
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 36(1), 2009, Pages 105–111
ISSN: 1223-6934

Solvability of a mixed variational problem

Raluca Ciurcea and Andaluzia Matei

Abstract. We consider a variational problem arising from contact mechanics, that consists
into a system of two variational inequalities involving Lagrange multipliers. Using elements
of convex analysis, we prove the existence of at least one solution. Moreover, the uniqueness
and the stability are discussed.
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1. Introduction

The present paper focuses on the solvability of the following abstract variational
problem.

Problem 1. For given f, h ∈ X, find u ∈ X and λ ∈ Λ such that

a(u, v − u) + φ(v) − φ(u) + b(v − u, λ) ≥ (f, v − u)X ∀v ∈ X, (1)
b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ. (2)

Everywhere in this paper (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) denote two
Hilbert spaces.

Let us assume that

a(·, ·) : X × X → R, is a symmetric bilinear form such that
there exists Ma > 0 : |a(u, v)| ≤ Ma‖u‖X‖v‖X , ∀u, v ∈ X,

there exists ma > 0 : a(v, v) ≥ ma ‖v‖2
X , ∀v ∈ X,

⎫⎬
⎭ (3)

φ : X → R+ is a convex lower semicontinuous functional such that
φ(0X) = 0,

}
(4)

b(·, ·) : X × Y → R is a bilinear form such that
there exists Mb > 0 : |b(v, μ)| ≤ Mb‖v‖X‖μ‖Y , ∀v ∈ X, μ ∈ Y,

there exists α > 0 : inf
μ∈Y,μ�=0Y

sup
v∈X,v �=0X

b(v, μ)
‖v‖X‖μ‖Y

≥ α,

⎫⎪⎪⎬
⎪⎪⎭

(5)

and
Λ is an unbounded, closed, convex subset of Y that contains 0Y . (6)

If b ≡ 0, Problem 1 reduces to a variational inequality of the second kind, as follows.

Problem 2. Find u ∈ X such that

a(u, v − u) + φ(v) − φ(u) ≥ (f, v − u)X ∀v ∈ X.
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The proof of the existence, uniqueness and stability of the solution of Problem 2,
can be found in [9]. Since the form a is symmetric, we recall that the unique solution
of Problem 2, u ∈ X, verifies

inf
v∈X

J(v) = J(u),

where

J : X → R J(v) =
1
2
a(v, v) + φ(v) − (f, v)X , ∀v ∈ X.

If φ ≡ 0, Problem 1 becomes equivalent with

Problem 3. For given f, h ∈ X, find u ∈ X and λ ∈ Λ such that

a(u, v) + b(v, λ) = (f, v)X ∀v ∈ X,

b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ.

Such problems are called in the literature mixed variational problems. For their
solvability we send the reader to [4]. The interest for this kind of problems arises
from contact mechanics; see for example [4, 5, 6, 7], where the weak formulations of
the contact models are written via mixed variational problems.

In the present paper, we prove that Problem 1 has at least one solution. We also
discuss the uniqueness and the stability of the solution.

2. Preliminaries

For the convenience of the reader, we recall in this section some elements of convex
analysis that will be used in this paper. To start, we recall the definition of the saddle
point.

Definition 2.1. Let A and B be two non-empty sets. A pair (u, λ) ∈ A × B is said
to be a saddle point of a functional L : A × B → R if and only if

L(u, μ) ≤ L(u, λ) ≤ L(v, λ), ∀v ∈ A, μ ∈ B.

The following existence result will be used in our paper.

Theorem 2.1. Let (X, (·, ·), ‖ · ‖X), (Y, (·, ·), ‖ · ‖Y ) be two Hilbert spaces and let
A ⊆ X, B ⊆ Y be non-empty, closed, convex subsets. Assume that a real functional
L : A × B → R satisfies the following conditions

v → L(v, μ) is convex and lower semi-continuous ∀μ ∈ B, (7)
μ → L(v, μ) is concave and upper semi-continuous ∀v ∈ A. (8)

Moreover,

A is bounded or lim
‖v‖X→∞,v∈A

L(v, μ0) = ∞ for some μ0 ∈ B (9)

and
B is bounded or lim

‖μ‖Y →∞,μ∈B
inf
v∈A

L(v, μ) = −∞. (10)

Then, the functional L has at least one saddle point.

For more details on the saddle point theory and its applications, we refer to [1, 2,
3, 4].

Another result that will be needed below is the following one.
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Proposition 2.1. Assume that f : X → R is a Gâteaux differentiable functional.
Then, f is convex if and only if

f(v) ≥ f(u) + (∇f(u), v − u)X ∀u, v ∈ X.

The proof of Proposition 2.1 can be found in [8].

3. Well-posedness of Problem 1

Everywhere in this section we assume (3)-(6). Our approach of Problem 1 is based
on the saddle point theory, applied to the following functional,

L : X × Λ → R, L(v, μ) =
1
2
a(v, v) + φ(v) + b(v − h, μ) − (f, v)X

∀v ∈ X, μ ∈ Λ. (11)

We will prove an auxiliary lemma.

Lemma 3.1. Assuming that Problem 1 has a solution (u, λ) ∈ X × Λ, then this
solution is a saddle point of the functional L. Conversely, assuming that the functional
L has a saddle point (u, λ) ∈ X × Λ, then, this saddle point verifies Problem 1.

Proof. To start, by
b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ,

we obtain immediately
L(u, μ) ≤ L(u, λ) ∀μ ∈ Λ.

Moreover, using the definition of the functional L, we have

L(u, λ) − L(v, λ) =
1
2
a(u, u) + φ(u) + b(u, λ) − (f, u)X

− 1
2
a(v, v) − φ(v) − b(v, λ) + (f, v)X .

Thus, by

a(u, v − u) + φ(v) − φ(u) + b(v − u, λ) ≥ (f, v − u)X ∀v ∈ X,

we obtain

L(u, λ) − L(v, λ) ≤ 1
2
a(u, u) − 1

2
a(v, v) + a(u, v − u) = −1

2
a(u − v, u − v).

Therefore, for all v ∈ X, L(u, λ) ≤ L(v, λ).
Conversely, let us assume that (u, λ) ∈ X × Λ is a saddle point of the functional

L. It is straightforward to observe that

L(u, μ) ≤ L(u, λ) ∀μ ∈ Λ

implies
b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ.

Furthermore,
L(u, λ) ≤ L(w, λ) ∀w ∈ X

yields

1
2
a(u, u)− 1

2
a(w, w) + φ(u) − φ(w) + b(u − w, λ) + (f, w − u)X ≤ 0 ∀w ∈ X.
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Replacing w by u+t(v−u), with t > 0, we can write, taking into account the convexity
of the functional φ,

t a(u, v−u)+
t2

2
a(v−u, v−u)+ t (φ(v)−φ(u))+ t b(v−u, λ) ≥ t(f, v−u)X ∀v ∈ X.

Dividing by t and passing to the limit as t → 0, we are led to

a(u, v − u) + φ(v) − φ(u) + b(v − u, λ) ≥ (f, v − u)X ∀v ∈ X.

�

The main result is the following theorem.

Theorem 3.1. Assume (3)-(6). In addition, we assume that the functional φ is Lip-
schitz continuous, more precisely there exists Lφ > 0 such that

|φ(v) − φ(w)| ≤ Lφ‖v − w‖X ∀v, w ∈ X. (12)

Then, Problem 1 has at least one solution.

Proof. Let us prove that the functional L admits at least one saddle point (u, λ) ∈
X × Λ. Obviously, the map v → L(v, μ) is convex and lower semi-continuous for
every μ ∈ Λ. In addition, for every v ∈ X, the map μ → L(v, μ) is concave and upper
semi-continuous. On the other hand,

lim
‖v‖X→∞,v∈X

L(v, 0Y ) = ∞.

We next prove that
lim

‖μ‖Y →∞,μ∈Λ
inf
v∈X

L(v, μ) = −∞. (13)

Indeed, let μ be an arbitrary element in Λ and let uμ ∈ X be the unique solution of
the variational inequality of the second kind

a(uμ, v − uμ) + φ(v) − φ(uμ) ≥ (fμ, v − uμ)X , ∀v ∈ X, (14)

where fμ ∈ X is defined using Riesz’s representation theorem as follows,

(fμ, v)X := (f, v)X − b(v, μ) ∀v ∈ X.

Obviously,

inf
v∈X

L(v, μ) =
1
2
a(uμ, uμ) + φ(uμ) − (f, uμ)X + b(uμ, μ) − b(h, μ).

Let us put v = 0X in (14). Then, after summing with 1
2a(uμ, uμ), we deduce

1
2
a(uμ, uμ) − (f, uμ)X + φ(uμ) + b(uμ, μ) ≤ −ma

2
‖uμ‖2

X .

Therefore,
inf
v∈X

L(v, μ) ≤ −ma

2
‖uμ‖2

X − b(h, μ).

Due to the inf-sup property of the form b, we deduce that there exists α > 0 such
that

α‖μ‖Y ≤ sup
v∈X,v �=0X

b(v, μ)
‖v‖X

and, by (14), we get

α‖μ‖Y ≤ sup
v∈X,v �=0X

(f, v)X − a(uμ, v) + φ(uμ − v) − φ(uμ)
‖v‖X

≤ ‖f‖X +Ma‖uμ‖X +Lφ.
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Therefore, there exists c > 0 such that

‖μ‖2
Y ≤ c(‖f‖2

X + ‖uμ‖2
X + L2

φ).

Furthermore, there exists c̃ > 0 such that

inf
v∈X

L(v, μ) ≤ −c̃(‖μ‖2
Y − ‖f‖2

X − L2
φ) + Mb‖h‖X‖μ‖Y .

Since μ was arbitrarily fixed in Λ, by passing to the limit as ‖μ‖Y → ∞, we obtain
(13).

Consequently, based on Theorem 2.1, we deduce that the functional L has at least
one saddle point. Using Lemma 3.1 we deduce that Problem 1 has at least one
solution. �

If we assume that

φ is a Gâteaux differentiable functional, (15)

since ∂φ(u) = {∇φ(u)}, Problem 1 can be restated as follows: find u ∈ X and λ ∈ Λ
such that

a(u, v) + (∇φ(u), v)X + b(v, λ) = (f, v)X ∀v ∈ X,

b(u, μ − λ) ≤ b(h, μ − λ) ∀μ ∈ Λ.

Let us investigate the uniqueness of the solution.

Theorem 3.2. Assume (3)-(6), (12) and (15). Then, Problem 1 has a solution and
only one.

Proof. Let us consider (u1, λ1) and (u2, λ2), two solutions of Problem 1. We have

a(u1, v − u1) + φ(v) − φ(u1) + b(v − u1, λ1) ≥ (f, v − u1)X ∀v ∈ X, (16)

and

a(u2, v − u2) + φ(v) − φ(u2) + b(v − u2, λ2) ≥ (f, v − u2)X ∀v ∈ X. (17)

Taking v = u2 in (16) and v = u1 in (17), by summing, we get

a(u1 − u2, u2 − u1) + b(u1 − u2, λ2 − λ1) ≥ 0. (18)

Due to the fact that
b(u1 − u2, λ2 − λ1) ≤ 0,

taking into account (3), we deduce from (18) that u1 = u2.
Furthermore,

a(u, v) + (∇φ(u), v)X + b(v, λ) = (f, v)X ∀v ∈ X.

Thus,

b(v, λ1 − λ2) = −a(u1 − u2, v) − (∇φ(u1) −∇φ(u2), v)X ∀v ∈ X.

Since u1 = u2, by the inf-sup property of the form b, we deduce that

α‖λ1 − λ2‖Y ≤ 0,

and from this, we obtain λ1 = λ2. �

Let us establish a stability result.
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Theorem 3.3. Assume (3)-(6), (12) and (15). In addition, we assume that there
exists L∇φ > 0 such that

‖∇φ(v) −∇φ(w)‖X ≤ L∇φ‖v − w‖X ∀v, w ∈ X. (19)

Let (u1, λ1) ∈ X×Λ and (u2, λ2) ∈ X×Λ be the solutions of Problem 1 corresponding
respectively the to the data (f1, h1) ∈ X ×X and (f2, h2) ∈ X ×X. Then, there exists
C = C(α, Ma, ma, Mb, L∇φ) > 0, such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ C(‖f1 − f2‖X + ‖h1 − h2‖X). (20)

Proof. Obviously,

a(u1, v − u1) + φ(v) − φ(u1) + b(v − u1, λ1) ≥ (f1, v − u1)X ∀v ∈ X, (21)

and

a(u2, v − u2) + φ(v) − φ(u2) + b(v − u2, λ2) ≥ (f2, v − u2)X ∀v ∈ X. (22)

Let us take v = u2 in (21) and v = u1 in (22). By summing, we get

a(u1 − u2, u1 − u2) ≤ (f1 − f2, u1 − u2)X + b(u1 − u2, λ2 − λ1).

Notice that

b(u1 − u2, λ2 − λ1) ≤ b(h1 − h2, λ2 − λ1).

Thus, we can write

ma‖u1 − u2‖2
X ≤ ‖f1 − f2‖X‖u1 − u2‖X + Mb‖h1 − h2‖X‖λ1 − λ2‖Y .

On the other hand

a(u1, v) + (∇φ(u1), v)X + b(v, λ1) = (f1, v)X ∀v ∈ X

and
a(u2, v) + (∇φ(u2), v)X + b(v, λ2) = (f2, v)X ∀v ∈ X.

Therefore,

b(v, λ1 − λ2) = −a(u1 − u2, v) + (f1 − f2, v)X − (∇φ(u1) −∇φ(u2), v) ∀v ∈ X.

Consequently, for every v ∈ X, v �= 0X , taking into account (19),

b(v, λ1 − λ2)
‖v‖X

≤ Ma‖u1 − u2‖X + ‖f1 − f2‖X + L∇φ‖u1 − u2‖X .

By the inf-sup property of the form b, we deduce

α‖λ1 − λ2‖Y ≤ ‖f1 − f2‖X + (Ma + L∇φ)‖u1 − u2‖X .

Now, we can write the following inequalities,

ma‖u1 − u2‖2
X ≤ ‖f1 − f2‖2

X

2k1
+

k1‖u1 − u2‖2
X

2

+
M2

b ‖h1 − h2‖2
Y

2k2
+

k2‖λ1 − λ2‖2
Y

2
,

‖λ1 − λ2‖2
Y ≤ 2

α2
(‖f1 − f2‖2

X + (Ma + L∇φ)2‖u1 − u2‖2
X), (23)

where k1, k2 are strictly positive real constants. Let us choose k1 and k2 such that

ma − k1

2
− k2(Ma + L∇φ)2

α2
> 0.
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Consequently,

‖u1 − u2‖2
X ≤ 1

ma − k1
2 − k2(Ma+L∇φ)2

α2

(‖f1 − f2‖2
X

2k1
+

M2
b ‖h1 − h2‖2

Y

2k2

)

+
2k2

2maα2 − k1α2 − 2k2(Ma + L∇φ)2
‖f1 − f2‖2

X . (24)

By (23) and (24), we deduce that there exists C1 > 0 such that

‖λ1 − λ2‖2
Y ≤ C1(‖f1 − f2‖2

X + ‖h1 − h2‖2
X). (25)

Based on (24) and (25), we deduce (20).
�
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