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The relation between the weight factor and the number of
steps in a projection algorithm

Cristina Pop̂ırlan

Abstract. This paper gives an implementation of a projection algorithm for solving the con-
vex feasibility problem. We analyze the influence of the weight factor from the projection
algorithm on the total number of steps needed to obtain a solution of a convex feasibility
problem. We solve a linear system of inequations using a projection algorithm and we deter-
mine how the weight factor influence the total number of iterations calculated until the system

solution is obtain.
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1. Introduction

Let C be a closed convex subset of a real Hilbert space H and let T : C → C be
a nonlinear mapping with nonempty fixed point set F (T ) in C. Let {xk}k≥0 be a
sequence defined by the following Mann-type iterative process

xk+1 = (1 − tk)xk + tkT (xk), x0 ∈ C, (1)

where tk ∈ R+, k = 0, 1, ... If 0 < tk < 1, then xk+1 is a convex combination
between xk and T (xk). This restriction concerning {tk}k≥0 is not always satisfied; the
typical case is, for example, the projection algorithm for convex feasibility problem,
algorithm which have just the form (1) and 0 < tk < 2.

A straightforward application of the Mann-type iteration is the projection algo-
rithms for solving the convex feasibility problem, particularly because such algorithm
have the form (1) and the projection mapping has the properties required in the
Mann-type iteration. The geometric idea of the projection method is to projects the
current iteration onto certain set form the intersecting family and to take the next
iteration on the straight line connecting the current iteration and this projection. A
weight factor gives the exact position of the next iteration. Different strategies con-
cerning the selection of the set onto which the current iteration will be projected, will
give particular projection types algorithms.

The projection algorithm was used in [1], [16] for solving a system of linear inequal-
ities (the authors referred their method as relaxation algorithm). Generalizations for
convex sets in real n-dimensional spaces were given in [10], [12]. Bergman [5] con-
sidered the classical projection method for the case of m intersecting closed convex
sets Mi in a real Hilbert space. He showed that, given an arbitrary starting point
x0, the sequence generated by the projection algorithm converges weakly to a point
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in M = ∩m
i=1Mi. In [11] certain regularity conditions of the family of sets were de-

scribed that guarantee the strong convergence of the iterations. In its essence, this
regularity conditions means that int ∩m

i=1 Mi �= ∅; more exactly, the main condition
considered in [11] is: Mα ∩ (Int ∩α∈A Mα) �= ∅, where A is a set of indexes and Mα

is a certain set of the family. Such condition is necessary for the affirmative answer
to the following very simple problem: Suppose that a sequence is getting closer to
every set of an intersecting family of sets; does the sequence get also closer to their
intersection?. In [11] an affirmative answer is done, provided that the family satisfies
the above regularity condition. Note that the boundedness of the sequence is also
required. Bausche and Borwein [2] considered such a property as a definition for the
regular n-tuple of sets, namely, a family of n sets is regular if

∀ε>0 ∃δ>0 ∀ x ∈ H
max{d(x, Mi), i = 1, . . . , n} ≤ δ

d(x,∩Mi) ≤ ε

In some recent papers, other conditions for strong convergence have been given,
for example in [2], [3], [4], [8]. A complete and exhaustive study on algorithms for
solving convex feasibility problem, including comments about their applications and
an excellent bibliography, was given by Bausche and Borwein [2].

2. Definitions and some former and recent results

The convergence properties of (1), both weak and strong, are related with the
structural properties of T .

Definition 2.1. The mapping T is said to be
(a1) quasi-nonexpansive if

‖T (x) − x∗‖2 ≤ ‖x − x∗‖2, ∀x ∈ C, x∗ ∈ F (T );

(b1) demicontractive if for certain constant p ∈ R the following inequality holds

‖T (x) − x∗‖2 ≤ ‖x − x∗‖2 + p‖x − T (x)‖2, ∀x ∈ C, x∗ ∈ F (T ).

Definition 2.2. The mapping T is said to be
(a2) firmly nonexpansive if

‖T (x) − T (y)‖2 ≤ ‖x − y‖2 − ‖x − y − (T (x) − T (y))‖2, ∀x, y ∈ C;

(b2) firmly quasi-nonexpansive if

‖T (x) − x∗‖2 ≤ ‖x − x∗‖2 − ‖x − T (x)‖2, ∀x ∈ C, x∗ ∈ F (T ).

Usually, the convergence of (1) requires some additional smoothness properties of
the mapping T , like continuity or demiclosedness.

Definition 2.3. A mapping T is said to be demiclosed, if for any sequence {xk}k≥0

which converges weakly to y, and if the sequence {T (xk)}k≥0 converges strongly to z,
then T (y) = z.

In what follows, only the particular case of demiclosedness at zero will be used,
which is the particular case when z = 0.

A typical result for real Hilbert spaces states that if T : C → C is quasi-nonexpansive
and I − T is demiclosed then the sequence {xk}k≥0 defined by (1) with 0 < a ≤
tk ≤ b < 1 converges weakly to a fixed point of T ([9]). For strong convergence
some additional conditions must be imposed, for instance, that T be continuous and
limk→∞d(xk, F (T )) = 0, where d(x, M) is the distance from x to M ([17]).
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In the paper [14] we have considered a class of mappings which satisfies the following
condition: There exists a strict positive number λ such that

〈x − T (x), x − x∗〉 ≥ λ‖x − T (x)‖2, ∀x ∈ C, x∗ ∈ F (T ). (2)

For this class of mappings the weak convergence of the sequence {xk}k≥0 generated
by (1) is shown, provided that I−T is demiclosed at zero. For the strong convergence
of the same sequence, additional condition on T and on the starting iteration point
is needed ([14]). These results were extended to some more general spaces (Banach
spaces, uniformly smooth Banach spaces, etc.) in some papers [6], [7], [18]. The
almost identic conditions were used in [15] for proving the weak convergence of a
Mann and Ishikawa iteration processes with errors to a fixed point of T , processes
considered earlier in [13] and [19] for nonlinear strongly accretive operators.

C. Moore [15] observed that the class of maps satisfying (2) coincide with the class
of demicontractive mappings. Indeed, it can be seen that (2) is equivalent with the
condition (b1), where λ = 1−p

2 .

3. The convex feasibility problem

Let Mi ⊂ H, i = 1, ..., m be a family of closed convex subsets of H with nonempty
intersection,

⋂
Mi �= ∅. The convex feasibility problem is:

Find a point of
⋂

Mi.

Let x be a point in H and let P (x, i) be the projection of x onto Mi (if x ∈ Mi,
then P (x, i) = x). Let ix be the least index such that

‖x − P (x, ix)‖ = max
i

‖x − P (x, i)‖.
Define the mapping T : H → H by T (x) = P (x, ix). It is clear that x ∈ ⋂

Mi if and
only if T (x) = x, hence if and only if x is a fixed point of T , that is

⋂
Mi = F (T ). For

any x ∈ H and x∗ ∈ F (T ), the following Kolmogorov condition 〈x−P (x, ix), P (x, ix)−
x∗〉 ≥ 0 is satisfied and it is routine to see that T is firmly quasi-nonexpansive. The
Mann iteration in this case converges strongly to an element of F (T ) if and only if
{xk}k≥0 is regular with respect to F (T ). In its turn this property of {xk}k≥0 is in
connection with the regularity property of the family {Mi}.

Let us consider a family of n sets: Mi, i = 1, . . . , n. Each set contains the points
that verify the inequation aix+biy+ci ≥ 0 where ai, bi, ci ∈ R. This way we obtain a
n inequations system with the solution given by the intersection of those n sets. Thus,
the solution of the system represents the solution for the following convex feasibility
problem:

Find a point of M =
n⋂

i=1

Mi.

4. The application

We have implemented a projection algorithm for solving the following convex fea-
sibility problem:
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Figure 1. The application

⎧⎨
⎩

Mi = {(x, y) ∈ R×R, aix + biy + ci ≥ 0}, i = 1, . . . , n

find(x, y) ∈ M =
n⋂

i=1

Mi

The sets Mi are half-spaces determinate by aix + biy + ci = 0, ai, bi, ci ∈ R,
i = 1, . . . , n. So the sets are convex subsets of the space R2.

The application 1 permits to solve a convex feasibility problem with a variable
number of sets. The only condition imposed by the application is that for any i =
1, . . . , n ci ∈ R+.

From the following examples we can observe that the initial point does not influ-
ence the number of iterations calculated in order to obtain a solution of the convex
feasibility problem.

The application permits for the same initial data (the same system and the same
initial point) to introduce different weight factor in order to analyze its influence on
the number of iterations.

In the application the operator used is the classical projection:
xn+1 = (1 − t)xn + tPMixn, ∀n ≥ 0.

If PMi(x) denote the projection of x onto Mi then the classical projection method
is

xk+1 = (1 − tk)xk + tkPMα(k)(xk),

where tk is the weight factor, 0 < tk < 2, and the function α : N → {1, ..., N}
defines the strategy. The usual strategy is the cyclic covering the sets of family, that
is α(k) = modN (k) + 1.
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Table 1. The number of iterations for the initial approximation (1,4)

initial approximation weight factor number of iterations
(1,4) 0.1 257
(1,4) 0.2 200
(1,4) 0.3 169
(1,4) 0.4 129
(1,4) 0.5 93
(1,4) 0.6 80
(1,4) 0.7 57
(1,4) 0.8 35
(1,4) 0.9 18
(1,4) 1.0 17
(1,4) 1.1 17
(1,4) 1.2 17
(1,4) 1.3 13
(1,4) 1.4 7
(1,4) 1.5 4
(1,4) 1.6 4
(1,4) 1.7 3
(1,4) 1.8 4
(1,4) 1.9 5

In the current step the sets for the projection are considered cyclic, the sets are
analyzed starting from the first set M1 to the last Mn. This means that for the
current iteration xn, the sets, Mi i = 1, . . . , n, are checked in order. We start with
M1, and we check if the point xn is in this set or no. If xn ∈ M1, then we go to the
next set M2. Else we apply the projection and we calculate the next iteration xn+1.

try {
do {
for (int i=0;i<DH1.n;i++) {
if (D1.testPunct(i,P)==false){
double x=P.x-D1.getCoord(i,0)*((D1.getCoord(i,0)*P.x+
+D1.getCoord(i,1)*P.y+D1.getCoord(i,2))/
(Math.pow(D1.getCoord(i,0),2)+
+Math.pow(D1.getCoord(i, 1), 2)))*DH1.getT();

double y=P.y-D1.getCoord(i,1)*((D1.getCoord(i,0)*P.x+
+D1.getCoord(i,1)*P.y+
+D1.getCoord(i,2))/(Math.pow(D1.getCoord(i,0),2)+
+Math.pow(D1.getCoord(i,1),2)))*DH1.getT();

P=new Punct(x,y);
DH1.AddFinalPoint(x, y);
parent.UpdateGrafic();
itmax++;
Thread.sleep(sleep);}

}
ok=true;
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Figure 2. The weight factor and the number of iterations

Figure 3. The weight factor and the iterations number

for (int j=0;j<DH1.n;j++)
if (D1.testPunct(j,P)==false)

ok=false;
}while (ok==false);

} catch (InterruptedException ex) {
Logger.getLogger(Executor.class.getName()).

log(Level.SEVERE,null,ex);
}

From the following examples we can observe that the weight factor influence the
total number of iterations calculated until the solution if the system in find.

Let’s consider the following example:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x + 2y + 3 ≥ 0
2x + 3y + 6 ≥ 0
−4x + y + 6 ≥ 0
−2x − 7y + 1 ≥ 0
x − 3y + 2 ≥ 0
−5x + y + 7 ≥ 0

The results for this system, for diferent weight factor t ∈ (0, 2) and for different
initial approximations, are given in the next tables 1 and 2.
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Figure 4. The weight factor versus the iterations number

Figure 5. The influence of the weight factor on the iterations number

We can observe that for the weight factor t = 1.5 we obtain a minimum number
of iterations. In some cases we can observe that the iterations number is constant for
the weight factor t ∈ [1.5, 2], and in other cases for t ∈ [1, 1.5].

For small values of the weight factor t ∈ [0.1, 1) the number of calculated iterations
is very big and it is getting smaller very fast when the weight factor is closing to
t = 1.5.
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Table 2. The influence of the weight factor on the iterations number

weight factor number of iterations number of iterations number of iterations
0.1 407 138 205
0.2 293 102 183
0.3 247 81 148
0.4 215 72 97
0.5 193 57 69
0.6 179 49 55
0.7 158 36 27
0.8 130 31 17
0.9 117 18 17
1.0 88 15 17
1.1 60 12 15
1.2 5 9 13
1.3 4 5 10
1.4 4 3 6
1.5 4 2 2
1.6 4 2 2
1.7 4 3 4
1.8 4 4 7
1.9 4 5 9

Table 3. The connection between the weight factor and the itera-
tions number

weight factor number of iterations number of iterations
0.1 268 192
0.2 221 179
0.3 197 158
0.4 168 131
0.5 139 102
0.6 101 82
0.7 72 82
0.8 49 41
0.9 37 17
1.0 26 13
1.1 15 5
1.2 9 4
1.3 4 2
1.4 2 2
1.5 2 2
1.6 2 2
1.7 4 2
1.8 5 1
1.9 5 1
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5. Conclusions

The initial approximation does not influence, at least not significantly, the number
of iterations calculated until the solution for the convex feasibility is found. The pa-
rameter that influence this number is the weight factor from the projection algorithm.

It can be observed that for the weight factor t = 1.5 we obtain a minimum iterations
number. The iterations number in this case in very small and it is influence by the
system and the initial approximation, but this influence is minor.
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