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Some categorical properties of Hilbert algebras
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Abstract. We show that the category of Hilbert algebras is complete. We also show that it
has equalizers, coequalizers and kernel pairs. Coproducts of Hilbert algebras are characterized
and finally it is proved that the category of Hilbert algebras is cocomplete.
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1. Introduction

The concept of Hilbert algebras was introduced in the 50-ties by L. Henkin ([7])
and T. Skolem for investigations in intuitionistic and other non-clasical logics, as
an algebraic counterpart of Hilbert’s positive implicative propositional calculus ([6]).
Hilbert algebras were intensively studied by A. Diego ([5]) and this theory was further
developed by D. Busneag ([2], [3]).

Among category theoretic constructs, limits and colimits are ones of the fundamen-
tal importance. We will prove that the category of Hilbert algebras is both complete
and cocomplete. Firstly, we will show that in the category of Hilbert algebras there
are equalizers and coequalizers (section 3). The existence of direct products is ob-
vious and in the next section we shall prove the dual: the existence of coproducts.
Finally, combining these results with a theorem from [8], we obtain the completeness
and cocompleteness of the category of Hilbert algebras.

We will follow standard definitions. Our categorical concepts will be those of
standard texts ([1], [3], [8]) and are included in the following section.

2. Preliminaries

In this section, we include some general categorical concepts. For the following
notions we refer to [3] and [8].

Let C be a category and (Mi)i∈I a family of objects from C.

Definition 2.1. The direct product of the family (Mi)i∈I is a pair (P, (pi))i∈I where
P ∈ C and (pi)i∈I is a family of morphisms in C, pi : P → Mi such that for every
other pair (P ′, (p′i))i∈I composed by an object P ′ ∈ C and a family of morphisms
(p′i)i∈I , p′i : P ′ → Mi, there is an unique morphism u : P ′ → P such that pi ◦ u = p′i,
for every i ∈ I.
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Definition 2.2. The direct coproduct of the family (Mi)i∈I is a pair (S, (αi))i∈I

where P ∈ C and (αi)i∈I is a family of morphisms in C, αi : Mi → S such that for
every other pair (S′, (α′

i))i∈I composed by an object P ′ ∈ C and a family of morphisms
(α′

i)i∈I , α′
i : Mi → S′, there is an unique morphism u : S → S′ such that u ◦αi = α′

i,
for every i ∈ I.

By a couple of morphisms (f, g) in C, we understand two morphisms f, g : A → B,
where A, B are objects in C.

Definition 2.3. A pair (K, i) with K ∈ C and i : K → A a morphism will be called
the equalizer of the couple (f, g) if f ◦ i = g ◦ i and for every other pair (K ′, i′)
with K ′ ∈ C and i′ : K ′ → A with f ◦ i′ = g ◦ i′, there exists an unique morphism
u : K ′ → K such that i′ = i ◦ u. In this case we note (K, i) = Ker(f, g).

Definition 2.4. A pair (P, p) with P ∈ C and p : B → P a morphism will be called
the coequalizer of the couple (f, g) if p ◦ f = p ◦ g and for every other pair (P ′, p′)
with P ′ ∈ C and p′ : B → P ′ with p′ ◦ f = p′ ◦ g, there exists an unique morphism
u : P → P ′ such that p′ = u ◦ p. In this case we note (P, p) = Coker(f, g).

We will say that the category C has products (coproducts) if there exists the direct
product (coproduct) of any family of objects from C. Also we will say that C has
equalizers (coequalizers) if there exists the equalizer (coequalizer) for any couple of
morphisms in C.

For the notions of monomorphism and epimorphism we refer also to [1] and [3].
Let f : A → B be a morphism in C. f is said to be a monomorphism if for any C ∈ C
and every two morphisms α, β : C → A such that f ◦α = f ◦β, then α = β. Similarly,
f is called an epimorphism if for any C ∈ C and every two morphisms α, β : B → C
such that α ◦ f = β ◦ f , then α = β.

Remark 2.1. It is easy to prove that if (K, i) = Ker(f, g), then i is a monomorphism
and if (P, p) = Coker(f, g), then p is an epimorphism.

Let f : A → B a morphism in C. We refer to f as an equalizer if there exists a
couple of morphisms (α, β), α, β : B → C, such that (A, f) = Ker(α, β). f will be
called a coequalizer if it exists a couple of morphisms (α, β), α, β : C → A, such that
(B, f) = Coker(α, β).

Remark 2.2. Following Remark 2.1, every equalizer in C is a monomorphism and
every coequalizer is an epimorphism.

Definition 2.5. ([5], [6]) A Hilbert algebra is an algebra (A,→, 1) of type (2, 0) such
that the following axioms are verified for every x, y, z ∈ A:
(a1) x → (y → x) = 1;
(a2) (x → (y → z)) → ((x → y) → (x → z)) = 1;
(a3) If x → y = y → x = 1, then x = y.

For examples of Hilbert algebras see [2]-[5]. In this paper, we will note with H
the category of Hilbert algebras. In [5] it is proved that H has direct products and
it is equational. Then every monomorphism in H will be injective (see [1], p.31),
hence every equalizer will be an injective morphism. The existence of equalizers in H
will be proved in section 2. Using some results from [4], we will offer an example of
monomorphism which is not an equalizer.

For the case of epimorphisms, by Remark 2.2, every coequalizer is an epimorphism.
Although in H not every epimorphism is surjective (see [4]), we will see that every
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coequalizer is surjective. Conversely, every surjective morphism will be a coequalizer
and H will have coequalizers.

An important notion that will be used regarding Hilbert algebras is the notion of
deductive system ([5]). Let A be a Hilbert algebra. A nonempty subset D of A is
called a deductive system if 1 ∈ D and for every x, y ∈ A such that x, x → y ∈ D,
we have y ∈ D. The importance of deductive systems results from the fact that the
congruences of Hilbert algebras can be given in terms of deductive systems (see [3],
p, 183). If D is a deductive system of the Hilbert algebra A, then the set

Φ(D) = {(x, y) ∈ A × A : x → y, y → x ∈ D} is a congruence of A. We note with
A/D the quotient algebra A/D = A/Φ(D) = {[x]D : x ∈ A}, where for every x ∈ A,
[x]Φ(D) = [x]D = {y ∈ A : x → y, y → x ∈ D} is the equivalence class of x relative to
Φ(D).

A particular case of deductive system is the kernel of a morphism: if f : A → B is
a morphism of Hilbert algebras, then the set Ker(f) = {x ∈ A : f(x) = 1} is called
the kernel of f and it is a deductive system in A.

3. Equalizers and coequalizers in the category H of Hilbert algebras

We are starting this section with our first result:

Theorem 3.1. The category H has equalizers.

Proof. Let (f, g) a pair of morphism in H, f, g : A → B. Then the nonempty set
K = {x ∈ A : f(x) = g(x)} (1 ∈ K) is a subalgebra of A and if we consider the
embedding i : K → A, we have f ◦ i = g ◦ i. We prove that (K, i) = Ker(f, g).

Let K ′ be other Hilbert algebra and a morphism i′ : K ′ → A such that f ◦i′ = g◦i′.
We define u : K ′ → K, u(x) = i′(x), for all x ∈ K ′. u is well defined since from
f ◦ i′ = g ◦ i′ we have i′(x) ∈ K for every x ∈ K ′. It is clearly that u is a morphism
and i ◦ u = i′.

To prove the uniqueness of u, let u′ : K ′ → K be other morphism with i ◦ u′ = i′.
Then i ◦ u′ = i′ = i ◦ u and since i is injective and hence a monomorphism, we obtain
u = u′. �

Proposition 3.1. In H, every equalizer is injective (see Remark 2.2).

Example 3.1. In H, monomorphisms and injective morphisms coincide and by the
above proposition, every equalizer is injective. The converse of this result is not always
true. In [4] it is proved that the category H is a category with proper epic subalgebras
(this means that there exists epimorphisms which are not surjective functions). The
epimorphisms which are considered in that paper are also monomorphism. We are
considering the following morphism of Hilbert algebras which by a theorem from [4]
will be both an epimorphism and a monomorphism, but will not be surjective. We will
prove that such morphism can not be an equalizer for a couple of morphisms.

We are considering the two Hilbert algebras A = {0, a, b, 1} and HA = {0, c, a, b, 1}
with the implication from the following tables:
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→ 0 a b 1
0 1 1 1 1
a 0 1 b 1
b 0 a 1 1
1 0 a b 1

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

The system (A, φA, HA) will be the free Hertz extension of A (see [4]), where
φA : A → HA is the following morphism of Hilbert algebras:
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Then φA is a monomorphism, an epimorphism but not surjective. We prove that φA

can not be an equalizer. Suppose that (A, φA) = Ker(α, β), where α, β : HA → C are
two morphisms. We should have α ◦ φA = β ◦ φA. Since φA is an epimorphism, we
obtain α = β. Also, for every other pair (K, i), where i : K → HA is a morphism
with α◦ i = β ◦ i, we should have an unique morphism u : K → A such that φA ◦u = i.

We consider K = HA and i : K → HA the inclusion. There will be no morphism
u such that φA ◦ u = i, since the set i(K) has 5 elements and the set (φA ◦ u)(K) can
not have more than 4 elements.

Theorem 3.2. The category H has coequalizers.

Proof. Let f, g : A → B a couple of morphism in H. We consider the set S =
{(f(x), g(x) : x ∈ A)} ⊆ B × B and the smallest congruence R on B which contains
S, R =

⋂
θ∈Con(B),S⊆θ

θ. Let be p : B → B/R the canonical surjection. Then from

(f(x), g(x)) ∈ R, we obtain [f(x)]R = [g(x)]R for every x ∈ A. This means that
p ◦ f = p ◦ g. We prove that (B/R, p) = Coker(f, g).

Let C be a Hilbert algebra and a morphism p′ : B → C such that p′ ◦ f = p′ ◦ g.
Let R1 = {(y, y′) ∈ B × B : p′(y) = p′(y′)} = {(y, y′) ∈ B × B) : y → y′, y′ →
y ∈ Ker(p′)}, where Ker(p′) = {y ∈ B : p′(y) = 1}. Then R1 is the congurence
of B generated by the deductive system Ker(p′). Since for every x ∈ A we have
p′(f(x)) = p′(g(x)), we obtain (f(x), g(x)) ∈ R1. This means that S ⊆ R1. Then
R ⊆ R1. We can define now u : B/R → C, with u([y]R) = p′(y). Then u is well
defined because for [y1]R = [y2]R, we have (y1, y2) ∈ R ⊆ R1 ⇒ p′(y1) = p′(y2).
Clearly u is a morphism and u ◦ p = p′.

To prove the uniqueness of u, let u′ : B → C be other morphism such that u′◦p = p′.
Then u′ ◦ p = u ◦ p and since p is surjective, hence an epimorphism, we obtain
u = u′. �
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To obtain some useful results regarding coequalizers, we will need the following
notion.

Definition 3.1. ([8], p.53) Let C be a category and f : A → B a morphism in C. A
system (K; p1, p2) formed by an object K from C and two morphisms p1, p2 : K → A
is said to form a kernel pair for f if f ◦p1 = f ◦p2 and for any other system (Q; q1, q2)
with morphisms q1, q2 : Q → A such that f ◦ q1 = f ◦ q2, there exists an unique
morphism u : Q → K such that p1 ◦u = q1 and p2 ◦u = q2. A category in which every
morphism has a kernel pair, is called a category with kenrel pairs.

Q

q2

��

q1

��
u

��
K

p2

��

p1
�� A

f

��
A

f �� B

In [8](p.50-53), can be found results regarding some special limits and colimits in a
category, limits as kernel pairs. The existence of kernel pairs in H can be deduced from
there: in a category with finite products, the existence of kernels is equivalent with the
existence of fibred products (proposition 8.6), and a category with fibred products is a
category with kernel pairs. Since in H, we have kernels, we deduce that H has kernel
pairs (see the following corollary for how the kernel pair can be constructed).

Corollary 3.1. The category H has kernel pairs.

Proof. Since the existence of kernel pairs has already been explained, we will offer just
a short sketch of the proof, we show how the kernel pair of a morphism f : A → B
can be constructed.

We consider K = {(x1, x2) ∈ A × A : f(x1) = f(x2)} the subalgebra of A × A
and the canonical projections p1, p2 : K → A, p1(x1, x2) = x1 and p2(x1, x2) = x2

for every (x1, x2) ∈ K. Clearly f ◦ p1 = f ◦ p2. It is easy to prove that (K; p1, p2)
becomes e kernel pair for f . �
Remark 3.1. Let f : A → B be a coequalizer in H. Then f is the coequalizer of its
kernel pair.

Proof. Indeed, let be α, β : C → A such that f = Coker(α, β) and (K; p1, p2) the
kernel pair of f . Since f ◦ p1 = f ◦ p2, it is necessary to prove that for any other
morphism f ′ : A → D such that f ′ ◦ p1 = f ′ ◦ p2, there exists an unique morphism
u : B → D with u ◦ f = f ′.

C

v
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β
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From f ◦ α = f ◦ β and the fact that (K; p1, p2) is the kernel pair of f , we deduce
the existence of an unique morphism v : C → K such that α = p1 ◦ v and β = p2 ◦ v.
Since f ′ ◦ p1 = f ′ ◦ p2, we deduce that f ′ ◦α = f ′ ◦ β, f being the equalizer of (α, β),
we obtain the existence of an unique u : B → D with f ′ = u ◦ f . �

The following two results will help us to show that in H surjective morphisms and
coequalizers coincide.
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Proposition 3.2. Let f : A → B be a surjective morphism in H. Then f is a
coequalizer.

Proof. We show that f is the coequalizer of its kernel pair (K; p1, p2). Let f ′ : A → C
a morphism such that f ′ ◦ p1 = f ′ ◦ p2. Since f is surjective, for every y ∈ B, there
exists an element x ∈ A such that f(x) = y. We define u : B → C, u(y) = f ′(x).
u is well defined because from f(x1) = f(x2) = y, we have (x1, x2) ∈ K, then
(f ′◦p1)(x1, x2) = (f ′◦p2)(x1, x2), so u(y) = f ′(x1) = f ′(x2). Clearly u is a morphism
and u ◦ f = f ′. To prove its uniqueness, let be u′ : B → C with u′ ◦ f = f ′. Then
we have u′ ◦ f = u ◦ f ; f being surjective, it becomes an epimorphism, so we obtain
u = u′. �

Lemma 3.1. In H, we consider a surjective morphism f : A → B and morphism
g : A → C such that Ker(f) ⊆ Ker(g). Then there exists an unique morphism
h : B → C sucht that h ◦ f = g.

Proof. Let be (K; p1, p2) the kernel pair of f . Since f surjective, by Proposition 3.2,
we deduce that f is a coequalizer. Then, by Remark 3.1, f = Coker(p1, p2).

Let (x1, x2) ∈ K. Then x1 → x2, x2 → x1 ∈ Ker(f) ⊆ Ker(g), so g(x1) =
g(x2) ⇒ g ◦ p1 = g ◦ p2. Then there exists an unique morphism h : B → C such that
h ◦ f = g. �

Proposition 3.3. Let f : A → B be a coequalizer in H. Then f is surjective.

Proof. By Remark 3.1, f = Coker(p1, p2), where (K; p1, p2) is the kernel pair of f .
By Corollary 1, K = {(x1, x2) ∈ A × A : f(x1) = f(x2)} = {(x1, x2) ∈ A × A :
x1 → x2, x2 → x1 ∈ Ker(f)}. Then K will be the congruence of A generated by the
deductive system Ker(f).

Let p : A → A/K the canonical surjection. Since for every (x1, x2) ∈ K, (p ◦
p1)(x1, x2) = [x1]K = [x2]K = (p ◦ p2)(x1, x2), we obtain p ◦ p1 = p ◦ p2 and since
f = Coker(p1, p2), there will exist an unique morphism u : B → A/K such that
u ◦ f = p.

K
p1 ��
p2

�� A
p

���
��

��
��

�
f �� B

u
A/K

v

��

We observe that for every x ∈ Ker(p) ⇒ p(x) = [1]K . Then (x, 1) ∈ K, so
x ∈ Ker(f). This means that Ker(p) ⊆ Ker(f). By Lemma 3.1, we will obtain an
unique morphism v : A/K → B with v ◦ p = f .

We have the following equalities: (u ◦ v) ◦ p = u ◦ (v ◦ p) = u ◦ f = p = 1A/K
◦ p

and since p is surjective and hence an epimorphism, we obtain u ◦ v = 1A/K
. Also

(v ◦u)◦f = v ◦ (u◦f) = v ◦p = f = 1B ◦f . Since f is a coequalizer, by Remark 2.2, f
is an epimorphism, hence v ◦u = 1B. This way, u, v are isomorphism, one the inverse
of the other. f will be surjective since f = v ◦ p and both v and p are surjective. �

Corollary 3.2. In H, surjective morphisms and coequalizers coincide.

Example 3.2. The morphism φA considered in Example 3.1 is an example of an
epimorphism (not a surjective one) which is not an equalizer. So in H, not every
epimorphism is a coequalizer.
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4. Coproducts of Hilbert algebras

In this section we will prove that the category H of Hilbert algebras has coproducts.
In this scope, we will need the following notions and for more details we refer to [1]
and [3].

Let C be a category of algebras of the same type.

Definition 4.1. ([1], p.7) Let A ∈ C and S a subset of A. If there exists a smallest
subalgebra of A that contains S, then it is called the subalgebra of A generated by S
and is denoted by [S] ([S] exists whenever S �= φ).

Lemma 4.1. ([1], p.8) Let A, B ∈ C, S ⊆ A and two morphisms f, g : [S] → B such
that f/S = g/S. Then f = g.

Definition 4.2. ([1], p.14) A ∈ C is said to be free over a class K of algebras of C
if there exists a subset X ⊆ A such that [X ] = A and for any other B ∈ K and any
function f : X → B, there exists a morphism f ′ : A → B with f ′|X = f . In this
case, X is said to be a free generating set for A. By Lemma 4.1, we remark that f ′

is uniquely determined.

By a Theorem of Birkhoff (see [1], Th.4, p.19), the existence of free algebras is
assured in an equational class. We are starting the proof of existence of the coprod-
ucts in the category of Hilbert algebras, by proving the existence of coproducts of
free Hilbert algebras. The proof follows the steps from [9], where the existence of
coproducts of BCK algebras is proved. For a set X , we will note with F (X) a free
Hilbert algebra over X .

Let (F (Si))i∈I a family of free Hilbert algebras and the injective functions ai :
Si → ∑

Si, βi : Si → F (Si) and β :
∑

Si → F (
∑

Si), where by
∑

Si we have
note the coproduct of the family of sets (Si)i∈I . For every i ∈ I, since F (Si) is a
free algebra, there will exist an unique morphism ni : F (Si) → F (

∑
Si) such that

ni|Si = β ◦ ai ⇔ ni ◦ βi = β ◦ ai.

Si

βi

��

ai ��
β◦ai

��

∑
Si

β

��
F (Si)

ni ��			 F (
∑

Si)

We must remark that ni are embeddings, hence injective, and F (Si) is naturally
identified with a subalgebra of F (

∑
Si) generated by Si × {i}.

Proposition 4.1. (F (
∑

Si), (ni)i∈I) is the coproduct of the family of free Hilbert
algebras (F (Si))i∈I .

Proof. We consider other pair (A, (fi)i∈I), where A is a Hilbert algebra and fi :
F (Si) → A morphisms. We prove the existence of an unique morphism f : F (

∑
Si) →

A such that for every i ∈ I, f ◦ ni = fi.

Si
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ai �� ∑Si

β

�� γ
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fi
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Since
∑

Si is the coproduct of (Si)i∈I , there exists an unique function γ :
∑

Si → A
such that γ◦ai = fi◦βi, for every i ∈ I. Then by the freeness of F (

∑
Si), there will be

an unique morphism f : F (
∑

Si) → A with the propery that f |∑ Si
= γ ⇔ f ◦β = γ.

By the following equalities f ◦ (ni ◦ βi) = f ◦ (β ◦ ai) = (f ◦ β) ◦ ai = γ ◦ ai = fi ◦ βi,
we obtain (f ◦ ni) ◦ βi = fi ◦ βi and this means that both f ◦ ni, fi : F (Si) → A are
equal on Si, (f ◦ ni)|Si = fi|Si . So, by Lemma 4.1, f ◦ ni = fi.

To prove the uniqueness of f , let be other morphism g : F (
∑

Si) → A, such that
for every i ∈ I, g ◦ni = fi. Then f ◦ (ni ◦βi) = g ◦ (ni ◦βi) ⇒ f ◦ (β ◦ai) = g ◦ (β ◦ai).
So γ ◦ai = (f ◦β)◦ai = (g◦β)◦ai. But

∑
Si being the coproduct of the family of sets

(Si)i∈I , there will be an unique function u :
∑

Si → A with u ◦ ai = γ ◦ ai. We must
have u = f ◦ β = g ◦ β. Combining this with f ◦ β = γ, we obtain γ = f ◦ β = g ◦ β,
and by the freness of F (

∑
Si), we have f=g. �

Using the above proposition, we will construct now the coproduct of a family of
Hilbert algebras (Ai)i∈I . We consider a disjoint family of sets (Si)i∈I such that
|Si| > |Ai|. Then, by the freeness of F (Si), there will exist a family of surjective
morphisms (fi)i∈I , fi : F (Si) → Ai. We consider the deductive system from F (Si),
Ci = f−1

i (1). Since F (Si) can be naturally considered as a subalgebra of F (
∑

Si)
generated by Si, we can define the deductive system C generated by

⋃
i∈I Ci in

F (
∑

Si).

Lemma 4.2. C ∩ F (Si) = Ci, for every i ∈ I.

Proof. For every i, j ∈ I, we consider the morphism fji : F (Sj) → Ai defined as

follows: for every x ∈ F (Sj), fji(x) =
{

fi(x), if j = i
1, if j �= i .

F (Sj)
nj ��

fji

���
��

��
��

�
F (

∑
Sj)

hi��
Ai

Since F (
∑

Sj) is the coproduct of (F (Sj))j∈I , there will exist an unique morphism
hi : F (

∑
Sj) → Ai such that fji = hi ◦ nj. Using the fact that F (Sj) can be

considered as a subalgebra of F (
∑

Sj) and nj as embedding, we have: (fji)−1(1) =
(hi ◦ nj)−1(1) = h−1

i (1) ∩ F (Sj). This means that for i = j we have h−1
i ∩ F (Si) =

(fii)−1(1) = f−1
i (1) = Ci and for i �= j, h−1

i ∩ F (Sj) = (fji)−1(1) = F (Sj).
Next, we prove that for every i, j ∈ I, Cj ⊆ h−1

i (i). Indeed, if i = j, then
Ci = F (Si) ∩ h−1

i (i) ⊆ h−1
i (i), and if i �= j, from F (Si) = F (Si) ∩ h−1

j (i), we obtain
Ci = F (Si) ∩ h−1

i (i) = F (Si) ∩ h−1
i (i) ∩ h−1

j (i) ⊆ h−1
j (1).

Finally,
⋃

Cj ⊆ ⋂
h−1

i (1). Then C ⊂ ⋂
h−1

i (1) ⇒ C ∩F (Si) ⊆
⋂

h−1
i (1)∩F (Si) ⊆

Ci. Conversely Ci ⊆ F (Si) and Ci ⊆
⋃

Cj ⊆ C, so Ci ⊆ C ∩ F (Si).
�

Let be Θ the congruence generated by the deductive system C.

Lemma 4.3. Every Ai is isomorphicaly embeddable in F (
∑

Si)/Θ such that mi◦fi =
p◦ni, where mi is the embedding and p is the natural surjection (see the diagram from
Theorem 4.1).

Proof. We note [F (Si)]Θ = {[a]Θ : a ∈ F (Si)} = (p ◦ ni)(F (Si)). From the above
lemma, Ker(fi) = f−1

i (1) = Ci = C ∩ F (Si) and since fi is surjective, we obtain
F (Si)/Ker(fi) ≈ Im(fi) = Ai.
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But [F (Si)]Θ = (p◦ni)(F (Si)) ≈ F (Si)/Ker(p◦ni) = F (Si)/Ker(fi), because Ker(p◦
ni) = {a ∈ F (Si) : a ∈ C} = C ∩ F (Si) = Ker(fi).

We deduce that A ≈ [F (Si)]Θ. So we can define mi : Ai → F (
∑

Si)/Θ, which is
an isomorphism from Ai onto [F (Si)]Θ such that mi ◦ fi = p ◦ ni.

�

Lemma 4.4. For every i �= j, mi(Ai) ∩ mj(Aj) = {1}.
Proof. Let a ∈ F (Si), b ∈ F (Sj), with i �= j. From Lemma 4.2, we have C ⊆⋂

h−1
i (1) =

⋂
Ker(hi). Then Θ ⊆ Φ(Ker(hi)). So for every (a, b) ∈ Θ, we have

(a, b) ∈ Φ(Ker(hi)). This means hi(a) = hi(b) = (hi ◦ nj)(b) = fji(b) = 1 ⇒ (a, 1) ∈
Φ(Ker(hi)) and since hi ◦ ni = fi, we obtain (a, 1) ∈ Φ(Ker(fi)) ⇒ a ∈ Ci ⊆ C =
[1]Θ. By the same way b ∈ [1]Θ and since mi(Ai) = [F (Si)]Θ, mj(Aj) = [F (Sj)]Θ, we
obtain mi(Ai) ∩ mj(Aj) = {1}.

�

Theorem 4.1. (F (
∑

Si)/Θ, (mi)i∈I) is the coproduct of the family of Hilbert algebras
(Ai)i∈I .

Proof. We have to prove that for every other pair (B, (gi)i∈I) where gi : Ai → B are
morphisms of Hilbert algebras, there exists an unique morphism g : F (

∑
Si)/Θ → B

such that g ◦ mi = gi, for every i ∈ I.

F (Si)

fi

��

ni �� F (
∑

Si)

p

��
h

��

Ai

gi

��
mi �� F (

∑
Si)/Θ

f

���
�
�

g

���
�
�

B

Since F (
∑

Si) is the coproduct of the family (F (Si))i∈I , then there exists an
unique morphism h : F (

∑
Si) → B, such that h ◦ ni = gi ◦ fi for every i ∈ I.

Then Ci = f−1
i (1) ⊆ (gi ◦ fi)−1(1) = (h ◦ n1)−1(1) = h−1(1) ∩ F (Si) ⊆ h−1(1), so⋃

Ci ⊆ h−1(1), then C ⊆ h−1(1). This means that Φ(Ker(p)) = Θ ⊆ Φ(Ker(h)).
We obtain Ker(p) ⊆ Ker(h) and by a homomorphism theorem (see [1], p.10) there
exists an unique morphism g : F (

∑
Si)/Θ → B such that g ◦ p = h. We have the

following equalities: g ◦mi ◦ fi = g ◦ p ◦ni = h ◦ni = gi ◦ fi, which using the fact that
fi surjective, leeds to g ◦ mi = g.

To prove the uniqueness of g, we consider other morphism k : F (
∑

Si)/Θ → B
with k ◦ mi = gi. Then k ◦ mi ◦ fi = gi ◦ fi ⇒ k ◦ p ◦ ni = gi ◦ fi = h ◦ ni and
since F (

∑
Si) is the coproduct of (F (Si))i∈I , we obtain k ◦ p = h = g ◦ p. p being

surjective, we obtain k = g. �

5. Conclusions

Since H has equalizers and products, by a result from [8](Th.9.1), H will have also
limits. In the same time, H having coequalizers and coproducts, it will have also
colimits (see [8],(Th.9.2)), so H is both complete and cocomplete. This means that
in H we will have some particular cases of limits as fibred products and coproducts.

Although we have fibred products and coproducts and zero objects in H, H is
not an abelian category because by Examples 3.1 and 3.2, not every monomorphism
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and not every epimorphism is normal (a monomorphism is called normal if it is an
equalizer and an epimorphism is called normal if it is a coequalizer).

We remark that equational subcategories of Hilbert algebras will be both complete
and cocomplete (our constructions preserve Hilbert identities, so the constructions
remain similar for Hilbert algebras with infimim, Hilbert algebras with supremum).
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