Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 36(1), 2009, Pages 71-78
ISSN: 1223-6934

Building Decision Trees

MIRCEA PREDA AND ANA-MARIA MIREA

ABSTRACT. Decision tree learning represents a well known family of inductive learning algo-
rithms that are able to extract, from the presented training sets, classification rules whose
preconditions can be represented as disjunctions of conjunctions of constraints. The name of
decision trees is due to the fact that the preconditions can be represented as a tree where
each node is a constraint and each path from the root to a leaf node represents a disjunction
composed from a conjunction of constraints, one constraint for each node from the path. Due
to their efficiency, these methods are widely used in a diversity of domains like financial, en-
gineering and medical. The paper proposes a new method to construct decision trees based
on reinforcement learning. The new construction method becomes increasingly efficient as it
constructs more and more decision trees because it can learn what constraint should be tested
first in order to accurately and efficiently classify a subset of examples from the training set.

2000 Mathematics Subject Classification. Primary 68T05; Secondary 91C20.
Key words and phrases. Decision tree, Reinforcement learning, Inductive learning,
Classification, Splitting criteria.

1. Introduction

Decision tree learning is a widely used class of methods for inductive inference.
They approximate discrete valued target functions by representing them as decision
trees. The instances presented as arguments for these functions are represented as
collections of attribute value pairs. In accordance with [4], a decision tree represents
a disjunction of conjunctions of constraints on the attribute values of the instances.
Each node from the tree represents a test regarding the value of an attribute (or
more attributes), each path starting from the tree’s root to a leaf corresponds to
a conjunction of attribute tests and the tree synthesizes the disjunction of these
conjunctions. Consequently, a decision tree can be considered to be a collection of
formulas from propositional logic and decision trees naturally represent disjunctive
expressions.

Several efficient decision tree building algorithms like ID3 [5], C4.5 [6] and QUEST|3]
were proposed over time, most of them being top down, simple to complex, greedy
algorithms. They begin with the question ”What constraint should be tested in the
root of the decision tree?” and evaluate the available constraints in accordance with a
statistical test to select the best one. A descendent of the root node is created for each
value of this constraint and the entire process is then repeated for each descendant.
Due to their accuracy, effectiveness and flexibility, decision trees were successfully ap-
plied to a wide range of learning problems from various domains like medical, financial
and engineering. A comprehensive survey of the current developments in decision tree
learning theory is [8].

Received: 05 June 2009.

71

72 MIRCEA PREDA AND ANA-MARIA MIREA

The paper proposes a new method to build decision trees that uses reinforcement
learning to select the attributes to be tested inside the nodes of the tree. Reinforce-
ment learning ([9], [4]) was selected because it allows that the method to build better
trees over time as it learns from the feedback provided by the previous building oper-
ations. Several statistical tests can be employed to describe the classification power of
the attributes and their importance will be weighted in accordance with the accuracy
of their results during learning. It can learn over time which attribute is more suit-
able to be tested for classifying a subset of examples and it can transfer the learned
knowledge about an attribute to another attribute with similar discrimination char-
acteristics. The knowledge can be transferred also when the training set is changed
frequently and even when the classification rules can support changes over time. The
situations when different attributes have different test costs can be handled by the
proposed method. We mention that decision trees were commonly used in relational
reinforcement learning [7] but the reverse situation where reinforcement learning is
used to build decision trees received little attention until now.

The rest of the paper begins by describing the mathematical framework for a
generic classification problem and the fundamentals of the reinforcement learning
algorithms. The main part of the paper introduces the new method to adaptively build
decision trees by reinforcement learning and discusses its properties. We conclude
with experimental results for the proposed method on a small problem and with a
synthesis of the desired features of the exposed algorithm.

2. Adaptive learning of a classifier for a generic classification problem

2.1. Framework. Let £ be the set of elements that should be classified. The ele-
ments of £ are described by a set of attributes Attr. Each attribute at € Attr has
attached a function

at(.) : € — Val(at)
where Val(at) is the set of the all possible values of the attribute at. An element
e € £ is uniquely identified by the set of pairs
{< at,at(e) > |at € Attr}.
The function at(.) can be extended to subsets of examples as follows:
at(.) : 2¢ — Val(at)

where
at(E) =arg max |{e € E|at(e) = v}
veVal(at)
is the dominant value of the attribute at over the set E.
Let C be the finite set of the categories of the elements from £. A classifier for £
is a function

c:&€—C.

Usually, the function ¢ is not known. Instead, we have a subset of examples Fx C
E for that the values c(ex),Vex € Ex are available. Our purpose is to build an
approximation

€ —C.

for ¢ based on the examples from Ezx.

BUILDING DECISION TREES 73

For each attribute at € Attr, an equivalence relation =, C Fa x Ex will be defined
as follows: (exy,exs) €=4 if and only if at(ex;) = at(exz). Let X C Ex a set of
examples and ex € X an example. By [ez]x ¢ will be denoted the equivalence class

[ex] x,at = {x € X|at(ex) = at(z)}.

The set of all equivalence classes in X given the equivalence relation =,; is denoted
as X/ =4 and called the quotient set of X by =,;. Sometimes X/ =,; will be denoted
by
X/=af, = {X(Lt=1)1; ceey Xat:vm}
where Val(at) = {v1,...,om }.
Similarly, equivalence classes can be defined for the target function c¢. Let us denote
by [ex]x the equivalence class of ex

[ex]x = {x € X|c(ex) = c(x)}.
The set of the all equivalence classes in X given ¢ will be denoted as X/c.
X/e={Xe=cy» oy Xe=c, }

where C = {c1, ..., ¢p }.

2.2. Reinforcement learning. Let us consider a problem where an agent interacts
with an environment. The problem is described by the following parameters:

e S The set of the all possible states of the environment. In the most cases the
agent has only partial information about the current state of the environment.
Usually, a subset of states F' C S is also known. The elements of F' are named
final states.

e A The actions that are available to the agent. For a state s € S of the environ-
ment we denote by A(s) C A the set of the actions that can be performed in the
state s.

o T:5x A— P(S) where P(S) represents the family of the probability distribu-
tions over S. The agent has not a complete control over environment. When it
performs an action a in a state s it does not completly know which will be the
next state of the environment. T'(s,a,s’) represents the probability that s’ € S
to be the next state when the action a is performed in the state s.

e r:5x A — R. The one step reward function. The learning agent is partially
supervised. It is informed by rewards about what action is good in what state.
r(s,a) represents the reward that is received by the agent after it performs the
action a in the state s.

A policy 7 is a function that maps states into probability distributions over the
set of actions. A trajectory is a sequence of states, actions and rewards constructed
based on a policy as follows. Let sy be the initial state of the trajectory. An action
ap is chosen in accordance with 7(sg). The one step reward ro = 7(sg,ap) granted
for the pair (sg,ap) is observed. The new state of the environment s; is dependent
on the environment dynamics described by the function T'. If s; is a final state, the
trajectory is completed, otherwise the process continues iteratively.

The action value function or, alternately, the @ function, measures, for the value
Q7 (s¢,a), the expected total reward that will be obtained by executing the action a
in the state s; and following the policy m(.) to select the actions for the next states.
The function @ that corresponds to a policy 7(.) is defined by:

Q" (st,a) =1t + Q" (8141, T(St41))- (1)

74 MIRCEA PREDA AND ANA-MARIA MIREA

v € (0,1] is a parameter that quantify how important are the rewards received during
the later interactions between agent and environment. The advantage provided by
the @ function is that the agent can perform an one step search of the optimal action
without to be needed to know the one step reward function and the dynamics of
the environment. If the agent knows the optimal) function, denoted by @Q*, which
corresponds to the optimal policy 7*, then it can select the optimal action by using
the search:

ai =7 (s) = arg_max {Q"(sr,a0)}. @

The optimal @ function can be computed by using the dynamic programming if the
one step reward function and the dynamics of the environment are completely known
in advance. But even in this case the spaces of the states and actions can be to big
to accurately compute the value Q* (s, a) for each state action pair (s,a). So, in most
cases, a method to approximate the @Q* function is preferred. Reinforcement learning
theory proposes several such methods like SARSA and Q-learning [9].

2.3. Building decision trees using reinforcement learning. In order to apply
the reinforcement learning to the generalized classification problem we should identify
the components of the reinforcement learning framework in the classification settings.
e The set of states S is the family of the all partitions of the set of examples. A
state s € S is a set s = {s1,..., 8, } such that s, Ns; =0, Vi,j € {1,....n},i #j

and |J s; = Fz. A state s = {s1, ..., s, } is named final if and only if s, /c = {s;},
i=1

Vi = 1,n (all examples from s; are classified in the same category). The family
of the all final states will be denoted by F(S).

o Let s = {s1,...,5n} € S be astate. The set of actions A(s) that can be performed
in the state s is the set A(s) = Attr x {1,...,n}. An action is a pair (at,?) with
the meaning that the attribute at will be used to further classify the subset of
examples s;.

e Let s = {s1,...,8,} € S a state and a = (at,i) € A(s) an action. The next
state s’ of the environment after performing action a in the state s will be
8" = {81, s 8i—1,8i,, s -+ Siy,, » Sit1s -, S} Where {s; ,...,s;, } = s;/=,,. This
can be also stated as:

s'=(s\ {si}) Usi/=..-

e For the reward function we will set r7(s,a) = —1, Vs ¢ F(S) and Va € A(s)
and r(s,a) = 0 otherwise. This definition of the reward function is intended
to encourage the completion of the decision tree building process in a minimum
number of steps (with a minimum number of internal nodes). If the attributes
have different test costs we can represent this feature naturally by using different
rewards for different attributes.

The number of the all possible partitions of the set of examples Ex is too big, and
consequently, the values of the function Q(s,a) that approximates Q*(s,a) cannot
be maintained by using a table. @ will be represented as a parameterized functional
form with the parameter vector § = (6y,...,0;) € R*. To make the computations
simpler, @ will be a linear function of the parameter vector #. For every pair (s, a),
there is a vector of features ¢(s,a) = (qbgs’a), ey (b,(cs’a))T € R¥ with the same number
of components as . The approximate action value function is given by

k
Q(s,0) = 0-d(s,a) = >_ ;6\
1=1

BUILDING DECISION TREES 75

Algorithm 1 ADAPTTREFEO(Ex, Attr) - an adaptive algorithm for constructing
decision trees. The algorithm uses linear gradient descendent SARSA with tile coding
features and e-greedy policy.

Require: Ez # (), a € (0, 1] a parameter named learning rate, v € (0, 1) a parameter
that establishes how important are the rewards received in the future.
1: Initialize s = {Ex}.
2: Create the root node of the tree attached to unique set Ez from partition.
30 a, (s, a),Q(s,a) — € — Greedy(s). {Choose an action a € A(s) in accordance
with the e-greedy policy based on Q.}
4: repeat

5. Let s ={s1,...,8n}, a = (at,i) € A(s) and ng, the node in the tree attached to
the set s; from the partition s.

6: for each s;, € Si/=,, do

7: Create a new node Ns;,, attached to Siy,, and add a new branch in the tree

from ng, to ng, labeled with the test at(.) = v;.
8: end for ’
9: Perform the action a, observe the next state s’ and the reward r
10 §—1r—Q(s,a)
11 d,¢(s',a"),Q(s',a’) « e — Greedy(s'). {Choose an action a’ € A(s’) in accor-
dance with the e-greedy policy based on Q.}
122 6 d+Q(s',a)
130 0 — 0+ adg(s,a)
14: s« s, a+ada.
15: until s € F(S)

and the resulting method is synthesized in the algorithms 1 and 2. The features will
be constructed as follows:

¢:SxA— Rkv o(s,a) = f(g(s,a)).
The function g : S x A — R!*! transforms a state action pair (s,a) into an array of
real number because the majority of the function approximation methods are devised
to work with numeric arguments. The values associated by the g function must
synthesize both the status of the learning process in the current state s and the
discrimination capabilities of the selected action a. The status of the learning process
is described by computing the entropy function over the subsets of the partition s. As
the learning process advances, the entropy of the subsets of s should become smaller
because, finally, each subset will contain examples from only one category. In order to
accurately describe the effects of an action a, the definition of ¢ is also based on some
of the most known measures for assessing the classification qualities of an attribute
[8].
g(s, (l) = (QO(S)a g1 (Sa a)v ey 91(8, a)) where
go:S—Randg;: SxA—-R,Vi,1 <i<lI.

Let s € S be s = {s1,...,8,} and a € A(s) be a = (at,i). The function go
describe the status of the learning process in the current state s (the progress of the
classification of the training set) and is defined as follows:

n

si

go(s) = Z ||Ex|| - Entropy(s;)
i=1

76 MIRCEA PREDA AND ANA-MARIA MIREA

Algorithm 2 e — Greedy(s) selects an action a € A(s) for the state s using the
€ — greedy strategy.

Require: The exploration probability e € [0, 1].
1: if With probability 1 — € then
2: for all a € A(s) do
@(s,a) < the vector of features for the pair (s, a)

M (sa)
4: Q(s,a) — Z Hz(bz ’
i=1

e

5: end for

6: a <« argmax, Q(s,a)

7: else

8 a < arandom action € A(s)

9: &(s,a) < the vector of features for the pair (s, a)

k
100 Qs,a) — 3 0,60
i=1
nendif
12: return a, ¢(s,a), Q(s,a)

where the entropy function is defined by:

P
Xee, Xee,
Entropy(X) = — g | |3(|C 1og2| |3(|C ,

i=1

vX C Exz.
The functions g;,1 <7 <[describe the classification effects of the actions. During
tests, the following functions g; were used:
a) Information gain function

gl({sla ooy Sy ey sn}v (at, Z)) = Entropy(si)

~ Y Bl puropy(s.,).

SiUESi/=at |Si|
b) Gini index
G3({31, 84y 5}, (0, 0)) = Giimi(s,)

Siqy ESi/:m

where

Gini(s) =1 — zpz (ISTZW)2

i=1

¢) Discriminant power function

gg({sl, ey Sgyeeny Sn}, (at,z)) =

> (e sl

Siy €s; “at

|5l

The function gs assigns to each pair (s,a) a number in the range (0, 1].

BUILDING DECISION TREES T

Remark 2.1. It is difficult to choose between the various measure functions that can
be used to select the next attribute used in the tree construction process. Several studies
(111, [2]) suggest that the most functions that evaluate the power of discrimination of
an attribute regarding to a set of examples have similar performances. Each criterion
is superior in some cases and inferior in others. The proposed adaptive tree induction
method has the advantage that allows us to use several splitting criteria. During
the adaptive process each criterion will gain or lose tmportance according with its
performances.

Several function approximation methods including artificial neural networks and
linear methods, which are well suited for reinforcement learning, can be used to define
the function f. In our tests, f : R — RF was defined by using the tile coding
method ([9]) with k the number of used layers of tiles. Finally, we should point
that the usage of an approximation for Q* has another advantage: knowledge can be
transferred between similar (s,a) pairs. Consequently, the newly encountered (s, a)
pairs can be evaluated based on the old ones.

3. Conclusion

The paper proposes a new method based on reinforcement learning to adaptively
build decision trees. The adaptive capabilities of the reinforcement learning provide
us the following desired features. Several statistical tests can be used to asses the
classification capabilities of the attributes. The method will learn which of them are
the most suitable for the current problem. Also, any other methods to represent
partitions over the set of examples and constraints over examples can be used if they
allow us to have sufficient capabilities to discriminate between the various (partition,
constraint) pairs. The method can make use of previously learned knowledge even
when the training set and the target function are changing over time. Due to its
permanent exploration capacities, reinforcement learning is able to detect the changes
in the characteristics of the training set and target function.

References

[1] S. L. Lim, S. L. Loh and S. L. Shih, A comparison of prediction accuracy, complexity and
training time of thirty-three old and new classification algorithms, Machine Learning, 40, 2000,
pp. 203-228.

[2] S. L. Loh and S. L. Shih, Families of splitting criteria for classification trees, Statist. Comput.,
9, 1999, pp. 309-315.

[3] T. Loh and T. Shih, Split selection methods for classification trees, Statistica Sinica, 7, 1997,
pp. 815-840.

[4] Tom M. Mitchell, Machine Learning, McGraw Hill, 1997

(5] J.R. Quinlan, Induction of decision trees, Machine Learning, 1(1), 1986, pp. 81-106.

[6] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA,
1993

[7] Larry D. Pyeatt, Reinforcement Learning with Decision Trees, Applied Informatics, AI 2003,
Innsbruck, Austria, Acta Press, 2003.

[8] Lior Rokach and Oded Maimon, Top-Down Induction of Decision Trees Classifiers - A Survey,

IEEE Transactions on Systems, Man and Cybernetics, 35(4), 2005, pp. 476-487.

Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, A Bradford

Book, The MIT Press, Cambridge, Massachusetts London, England, 1998

=

78 MIRCEA PREDA AND ANA-MARIA MIREA

(Mircea Preda) UNIVERSITY OF CRAIOVA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
DEPARTMENT OF COMPUTER SCIENCE 13 ALEXANDRU IOAN CUZA STREET, CRAIOVA, 200585,
RoMANIA

E-mail address: mpreda@acm.org

(Ana-Maria Mirea) UNIVERSITY OF CRAIOVA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
DEPARTMENT OF COMPUTER SCIENCE 13 ALEXANDRU IOAN CUZA STREET, CRAIOVA, 200585,
RoMANIA

E-mail address: ammirea®@acm.org

