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On the series of Kempner-Irwin type

Radu-Octavian Vı̂lceanu

Abstract. In 1914, Kempner proved that the series consisting of the inverses of natural
numbers which are free of the digit 9 is convergent. In 1916, Irwin considered the convergence
problem of the series containing the inverses of all numbers that contain a group of digits a
number of times. These types of series are still under the attention of many mathematicians
such as R. Baillie, T. Schmelzer, H. Behforooz, B. Farhi, etc. In this paper we will deal with
the problem of computing the sum of series of Kempner-Irwin type.
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1. Introduction

Let Xm be a string of m ≥ 0 digits. We denote by S− the set of all the positive
integers that do not contain Xm in their decimal representation, by S+ we denote
the set of all positive integers that contain Xm, and by S(p) the set of all positive
integers that contain Xm exactly p times. We will also make use of the set S(≤p), of
all positive integers that contain Xm no more than p times, and of the set S(≥p), of
all positive integers that contain Xm at least p times.

The Kempner type series are the series of one of the following form:

Ψ−
k;Xm

=
∑

s∈S−

1
sk

, (1)

Ψ+
k;Xm

=
∑

s∈S+

1
sk

, (2)

Ψ(p)
k;Xm

=
∑

s∈S(p)

1
sk

, (3)

Ψ(≤p)
k;Xm

=
∑

s∈S(≤p)

1
sk

, (4)

Ψ(≥p)
k;Xm

=
∑

s∈S(≥p)

1
sk

, for k ∈ N
∗, (5)

See [10], who considered the case where Xm = {9}.
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Notice that

Ψ−
k;Xm

= Ψ(≤0)
k;Xm

= Ψ(0)
k;Xm

;

Ψ(≤p)
k;Xm

=
p∑

i=1

Ψ(i)
k;Xm

;

Ψ+
k;Xm

=
∞∑

i=1

Ψ(i)
k;Xm

.

We may extend the notion of Kempner type series by considering a set X , of strings
of digits, and a set S, of numbers that meet different conditions, expressed in one of
the five forms above. The series

Ψk;X =
∑
s∈S

1
sk

, for k ∈ N
∗, (6)

are said to be of Irwin type.
The definitions above make sense for any numerical base b.
If m = 0 and k = 1, the series

Ψ−
1;X0

=
∞∑

s=1

1
s

(7)

is precisely the harmonic. This series is divergent because

∞∑
s=1

1
s

= 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9

+ ...

= 1 +
1
2

+
(

1
3

+
1
4

)
+
(

1
5

+
1
6

+
1
7

+
1
8

)
+ ...

> 1 +
1
2

+
(

1
4

+
1
4

)
+
(

1
8

+
1
8

+
1
8

+
1
8

)
+ ...

= 1 +
1
2

+
1
2

+
1
2

+ ... = ∞.

Euler noticed that the partial sums Hn of this series satisfy the relation

γ = lim
n→∞ (Hn − ln n) , (8)

where γ is the Euler-Mascheroni constant.
If m = 0 and k ≥ 2, the series

Ψ−
k;X0

=
∞∑

s=1

1
sk

(9)

is precisely the generalized harmonic series. It is absolutely convergent and the sum
of the series is the value ζ (k) , of Riemann’s function.

Since for k ≥ 2 the series (1)-(5) are sub-series of (9), they are also convergent. It
remains to consider the case k = 1.

In 1914, A. J. Kempner [10] showed that the series Ψ−
1;X1

=
∑

s∈S− 1/s and Ψ+
1;X1

=∑
s∈S+ 1/s are convergent. F. Irwin [8] has generalized in 1916 this result as follows:

Theorem 1.1. The series ∑
s∈S

1
s
, (10)
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where S represents the set of all natural numbers that have in their decimal repre-
sentation at most a9-times the digit 9, at most a8-times the digit 8 ... and at most
a0-times the digit 0, is convergent.

Later, H. Behforooz [5] proved the following result regarding the density of the
terms in harmonic subseries which generates convergence:

Theorem 1.2. Suppose that S is an infinite set of positive integers for which the
series

∑
s∈S 1/s is convergent. If for each positive integer k we denote by Nk the

number of all elements of S which do not exceed 10k and Mk = 10k − Nk, then

lim
k→∞

Nk

Mk
= 0.

The convergence of the Kempner-Irwin series is very slow. For this reason various
algorithms were built in order to compute their sums accurately (see [2], [3], [11]).
The aim of this paper is to discuss the problem of computing the sum of a series of
Kempner-Irwin type in various numerical bases.

2. The main results

B. Farhi [4] has studied the convergence of the sequences
(
Ψ(r)

1;”d”

)
r∈N

, for d ∈
{0, 1, ..., 9}:
Lemma 2.1. (B. Farhi) For all d ∈ {0, 1, ..., 9} , the sequence

(
Ψ(r)

1;”d”

)
r∈N∗

is con-

vergent decreasingly to 10 log 10.

We will consider now the convergence problem of the sequence
(
Ψ(r)

1;”89”

)
r∈N

, de-

fined by

Ψ(r)
1;”89” =

∑
s∈S(r)

1
s
, (11)

where S(r) is the set of all positive integers whose decimal representations contains
the string ”89” exactly r times. Using the technique of Baillie [3], we split the set
S(r) into two sets: S1(r), the set of all numbers of S(r) that have the last digit 8, and
S2(r) = S(r)\S1(r).

We note

S
j(r)
i = Sj(r) ∩ [10i, 10i+1

)
, S

(r)
i = S(r) ∩ [10i, 10i+1

)
,

where r, i ∈ N, j ∈ {1, 2} and

S
j(r)
0 = ∅, r ≥ 1,

S
1(0)
0 = {8} , S

2(0)
0 = {1, 2, 3, 4, 5, 6, 7, 9} ,

S
1(0)
1 = {18, .., 98} , S

2(1)
1 = {89} ,

S
2(0)
1 =

{
ab : a = 1, ..., 9; b = 0, ..., 7, 9

} \ {89} ,

S
1(0)
2 =

{
ab8 : a = 1, ..., 9; b = 0, ..., 9

} \ {898} ,

S
1(1)
2 = {898} , S

2(1)
2 = {189, ..., 989} ∪ {890, ..., 897, 899} ,

S
2(0)
2 =

([
102, 103

) ∩ N
) \(S1(0)

2 ∪ S
1(1)
2 ∪ S

2(1)
2

)
, ...
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Put:
ti,j;r =

∑
s∈S

j(r)
i

1
s
, ti;r =

∑
s∈S

(r)
i

1
s
, Ψ′(r)

1;”89” =
∑

s∈S1(r)

1
s
. (12)

We have

t0,1;0 =
1
8
, t0,1; r = 0, r ≥ 1

t1,1;0 =
9∑

u=1

1
10u + 8

, t1,1; r = 0, r ≥ 1,

ti,1;r =
∑

s∈S
1(r)
i

1
s

=
∑

u∈S
(r)
i−1

1
10u + 8

, i ≥ 1, r ≥ 0,

and

t0,2;0 =
7∑

l=1

1
l

+
1
9
, t0,2;r = 0, r ≥ 1,

t1,2;0 =
7∑

l=0

9∑
u=1

1
10u + l

+
7∑

u=1

1
10u + 9

+
1
99

, t1,2;1 =
1
89

, t1,2;r = 0, r ≥ 2,

ti,2;0 =
∑

s∈S
2(0)
i

1
s

=
7∑

l=0

∑
u∈S

(0)
i−1

1
10u + l

+
∑

u∈S
2(0)
i−1

1
10u + 9

, i ≥ 1,

ti,2;r =
∑

s∈S
2(r)
i

1
s

=
7∑

l=0

∑
u∈S

(r)
i−1

1
10u + l

+
∑

u∈S
2(r)
i−1

1
10u + 9

+
∑

u∈S
1(r−1)
i−1

1
10u + 9

, i ≥ 1, r ≥ 1.

Also,

t0;0 =
9∑

l=1

1
l
, t0;r = 0, r ≥ 1,

t1;0 =
8∑

l=0

9∑
u=1

1
10u + l

+
7∑

u=1

1
10u + 9

+
1
99

,

t1;1 =
1
89

, t1;r = 0, r ≥ 2,

ti;0 =
8∑

l=0

∑
u∈S

(0)
i−1

1
10u + l

+
∑

u∈S
2(0)
i−1

1
10u + 9

, i ≥ 2,

ti;r =
8∑

l=0

∑
u∈S

(r)
i−1

1
10u + l

+
∑

u∈S
2(r)
i−1

1
10u + 9

+
∑

u∈S
1(r−1)
i−1

1
10u + 9

, i ≥ 1, r ≥ 1.

We use for approximating ti;r (with i, r ∈ N
∗) the formulas

Ti;r =
8∑

l=0

∑
u∈S

(r)
i−1

1
10u

+
∑

u∈S
2(r)
i−1

1
10u

+
∑

u∈S
1(r−1)
i−1

1
10u

=
9
10

ti−1;r +
1
10

ti−1,2;r +
1
10

ti−1,1;r−1,

T1;r =
1
10

t0,1;r−1, T1;1 =
1
80
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The approximation error is given by

Ci;r = Ti;r − ti;r, r, i ∈ N,

C1;1 =
1
80

− 1
89

=
9

7120
,

C1;r =
1
10

t0,1;r−1 − t1;r = 0, r ≥ 2.

Therefore

ti;r =
9
10

ti−1;r +
1
10

ti−1,2;r +
1
10

ti−1,1;r−1 − Ci;r . (13)

Lemma 2.2. The following formula holds true:

0 ≤
∞∑

r=1

∞∑
i=1

Ci;r < ∞.

Proof. In fact, for r, i ∈ N
∗ we have

Ci;r =
8∑

l=0

∑
u∈S

(r)
i−1

l

10u (10u + l)
+

∑
u∈S

2(r)
i−1

9
10u (10u + 9)

+
∑

u∈S
1(r−1)
i−1

9
10u (10u + 9)

.

From this identity it results that Ci;r ≥ 0. On the other hand,

Ci;r ≤ 9
25

∑
u∈S

(r)
i−1

1
u2

+
9

100

∑
u∈S

2(r)
i−1

1
u2

+
9

100

∑
u∈S

1(r−1)
i−1

1
u2

.

Because the sets S
(r)
i = S

1(r)
i ∪ S

2(r)
i (r, i ∈ N) form a partition of N

∗,

∞∑
r=1

∞∑
i=1

Ci;r ≤
(

9
25

+
9
50

) ∞∑
u=1

1
u2

=
27
50

· π2

6
< ∞,

and the proof is done �

We note:

Cr =
∞∑

i=1

Ci;r , for r ∈ N
∗.

Lemma 2.3. For every r ∈ N
∗ the series Ψ(r)

1;”89” and Ψ′(r)
1;”89” are convergent and

Ψ′(1)
1;”89” = Ψ′(0)

1;”89” − 10C1 +
1
8
, (14)

Ψ′(r)
1;”89” = Ψ′(r−1)

1;”89” − 10Cr, r ≥ 2. (15)
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Proof. The fact that the series Ψ(r)
1;”89” and Ψ′(r)

1;”89” (r ∈ N
∗) are convergent is obvious

. Let’s demonstrate the relations (14) and (15). Using (13), we have for all r ∈ N:

Ψ(r)
1;”89” =

∞∑
i=2

ti;r + t1;r

=
∞∑

i=2

(
9
10

ti−1;r +
1
10

ti−1,2;r +
1
10

ti−1,1;r−1 − Ci;r

)
+ t1;r

=
9
10

∞∑
i=1

ti;r +
1
10

∞∑
i=1

ti,2;r +
1
10

∞∑
i=1

ti,1;r−1 −
∞∑

i=1

Ci;r + C1;r + t1;r

=
9
10

Ψ(r)
1;”89” +

1
10

(
Ψ(r)

1;”89” − Ψ′(r)
1;”89”

)
+

1
10

Ψ′(r−1)
1;”89” − Cr + C1;r + t1;r

= Ψ(r)
1;”89” −

1
10

Ψ′(r)
1;”89” +

1
10

Ψ′(r−1)
1;”89” − Cr + C1;r + t1;r.

Thus

Ψ′(r)
1;”89” = Ψ′(r−1)

1;”89” − 10Cr + 10C1;r + 10t1;r =

{
Ψ′(r−1)

1;”89” − 10Cr + 1
8 if r = 1

Ψ′(r−1)
1;”89” − 10Cr if r ≥ 2.

and the demonstration is closed . �

Theorem 2.1. The sequence
(
Ψ′(r)

1;”89”

)
r∈N∗

decreases and

lim
r→∞Ψ′(r)

1;”89” = 22.217649... . (16)

Proof. Because Cr > 0, the formula (15) shows that
(
Ψ′(r)

1;”89”

)
r∈N∗

is decreasing.

Because this sequence is positive, it is necessarily convergent. It remains to compute
the limit. For every integer R ≥ 2,

Ψ′(R)
1;”89” =

R∑
r=2

(
Ψ′(r)

1;”89” − Ψ′(r−1)
1;”89”

)
+ Ψ′(1)

1;”89” = −10
R∑

r=1

Cr + Ψ′(0)
1;”89” +

1
8
,

which yields

lim
R→∞

Ψ′(R)
1;”9” = −10

∞∑
r=1

Cr + Ψ′(0)
1;”89” +

1
8
. (17)

We have ∑∞
r=1

Cr =
∑∞

r=1

∑∞
i=1

Ci;r,

where

Ci;r = Ti;r−ti;r =
8∑

l=0

∑
u∈S

(r)
i−1

l

10u (10u + l)
+
∑

u∈S
2(r)
i−1

9
10u (10u + 9)

+
∑

u∈S
1(r−1)
i−1

9
10u (10u + 9)

.
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Because the sets S
(r)
i−1 (i, r ∈ N

∗) form a partition of N
∗\S(0) and the sets S

(r−1)
i−1

(i, r ∈ N
∗) form a partition of N

∗, we infer that

∞∑
r=1

∞∑
i=1

Ci;r =
8∑

l=0

∑
u∈N∗\S(0)

(
1

10u
− 1

10u + l

)
+
∑

u∈N∗

(
1

10u
− 1

10u + 9

)

+
∑

u∈S1(0)

(
1

10u
− 1

10u + 9

)
=

8∑
l=0

⎧⎨
⎩

∞∑
u=1

(
1

10u
− 1

10u + l

)
−
∑

u∈S(0)

(
1

10u
− 1

10u + l

)⎫⎬
⎭

+
∞∑

u=1

(
1

10u
− 1

10u + 9

)
+

∑
u∈S1(0)

(
1

10u
− 1

10u + 9

)

=
9∑

l=0

∞∑
u=1

(
1

10u
− 1

10u + l

)
−

8∑
l=0

∑
u∈S(0)

(
1

10u
− 1

10u + l

)
+
∑

u∈S1(0)

(
1

10u
− 1

10u + 9

)

=
9∑

l=0

∞∑
u=1

(
1

10u
− 1

10u + l

)
− 9

10

∑
t∈S(0)

1
u

+
8∑

l=0

∑
u∈S(0)

1
10u + l

+
1
10

∑
u∈S1(0)

1
u
−
∑

u∈S1(0)

1
10u + 9

.

From ∑
u∈S(0)

1
u

= Ψ(0)
1;”89”

it results∑
u∈S(0)

1
u

=
9∑

u=1

1
u

+
∑

u∈S(0)∩[10,∞)

1
u

=
9∑

u=1

1
u

+
8∑

l=0

∑
u∈S(0)

1
10u + l

+
∑

u∈S2(0)

1
10u + 9

.

Or, ∑
u∈S1(0)

1
u

= Ψ′(0)
1;”89”

so that
∞∑

r=1

∞∑
i=1

Ci;r = Δ +
1
10

Ψ(0)
1;”89” +

1
10

Ψ′(0)
1;”89” −

9∑
u=1

1
u
−
∑

u∈S(0)

1
10u + 9

, (18)

where

Δ =
9∑

l=1

∞∑
u=1

(
1

10u
− 1

10u + l

)
=

∞∑
u=1

⎧⎨
⎩ 1

u
−

∑
10u≤s<10(u+1)

1
s

⎫⎬
⎭ .

We pass now to the computation of Δ. For every N sufficiently big, by applying (8)
and using the symbols of Landau and Hardy (see [7], p. 7), we have:

N∑
u=1

⎧⎨
⎩1

u
−

∑
10u≤s<10(u+1)

1
s

⎫⎬
⎭ =

N∑
t=1

1
t
−

10N+9∑
s=10

1
s

= (log N + γ) −
{

log (10N + 9) + γ −
9∑

s=1

1
s

}
+ oN (1)

=
9∑

s=1

1
s
− log 10 + oN (1) ,
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where γ is the constant of Euler. Passing to the limit we have:

Δ =
9∑

s=1

1
s
− log 10. (19)

According to (18), we obtain:
∞∑

r=1

Cr =
∞∑

r=1

∞∑
i=1

Ci;r =
1
10

Ψ(0)
1;”89” +

1
10

Ψ′(0)
1;”89” − log 10 −

∑
u∈S(0)

1
10u + 9

.

Finally, by replacing the value of
∑∞

r=1 Cr in (17), it results

lim
R→∞

Ψ′(R)
1;”89” = −10

∞∑
r=1

Cr+Ψ′(0)
1;”89”+

1
8

=
1
8
−Ψ(0)

1;”89”+10 log 10+10
∑

u∈S(0)

1
10u + 9

=
1
8

+ 10 log 10 − 9
∑

u∈S(0)

1
u (10u + 9)

.

Using Maple 7, ∑
u∈S(0)

1
u (10u + 9)

	 .103689...

and thus
lim

R→∞
Ψ′(R)

1;”89” 	 22.217649... .

The proof is done. �

Similarly one can study sequences of the form
(
Ψ(r)

1;”d1d2”

)
r∈N

. It would be inter-

esting to find the exact value of their terms and their limit, but this problem remains
open.

3. Kempner-Irwin series in binary base

In other numerical bases (e.g., base 2) there are Kempner-Irwin series with faster
convergence.

We will consider several examples.
1) Of first example is the series summation,

(2)Φ
−
1;”0” =

∑
s∈S−

1
s(2)

, (20)

where S− is the set of all the positive integers that do not contain ”0”, in the base
2. Thus,

(2)Φ
−
1;”0” =

1
1(2)

+
1

11(2)
+

1
111(2)

+
1

1111(2)
+ ...

Transformed in the base 10, the series becomes:

(10)Φ
−
1;”0” =

1
1(10)

+
1

3(10)
+

1
7(10)

+
1

15(10)
+ ... =

∞∑
n=1

1
(2n − 1)(10)

,

We evaluate this series using Maple 7,
>evalf[60](sum(’1/(2^n-1)’, ’n’=1..infinity));
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concluding that it rapidly converges to

1.606695152415291763783301523190924580480579671505756435778081...(10).

Converting in binary basis
>convert(1.60669515241529176378330152319092458048057967150,binary,60);

we find

(2)Φ−
1;”0” ≈ 1.10011011010100000101111110011110010000111111001000100100001...(2).

2) Another example is offered by the series

(2)Φ
(1)
1;”1” =

∑
s∈S(1)

1
s(2)

=
1

1(2)
+

1
10(2)

+
1

100(2)
+

1
1000(2)

+ · · · , (21)

where S(1) is the set of all the positive integers that contain ”1” exactly once, in base
2. In base 10 we have

(10)Φ
(1)
1;”1” =

1
1(10)

+
1

2(10)
+

1
22
(10)

+
1

23
(10)

+ · · ·

=
∞∑

n=0

1
2n
(10)

= 2(10) = 10(2).

3) A third example,

(2)Φ
(1)
1;”0” =

∑
s∈S(1)

1
s(2)

, (22)

where S(1) is the set of all the positive integers that contain ”0” exactly once, in base
2. We have

(2)Φ
(1)
1;”0” =

1
10(2)

+
1

101(2)
+

1
110(2)

+
1

1011(2)
+

1
1101(2)

+
1

1110(2)
+ · · ·

=
1

10(2)
+
(

1
111(2) − 10(2)

+
1

111(2) − 1(2)

)

+
(

1
1111(2) − 100(2)

+
1

1111(2) − 10(2)
+

1
1111(2) − 1(2)

)
+ · · ·

Transformed in base 10, this series becomes

(10)Φ
(1)
1;”0” =

1
(22 − 1 − 1)(10)

+

(
1

(23 − 1 − 2)(10)
+

1
(23 − 1 − 1)(10)

)

+

(
1

(24 − 1 − 22)(10)
+

1
(24 − 1 − 2)(10)

+
1

(24 − 1 − 1)(10)

)
+ · · ·

=
1

(22 − 1 − 1)(10)
+

1∑
k=0

1
(23 − 1 − 2k)(10)

+
2∑

k=0

1
(24 − 1 − 2k)(10)

+ · · ·

=
∞∑

n=2

n−2∑
k=0

1
(2n − 1 − 2k)(10)

.

With Maple 7,
>evalf[60](sum(sum(’1/(2^n-1-2^k)’,’k’=0..n-2),’n’=2..infinity));
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we obtain

(10)Φ
(1)
1;”0” ≈ 1.46259073504436469954614544672053462107474486474882110936420...(10)

and converted in base 2:
>convert(1.46259073504436469954614544672053462107474486474,binary,60);

we conclude that

(2)Φ
(1)
1;”0” ≈ 1.01110110011011000101100010101110011100101011100111001011010...(2).

More examples can be easily exhibited by using the beautiful result of Thomas
Schmelzer and Robert Baillie [11] on the asymptotic behavior of Kempner-Irwin series
in base 10:

Theorem 3.1. a) Let Xm be a string with m digits having period p, i.e.,

Xm = ” d1d2...dpd1d2...dp...d1d2...dp︸ ︷︷ ︸
m=kp digits

”. (23)

Let Ψ−
Xm

be the sum of all numbers 1/s, where s does not contain the substring
Xm. Then

lim
m→∞

Ψ−
1;Xm

10m
=

10p

10p − 1
log 10. (24)

b) Let Xm = ”d1d2...dm” be a string with m digits non-periodical and let Ψ−
Xm

be
the sum of all numbers 1/s, where s does not contain the substring Xm. Then

lim
m→∞

Ψ−
1;Xm

10m
= log 10. (25)

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] R. Baillie, Sums of reciprocals of integers missing a given digit, Amer. Math. Monthly 86

(1979), pp. 372-374.
[3] R. Baillie, Summing the curious series of Kempner and Irwin, preprint, June 27, 2008.
[4] B. Farhi, A curious result related to Kempner’s series, arxiv:0807.3518v1 [math.NT] 22 Jul.

2008.
[5] H. Behforooz, Thinning Out the Harmonic Series, Mathematics Magazine, Vol. 68 (1995),

289-293.
[6] J. M. Borwein, D. M. Bradley and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier Sums:

A Compendium of Results for Arbitrary k, Electronic J. Combinatorics 4 (1997), No. 2 (Wilf
Fetschrift), #R5.

[7] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fourth edition, Oxford
Univ. Press, 1975.

[8] F. Irwin, A Curious Convergent Series, Amer. Math. Monthly 23 (1916), 149-152.
[9] J. P. Kelliher, R. Masri, Analytic continuation of multiple Hurwitz zeta functions, Math. Proc.

Camb. Phil. Soc. 145 (2008), 605-617.
[10] A. J. Kempner, A Curious Convergent Series, Amer. Math. Monthly 21 (1914), 48-50.
[11] T. Schmelzer and R. Baillie, Summing a Curious, Slowly Convergent Series, Amer. Math.

Monthly 115 (2008), a
[12] A. D. Wadhwa, Some convergent subseries of the harmonic series, Amer. Math. Monthly 85

(1978), 661-663.
[13] J. Zhao, Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000),

1275-1283.

(Radu-Octavian Vı̂lceanu) University of Craiova, Department of Mathematics, Craiova,
RO-200585, Romania
E-mail address: radu.vilceanu@yahoo.com


