direction is adjusted to run tangent to
the obstacle, and so, the old path is replaced with a new path to avoid the obstacle.
Since the mobile agent continuously update the path based on the sensors informa-
tion, the obstacle avoidance analysis and the direction path is constantly replanning.
This continuous replanning allows the searching robot to handle a highly dynamic en-
vironment and to take advantage of any path free opportunity (the visibility graph).

For landmark navigation, the sensors installed on the autonomous robot, such
as stereo vision sensors (two CCD cameras fixed on the left and right side of the
searching robot), and a laser scanning system in connection with a GPS-receiver
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(with the GPS signals available every second) allows the robot to navigate and to
have sufficiently conditions for landmark detection with obstacle avoidance (collision
free). The collision free is implemented for the dynamic motion. The laser scanning
system and GPS-receiver allows the agent to plan the path and trajectory based on
the 3D created map of the environment (the map is updated every second based on
the mobile agents communication). The two CCD cameras synchronously capture the
image and combine it with the 3D created map for the searching object recognition
purpose. For the present described system (car like robot) the obstacles are assumed
to be convex polygons.
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Figure 4. Initial Trajectories of 3 Autonomous Searching Robots

4. Autonomous Robots Path Analysis

The aim of this study is to generate an optimal path (time and collision-free optimal
path) and to present all the subsequent trajectories of a group of autonomous robots
(3 autonomous robots are used in this analysis) navigating among various obstacles.
The robots are defined as an autonomous ground car like vehicles and programmed
to perform objects searching in a defined environment. The robots are equipped with
software (mobile agent) and sensors, and moves based on the described equations
of motion while satisfying the kinematic and dynamic constraints. While in motion
the robots detect the position of all obstacles (based on the attached sensors) while
looking for the searched object. The searching directions of the 3 autonomous robots
are defined as: north (N), north-east (N-E) and north-vest (N-V). If a robot have
to deviate from its current direction of movement, i.e., N, N-E or N-V, (for obstacle
avoidance purpose), it starts decelerating in order to achieve the turning velocity.
After a turn, the robot will continue moving in the predefined direction (following a
straight path).

For the analysis the subsequent trajectories of the 3 autonomous robots and the
optimal path are shown Fig. 4 to Fig. 8.

The initial trajectories of the searching robots are provided in Fig. 4. The trajec-
tories of the robots are predefined as follows: The robot number 1 will move to the
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Figure 5. Autonomous robots behavior after one of the robots find
the searched object - trajectories are marked with red

north (N), the robot number 2 is moving to north-vest (N-V) and the robot number
3 is moving to north-east (N-E). In order to maintain the path, the robots avoid ob-
stacles taking the shortest path. The trajectories of the robots are marked on Fig. 4
with a black dashed line.
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Figure 6. Initial Optimization of the Trajectories - marked with green

Figure 5 shows the autonomous robots behavior after one of the robots (robot 1)
find the searched object. Based on the described algorithm 1, the robots 2 and 3
change the direction. The new direction of each robot is a new straight line to the
searched object. The new trajectories are marked on the Fig. 5 with a red dashed
line. Both robots are able to reach the searched object as shown in Fig. 5.
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Figure 6 shows behavior of robots 2 and 3 after reaching the searched object. The
autonomous robots optimized the previous path using the A-star algorithm as shown
in Fig. 6. The new trajectories are marked on the Fig. 6 with a green dashed line.
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Figure 8. Final Path - marked with black

Since there are not other optimal trajectories between the starting base and the
searched object, the autonomous robots optimized the trajectories shown in Fig. 6
as resulting from Fig. 7

Finally, all the robots take the shortest path (the trajectory discovered by robot 1)
as this is the optimal path from the base to the searched object. The obtained final
optimal path is shown in Fig. 8.
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5. Conclusions and future work

In this paper, an agent-based real-time path planning algorithm is proposed for a
group of autonomous searching robots. The path is constructed by A-star heuristic
algorithm. The optimal path analysis of a group of autonomous robots is provided.
Anyway, the present study need to be extend for a dynamically changed environments.
A increase on the grid size resolution so that the robots can travel in more complicated
environments is also desirable. Simulations and experimental results are also needed
in order to totally validate the model.
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