The localization of pseudo $M T L$ - algebras

Antoaneta Jeflea

Abstract. In this paper we develope a theory of localization for pseudo $M T L$ - algebras. For commutative case see [15] and [16].

2000 Mathematics Subject Classification. Primary 18B35; Secondary 18C05.
Key words and phrases. MTL - algebra, pseudo $M T L$ - algebra, residuated lattice, topology, multiplier, \mathcal{F} - multiplier, strong \mathcal{F} - multiplier, \wedge - closed system, pseudo $M T L$ - algebra of fractions, maximal pseudo $M T L$ - algebra of quotients, pseudo $M T L$ - algebra of localization.

1. Introduction

Basic Fuzzy logic ($B L$ from now on) is the many-valued residuated logic introduced by Hájek in [11] to cope with the logic of continuous t-norms and their residua. Monoidal logic ($M L$ from now on), is a logic whose algebraic counterpart is the class of residuated; $M T L$-algebras (see [7]) are algebraic structures for the EstevaGodo monoidal t-norm based logic ($M T L$), a many-valued propositional calculus that formalizes the structure of the real unit interval $[0,1]$, induced by a left-continuous t-norm.

Pseudo $B L$ - algebras were introduced by A. Di Nola, G. Georgescu and A. Iorgulescu in [6] as a non-commutative extension of Hájek's $B L$-algebras. Pseudo $B L$-algebras are bounded non-commutative residuated lattices $(A, \wedge, \vee, \odot, \rightarrow, \rightsquigarrow, 0,1)$ which satisfy the pseudo-divisibility condition $x \wedge y=(x \rightarrow y) \odot x=x \odot(x \rightsquigarrow y)$ and the pseudo-prelinearity condition $(x \rightarrow y) \vee(y \rightarrow x)=(x \rightsquigarrow y) \vee(y \rightsquigarrow x)=1$.

Depending on the above conditions, there are two directions to extend pseudo $B L$-algebras. One direction investigates the (bounded) non-commutative residuated lattices satisfying the pseudo-divisibility condition which were studied under the name (bounded) divisible pseudo - residuated lattices or bounded $R l$ - monoids. The second direction deals with (bounded) non-commutative residuated lattices with the pseudoprelinearity condition, that is pseudo $M T L$ - algebras.

Pseudo $M T L$ algebras were in [8] under the name weak-BL algebras in order to obtain a structure on $[0,1]$, since there are not pseudo $B L$-algebras on $[0,1]$.

So, Pseudo $M T L$ - algebras are non-commutative fuzzy structures which arise from pseudo t-norms, namely, pseudo $B L$-algebras without the pseudo-divisibility condition.

In this paper we develope a theory of localization for pseudo $M T L$ - algebras and we deal with generalizations of results which are obtained in [15] and [16].

This paper is organized as follows: In Section 2 we recall the basic definitions and we put in evidence many rules of calculus in pseudo $M T L$ - algebras and a characterizations for the boolean elements in a pseudo $M T L$ - algebra. In Section 3

[^0]we introduce the pseudo $M T L$ - algebra of fractions relative to a $\wedge-$ closed system. In Section 4 we develop a theory for strong multipliers on a pseudo $M T L$ - algebra and in Section 5 we define the notions of pseudo $M T L$ - algebra of fractions and maximal pseudo $M T L$ - algebra of quotients for a pseudo $M T L$ - algebra. In the least part of this section it is proved the existence of the maximal pseudo $M T L$ algebra of quotients.

A remarkable construction in ring theory is the localization ring $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} on a ring A.

Using the model of localization ring, in [10], G. Georgescu defined for a bounded distributive lattice L the localization lattice $L_{\mathcal{F}}$ of L with respect to a topology \mathcal{F} on L and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals); analogous results we have for the lattice of fractions of a bounded distributive lattice relative to a $\wedge-$ closed system.

In Sections 6 and 7 we develop a theory of localization for pseudo $M T L$ - algebras. So, for a pseudo $M T L$ - algebra A we define the notion of localization pseudo $M T L$ - algebra relative to a topology \mathcal{F} on A and in Section 8 we describe the localization pseudo $M T L$ - algebra $A_{\mathcal{F}}$ in some special instances.

Since $M T L$ - algebras are particular classes of pseudo $M T L$ - algebras, the results of this paper generalize a part of the results from [15], [16] for $M T L$ - algebras.

2. Definitions and preliminaries

Definition 2.1. A pseudo MTL- algebra ([8]) is an algebra $(A, \wedge, \vee, \odot, \rightarrow, \rightsquigarrow, 0,1)$ of type $(2,2,2,2,2,0,0)$ equipped with an order \leq satisfying the following axioms:
$\left(a_{1}\right)(A, \wedge, \vee, 0,1)$ is a bounded lattice relative to the order \leq;
$\left(a_{2}\right)(A, \odot, 1)$ is a monoid;
$\left(a_{3}\right) x \odot y \leq z$ iff $x \leq y \rightarrow z$ iff $y \leq x \rightsquigarrow z$, for every $x, y, z \in A$;
$\left(a_{4}\right)(x \rightarrow y) \vee(y \rightarrow x)=(x \rightsquigarrow y) \vee(y \rightsquigarrow x)=1$, for every $x, y \in A$ (pseudoprelinearity).

Remark 2.1. If A satisfies only the axioms a_{1}, a_{2} and a_{3} then A is called a residuated lattice.

Remark 2.2. If additionally for any $x, y \in A$ the structure A by Definition 2.1 satisfies the axiom
$\left(a_{5}\right):(x \rightarrow y) \odot x=x \odot(x \rightsquigarrow y)=x \wedge y$ (pseudo-divisibility), then A is a pseudo $B L$ - algebra.

Remark 2.3. If A satisfies the axioms a_{1}, a_{2}, a_{3} and a_{5} then it is a bounded divisible residuated lattice. These structures were also studied under the name bounded $R L$ monoids.

Remark 2.4. A pseudo MTL- algebra A is called commutative if the operation \odot is commutative. In this case the operations \rightarrow and \rightsquigarrow coincide, and thus, a commutative pseudo-MTL algebra is a MTL algebra.

A totally ordered pseudo- $M T L$ algebra is called a chain.
For examples of pseudo- $M T L$ algebras see [4] and [12].
In [4], [6], [8], [12] it is proved that if A is a residuated lattice and $a, a_{1}, \ldots, a_{n}, b, b_{i}, c \in$ $A,(i \in I)$ then we have the following rules of calculus:
$\left(c_{1}\right) a \odot(a \rightsquigarrow b) \leq b \leq a \rightsquigarrow(a \odot b)$ and $a \odot(a \rightsquigarrow b) \leq a \leq b \rightsquigarrow(b \odot a)$,
$\left(c_{2}\right)(a \rightarrow b) \odot a \leq a \leq b \rightarrow(a \odot b)$ and $(a \rightarrow b) \odot a \leq b \leq a \rightarrow(b \odot a)$,
$\left(c_{3}\right)$ if $a \leq b$ then $a \odot c \leq b \odot c$ and $c \odot a \leq c \odot b$,
$\left(c_{4}\right)$ if $a \leq b$ then $c \rightsquigarrow a \leq c \rightsquigarrow b$ and $c \rightarrow a \leq c \rightarrow b$,
$\left(c_{5}\right)$ if $a \leq b$ then $b \rightsquigarrow c \leq a \rightsquigarrow c$ and $b \rightarrow c \leq a \rightarrow c$,
(c6) $a \leq b$ iff $a \rightarrow b=1$ iff $a \rightsquigarrow b=1$,
(c $\left.c_{7}\right) a \rightsquigarrow a=a \rightarrow a=1$,
(c) $1 \rightsquigarrow a=1 \rightarrow a=a$,
$\left(c_{9}\right) b \leq a \rightsquigarrow b$ and $b \leq a \rightarrow b$,
$\left(c_{10}\right) a \odot b \leq a \wedge b$ and $a \odot b \leq a, b$,
$\left(c_{11}\right) a \rightsquigarrow 1=a \rightarrow 1=1$,
$\left(c_{12}\right) a \rightsquigarrow b \leq(c \odot a) \rightsquigarrow(c \odot b)$,
$\left(c_{13}\right) a \rightarrow b \leq(a \odot c) \rightarrow(b \odot c)$,
$\left(c_{14}\right)$ if $a \leq b$ then $a \leq c \rightsquigarrow b$ and $a \leq c \rightarrow b$,
$\left(c_{15}\right)(b \rightsquigarrow c) \odot a \leq b \rightsquigarrow(c \odot a)$ and $a \odot(b \rightarrow c) \leq b \rightarrow(a \odot c)$,
$\left(c_{16}\right)$ if $a \leq b$ then $b \rightsquigarrow 0 \leq a \rightsquigarrow 0$ and $b \rightarrow 0 \leq a \rightarrow 0$,
$\left(c_{17}\right) 0 \odot a=a \odot 0=0$,
$\left(c_{18}\right)(a \rightsquigarrow b) \odot(b \rightsquigarrow c) \leq a \rightsquigarrow c$ and $(b \rightarrow c) \odot(a \rightarrow b) \leq a \rightarrow c$,
$\left(c_{19}\right)\left(a_{1} \rightsquigarrow a_{2}\right) \odot\left(a_{2} \rightsquigarrow a_{3}\right) \odot \ldots \odot\left(a_{n-1} \rightsquigarrow a_{n}\right) \leq a_{1} \rightsquigarrow a_{n}$,
$\left(c_{20}\right)\left(a_{n-1} \rightarrow a_{n}\right) \odot \ldots \odot\left(a_{2} \rightarrow a_{3}\right) \odot\left(a_{1} \rightarrow a_{2}\right) \leq a_{1} \rightarrow a_{n}$,
$\left(c_{21}\right) a \vee b=((a \rightsquigarrow b) \rightarrow b) \wedge((b \rightsquigarrow a) \rightarrow a)$,
$\left(c_{22}\right) a \vee b=((a \rightarrow b) \rightsquigarrow b) \wedge((b \rightarrow a) \rightsquigarrow a)$,
$\left(c_{23}\right) a \rightsquigarrow(b \rightsquigarrow c)=(b \odot a) \rightsquigarrow c$ and $a \rightarrow(b \rightarrow c)=(a \odot b) \rightarrow c$,
$\left(c_{24}\right) a \rightsquigarrow b=a \rightsquigarrow(a \wedge b)$,
$\left(c_{25}\right) a \rightarrow b=a \rightarrow(a \wedge b)$,
$\left(c_{26}\right) c \odot(a \wedge b) \leq(c \odot a) \wedge(c \odot b)$ and $(a \wedge b) \odot c \leq(a \odot c) \wedge(b \odot c)$,
$\left(c_{27}\right)$ if $a \vee b=1$ then $a \rightarrow b=a \rightsquigarrow b=b$,
$\left(c_{28}\right)$ if $a \vee b=1$ then, for each natural number $n \geq 1, a^{n} \vee b^{n}=1$,
$\left(c_{29}\right)$ for each natural number $n \geq 1,(a \rightarrow b)^{n} \vee(b \rightarrow a)^{n}=(a \rightsquigarrow b)^{n} \vee(b \rightsquigarrow a)^{n}=1$,
$\left(c_{30}\right) a \odot\left(\bigvee_{i \in I} b_{i}\right)=\bigvee_{i \in I}\left(a \odot b_{i}\right)$,
$\left(\bigvee_{i \in I} b_{i}\right) \odot a=\bigvee_{i \in I}^{i \in I}\left(b_{i} \odot a\right)$,
$\stackrel{i \in I}{a \rightsquigarrow\left(\bigwedge b_{i}\right) \stackrel{i \in I}{=} \bigwedge_{i \in I}\left(a \rightsquigarrow b_{i}\right), ~}$
$a \rightarrow\left(\bigwedge_{i \in I}^{i \in I} b_{i}\right)=\bigwedge_{i \in I}^{i \in I}\left(a \rightarrow b_{i}\right)$,
$\left(\bigvee_{i \in I} b_{i}\right) \rightsquigarrow a=\bigwedge_{i \in I}^{i \in I}\left(b_{i} \rightsquigarrow a\right)$,
$\left(\bigvee_{i \in I} b_{i}\right) \rightarrow a=\bigwedge_{i \in I}\left(b_{i} \rightarrow a\right)$,
(whenever the arbitrary meets and unions exist)
Proposition 2.1. ([4], [7], [8]) If A is a pseudo $M T L$-algebra, then for every $x, y, z \in A$ we have :
$\left(c_{31}\right)$ if $x \vee y=1$ then $x \odot y=x \wedge y$;
$\left(c_{32}\right) x \rightarrow(y \vee z)=(x \rightarrow y) \vee(x \rightarrow z)$ and $x \rightsquigarrow(y \vee z)=(x \rightsquigarrow y) \vee(x \rightsquigarrow z)$;
$\left(c_{33}\right)(x \wedge y) \rightarrow z=(x \rightarrow z) \vee(y \rightarrow z)$ and $(x \wedge y) \rightsquigarrow z=(x \rightsquigarrow z) \vee(y \rightsquigarrow z)$;
$\left(c_{34}\right) x \odot(y \wedge z)=(x \odot y) \wedge(x \odot z)$ and $(y \wedge z) \odot x=(y \odot x) \wedge(z \odot x)$;
$\left(c_{35}\right) x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$.
In a pseudo $M T L$-algebra A we denote $a^{\sim}=a \rightsquigarrow 0$ and $a^{-}=a \rightarrow 0$, for every $a \in A$. Using these notations we have the following rules of calculus in a pseudo $M T L$-algebra :
$\left(c_{36}\right) 1^{\sim}=1^{-}=0,0^{\sim}=0^{-}=1$,
$\left(c_{37}\right) a \odot a^{\sim}=a^{-} \odot a=0$,
$\left(c_{38}\right) b \leq a^{\sim}$ iff $a \odot b=0$,
$\left(c_{39}\right) b \leq a^{-}$iff $b \odot a=0$,
$\left(c_{40}\right) a \leq a^{-} \rightsquigarrow b, a \leq a^{\sim} \rightarrow b$,
(cc1) $a \leq\left(a^{\sim}\right)^{-}, a \leq\left(a^{-}\right)^{\sim}$,
$\left(c_{42}\right) a \rightsquigarrow b \leq b^{\sim} \rightarrow a^{\sim}, a \rightarrow b \leq b^{-} \rightsquigarrow a^{-}$,
$\left(c_{43}\right) a \rightarrow b^{\sim}=b \rightsquigarrow a^{-}, a \rightsquigarrow b^{-}=b \rightarrow a^{\sim}$,
(c c_{44}) $a \leq b$ implies $b^{\sim} \leq a^{\sim}$ and $b^{-} \leq a^{-}$,
(c45) $\left(\left(a^{\sim}\right)^{-}\right)^{\sim}=a^{\sim},\left(\left(a^{-}\right)^{\sim}\right)^{-}=a^{-}$,
$\left(c_{46}\right) a \rightarrow a^{\sim}=a \rightsquigarrow a^{-}$,
$\left(c_{47}\right)(b \odot a)^{\sim}=a \rightsquigarrow b^{\sim},(a \odot b)^{-}=a \rightarrow b^{-}$,
$\left(c_{48}\right)(a \wedge b)^{\sim}=a^{\sim} \vee b^{\sim},(a \vee b)^{\sim}=a^{\sim} \wedge b^{\sim}$,
$\left(c_{49}\right)(a \wedge b)^{-}=a^{-} \vee b^{-},(a \vee b)^{-}=a^{-} \wedge b^{-}$,
$\left(c_{50}\right)(a \vee b)^{-\sim}=a^{-\sim} \vee b^{-^{\sim}},(a \vee b)^{\sim-}=a^{\sim-} \vee b^{\sim-}$,
$\left(c_{51}\right) a^{-} \rightsquigarrow b^{-}=a^{-\sim} \rightarrow b^{\sim^{\sim}}=a \rightarrow b^{-^{\sim}}$ and $b^{\sim} \rightarrow a^{\sim}=a^{\sim-} \rightsquigarrow b^{\sim-}=a \rightsquigarrow b^{\sim-}$.
2.1. The Boolean center of a pseudo MTL-algebra. Let $(L, \vee, \wedge, 0,1)$ be a bounded lattice. Recall that an element $a \in L$ is called complemented if there is an element $b \in L$ such that $a \vee b=1$ and $a \wedge b=0$; if such element b exists it is called a complement of a. We will denote $b=a^{\prime}$ and the set of all complemented elements in L by $B(L)$. Complements are generally not unique, unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be distributive, the complements are unique (following c_{35} in a pseudo $M T L$ - algebra the complements are unique).

Lemma 2.1. ([9]) Suppose that A is a residuated lattice and $a \in A$ have a complement $b \in A$. Then, the following hold:
(i) If c is another complement of a in A, then $c=b$;
(ii) $a^{\prime}=b$ and $b^{\prime}=a$;
(iii) $a^{2}=a$.

Remark 2.5. Since in particular a pseudo MTL- algebra is a residuated lattice, Lemma 2.1 is also true if A is a pseudo MTL-algebra.

In the following we denote by A the universe of a pseudo $M T L-$ algebra A and by $B(A)$ the set of all complemented elements of A.

Lemma 2.2. If $e \in B(A)$, then $e^{\prime}=e^{-}=e^{\sim}$ and $\left(e^{-}\right)^{\sim}=\left(e^{\sim}\right)^{-}=e$, where by e^{\prime} we denote the complement of e.

Proof. If $e \in B(A)$, and $a=e^{\prime}$, then $e \vee a=1$ and $e \wedge a=0$. Since $e \odot a \leq e \wedge a=0$, then $e \odot a=0$, hence $a \leq e \rightsquigarrow 0=e^{\sim}$ and $a \odot e \leq e \wedge a=0$, then $a \odot e=0$, hence $a \leq e \rightarrow 0=e^{-}$. On the another hand, $e^{-}=e^{-} \odot 1=e^{-} \odot(e \vee a) \stackrel{c_{30}}{=}$ $\left(e^{-} \odot e\right) \vee\left(e^{-} \odot a\right)=0 \vee\left(e^{-} \odot a\right)=e^{-} \odot a$, hence $e^{-} \leq a$, and $e^{\sim}=1 \odot e^{\sim}=$ $(e \vee a) \odot e^{\sim} \stackrel{c_{30}}{=}\left(e \odot e^{\sim}\right) \vee\left(a \odot e^{\sim}\right)=0 \vee\left(a \odot e^{\sim}\right)=a \odot e^{\sim}$, hence $e^{\sim} \leq a$, that is $e^{-}=e^{\sim}=a$. The equality $\left(e^{-}\right)^{\sim}=\left(e^{\sim}\right)^{-}=e$ follows from Lemma 2.1, (ii).
Proposition 2.2. ([9]) If $e, f \in B(A)$, then $e \wedge f, e \vee f, e \rightarrow f, e \rightsquigarrow f \in B(A)$ and for every $x \in A$,
$\left(c_{52}\right): e \odot x=e \wedge x=x \odot e$.
Corollary 2.1. ([9]) The set $B(A)$ is the universe of a Boolean subalgebra of A, called the Boolean center of A.

Proposition 2.3. For $e \in A$ the following are equivalent:
(i) $e \in B(A)$,
(ii) $e \vee e^{-}=e \vee e^{\sim}=1$.

Proof. $\quad(i) \Rightarrow(i i)$. Follows from Lemma 2.2.
$(i) \Rightarrow(i i)$. From $e \vee e^{-}=1$ we deduce that $0=1^{\sim}=\left(e \vee e^{-}\right) \sim \stackrel{c_{48}}{=} e^{\sim} \wedge\left(e^{-}\right)^{\sim} \stackrel{c_{41}}{\geq}$ $e^{\sim} \wedge e$, so $e^{\sim} \wedge e=0$. We have $e \vee e^{\sim}=1$ and $e \wedge e^{\sim}=0$, so $e \in B(A)$.

Proposition 2.4. If $e \in B(A)$ then:
(i) $e^{2}=e$ and $e=\left(e^{\sim}\right)^{-}=\left(e^{-}\right)^{\sim}$,
(ii) $e^{-} \rightarrow e=e$ and $e \rightarrow e^{-}=e^{-}$,
(ii') $e^{\sim} \rightsquigarrow e=e$ and $e \rightsquigarrow e^{\sim}=e^{\sim}$,
(iii) $(e \rightarrow x) \rightarrow e=e$, for every $x \in A$,
(iii') $(e \rightsquigarrow x) \rightsquigarrow e=e$, for every $x \in A$,
(iv) $e \wedge x=(e \rightarrow x) \odot e=(x \rightarrow e) \odot x=e \odot(e \rightsquigarrow x)=x \odot(x \rightsquigarrow e)$, for every $x \in A$.

Proof. (i). Follows from Lemma 2.1 (iii) and Lemma 2.2.
(ii). If $e \in B(A)$, then $e \vee e^{-}=1$. Since, by $c_{22}, 1=e \vee e^{-}=\left[\left(e \rightarrow e^{-}\right) \rightsquigarrow\right.$ $\left.e^{-}\right] \wedge\left[\left(e^{-} \rightarrow e\right) \rightsquigarrow e\right]$, we deduce that $\left(e \rightarrow e^{-}\right) \rightsquigarrow e^{-}=\left(e^{-} \rightarrow e\right) \rightsquigarrow e=1$, hence $e \rightarrow e^{-} \leq e^{-}$and $e^{-} \rightarrow e \leq e$ that is, $e \rightarrow e^{-}=e^{-}$and $e^{-} \rightarrow e=e$.
(ii'). As for (ii) using c_{21}.
(iii). If $x \in A$, then from $0 \leq x$ we deduce using c_{4} and c_{5} that $e^{-} \leq e \rightarrow x$ hence $(e \rightarrow x) \rightarrow e \leq e^{-} \rightarrow e=e$, by (ii). Since $e \leq(e \rightarrow x) \rightarrow e$ we obtain $(e \rightarrow x) \rightarrow e=e$.
(iii'). As for (iii).
(iv). For $x \in A$ and $e \in B(A)$, since by $c_{52}, e \wedge x=e \odot x=x \odot e \leq(e \rightarrow x) \odot e,(x \rightarrow$ e) $\odot x, e \odot(e \rightsquigarrow x), x \odot(x \rightsquigarrow e) \leq x, e$ we deduce that $(e \rightarrow x) \odot e=(x \rightarrow e) \odot x=$ $e \odot(e \rightsquigarrow x)=x \odot(x \rightsquigarrow e)=e \wedge x$.
Proposition 2.5. For $e \in A$ the following are equivalent:
(i) $e \in B(A)$,
(ii) $e=\left(e^{\sim}\right)^{-}=\left(e^{-}\right)^{\sim}$ and $e \wedge x=e \odot x$, for every $x \in A$.

Proof. $(i) \Rightarrow(i i)$. By Propositions 2.2 and 2.4.
(ii) $\Rightarrow(i)$. Suppose $e=\left(e^{\sim}\right)^{-}=\left(e^{-}\right)^{\sim}$ and $e \wedge x=e \odot x$, for every $x \in A$.

For $x=e^{-}, e^{\sim}$ using c_{37} we obtain $e^{-} \wedge e=e^{-} \odot e=0$ and $e \wedge e^{\sim}=e \odot e^{\sim}=0$, so, we have: $1=0^{\sim}=\left(e^{-} \wedge e\right)^{\sim} \stackrel{c_{48}}{=}\left(e^{-}\right)^{\sim} \vee e^{\sim}=e \vee e^{\sim}$, and $1=0^{-}=\left(e \wedge e^{\sim}\right)^{-} \stackrel{c_{49}}{\underline{c_{4}}}$ $e^{-} \vee\left(e^{\sim}\right)^{-}=e^{-} \vee e$, hence $e^{\sim} \vee e=e^{-} \vee e=1$ and using Proposition 2.3 we deduce that $e \in B(A)$.

Proposition 2.6. If $e \in B(A)$ and $x \in A$, then
$\left(c_{53}\right) x \rightarrow e=\left(x \odot e^{\sim}\right)^{-}=x^{-} \vee e$, $\left(c_{54}\right) x \rightsquigarrow e=\left(e^{-} \odot x\right)^{\sim}=e \vee x^{\sim}$.

Proof. We have

$$
\begin{gathered}
x \rightarrow e=x \rightarrow\left(e^{\sim}\right)^{-\underline{c_{47}}}\left(x \odot e^{\sim}\right)^{-}=\left(x \wedge e^{\sim}\right)^{-} \stackrel{c_{49}}{=} x^{-} \vee\left(e^{\sim}\right)^{-}=x^{-} \vee e, \\
x \rightsquigarrow e=x \rightsquigarrow\left(e^{-}\right)^{\sim} \stackrel{c_{47}}{=}\left(e^{-} \odot x\right)^{\sim}=\left(e^{-} \wedge x\right)^{\sim} \stackrel{c_{48}}{=}\left(e^{-}\right)^{\sim} \vee x^{\sim}=e \vee x^{\sim} .
\end{gathered}
$$

Lemma 2.3. If $e, f \in B(A)$ and $x, y \in A$, then:
$\left(c_{55}\right) e \vee(x \odot y)=(e \vee x) \odot(e \vee y)$,
$\left(c_{56}\right) e \wedge(x \odot y)=(e \wedge x) \odot(e \wedge y)$,
$\left(c_{57}\right) e \odot(x \rightsquigarrow y)=e \odot[(e \odot x) \rightsquigarrow(e \odot y)]$ and $(x \rightarrow y) \odot e=[(x \odot e) \rightarrow(y \odot e)] \odot e$, $\left(c_{58}\right) x \odot(e \rightsquigarrow f)=x \odot[(x \odot e) \rightsquigarrow(x \odot f)]$ and $(e \rightarrow f) \odot x=[(e \odot x) \rightarrow(f \odot x)] \odot x$,
$\left(c_{59}\right) e \rightarrow(x \rightarrow y)=(e \rightarrow x) \rightarrow(e \rightarrow y)$ and $e \rightsquigarrow(x \rightsquigarrow y)=(e \rightsquigarrow x) \rightsquigarrow(e \rightsquigarrow y)$.
Proof. (c_{55}). We have

$$
\begin{gathered}
(e \vee x) \odot(e \vee y) \stackrel{c_{30}}{=}[(e \vee x) \odot e] \vee[(e \vee x) \odot y]=[(e \vee x) \odot e] \vee[(e \odot y) \vee(x \odot y)] \\
=[(e \vee x) \wedge e] \vee[(e \odot y) \vee(x \odot y)]=e \vee(e \odot y) \vee(x \odot y)=e \vee(x \odot y) .
\end{gathered}
$$

$\left(c_{56}\right)$. We have
$(e \wedge x) \odot(e \wedge y)=(e \odot x) \odot(e \odot y)=(e \odot e) \odot(x \odot y)=e \odot(x \odot y)=e \wedge(x \odot y)$.
$\left(c_{57}\right)$. By c_{13} we have $x \rightarrow y \leq(x \odot e) \rightarrow(y \odot e)$, hence by $c_{3},(x \rightarrow y) \odot e \leq[(x \odot e) \rightarrow$ $(y \odot e)] \odot e$. Conversely, $[(x \odot e) \rightarrow(y \odot e)] \odot e \leq e$ and $[(x \odot e) \rightarrow(y \odot e)] \odot(x \odot e) \leq$ $y \odot e \leq y$ so $[(x \odot e) \rightarrow(y \odot e)] \odot e \leq x \rightarrow y$. Hence $[(x \odot e) \rightarrow(y \odot e)] \odot e \leq(x \rightarrow y) \wedge$ $e=(x \rightarrow y) \odot e$.

By c_{12} we have $x \rightsquigarrow y \leq(e \odot x) \rightsquigarrow(e \odot y)$, hence by $c_{3}, e \odot(x \rightsquigarrow y) \leq e \odot[(e \odot x) \rightsquigarrow$ $(e \odot y)]$. Conversely, $e \odot[(e \odot x) \rightsquigarrow(e \odot y)] \leq e$ and $(e \odot x) \odot[(e \odot x) \rightsquigarrow(e \odot y)] \leq e \odot y \leq y$ so $e \odot[(e \odot x) \rightsquigarrow(e \odot y)] \leq x \rightsquigarrow y$.

Hence $e \odot[(e \odot x) \rightsquigarrow(e \odot y)] \leq e \wedge(x \rightsquigarrow y)=e \odot(x \rightsquigarrow y)$.
$\left(c_{58}\right)$. We have

$$
\begin{gathered}
{[(e \odot x) \rightarrow(f \odot x)] \odot x=[(e \odot x) \rightarrow(f \wedge x)] \odot x} \\
\stackrel{c_{30}}{=}[((e \odot x) \rightarrow f) \wedge((e \odot x) \rightarrow x)] \odot x \\
=[((e \odot x) \rightarrow f) \wedge 1] \odot x=[(e \odot x) \rightarrow f] \odot x=[(x \odot e) \rightarrow f] \odot x \\
\stackrel{c_{23}}{=}[x \rightarrow(e \rightarrow f)] \odot x=x \wedge(e \rightarrow f)=x \odot(e \rightarrow f) .
\end{gathered}
$$

We have

$$
\begin{gathered}
x \odot[(x \odot e) \rightsquigarrow(x \odot f)]=x \odot[(x \odot e) \rightsquigarrow(x \wedge f)] \\
\stackrel{c_{30}}{=} x \odot[((x \odot e) \rightsquigarrow x) \wedge((x \odot e) \rightsquigarrow f)]=x \odot[1 \wedge((x \odot e) \rightsquigarrow f)] \\
=x \odot[(x \odot e) \rightsquigarrow f]=x \odot[(e \odot x) \rightsquigarrow f] \stackrel{c_{23}}{=} x \odot[x \rightsquigarrow(e \rightsquigarrow f)] \\
=x \wedge(e \rightsquigarrow f)=x \odot(e \rightsquigarrow f) .
\end{gathered}
$$

$\left(c_{59}\right)$.We have

$$
\begin{aligned}
& (e \rightarrow x) \rightarrow(e \rightarrow y) \stackrel{c_{23}}{=}[(e \rightarrow x) \odot e] \rightarrow y=(e \wedge x) \rightarrow y=(e \odot x) \rightarrow y \stackrel{c_{23}}{=} e \rightarrow(x \rightarrow y), \\
& (e \rightsquigarrow x) \rightsquigarrow(e \rightsquigarrow y) \stackrel{c_{23}}{=}[e \odot(e \rightsquigarrow x)] \rightsquigarrow y=(e \wedge x) \rightsquigarrow y=(x \odot e) \rightsquigarrow y \stackrel{c_{23}}{=} e \rightsquigarrow(x \rightsquigarrow y) .
\end{aligned}
$$

3. Pseudo-MTL algebra of fractions relative to a $\wedge-$ closed system

Definition 3.1. A nonempty subset $S \subseteq A$ is called \wedge-closed system in A if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

We denote by $S(A)$ the set of all \wedge-closed system of A (clearly $\{1\}, A \in S(A)$).
For $S \in S(A)$, on the pseudo - $M T L$ algebra A we consider the relation θ_{S} defined by

$$
(x, y) \in \theta_{S} \text { iff there exists } e \in S \cap B(A) \text { such that } x \wedge e=y \wedge e
$$

Lemma 3.1. θ_{S} is a congruence on A.

Proof. The reflexivity, symmetry and transitivity of θ_{S} are immediately.
The compatibility of θ_{S} with the operations \wedge, \vee, \odot is as in the case of $M T L$ algebras. To prove the compatibility of θ_{S} with the operations \rightarrow and \rightsquigarrow, let $x, y, z, t \in$ A such that $(x, y) \in \theta_{S}$ and $(z, t) \in \theta_{S}$. Thus there exists $e, f \in S \cap B(A)$ such that $x \wedge e=y \wedge e$ and $z \wedge f=t \wedge f ;$ we denote $g=e \wedge f \in S \cap B(A)$.

We obtain using c_{57} :

$$
\begin{gathered}
(x \rightarrow z) \wedge g=(x \rightarrow z) \odot g=[(x \odot g) \rightarrow(z \odot g)] \odot g \\
=[(y \odot g) \rightarrow(t \odot g)] \odot g=(y \rightarrow t) \odot g=(y \rightarrow t) \wedge g
\end{gathered}
$$

hence $(x \rightarrow z, y \rightarrow t) \in \theta_{S}$ and

$$
\begin{gathered}
(x \rightsquigarrow z) \wedge g=g \odot(x \rightsquigarrow z)=g \odot[(g \odot x) \rightsquigarrow(g \odot z)] \\
=g \odot[(g \odot y) \rightsquigarrow(g \odot t)]=g \odot(y \rightsquigarrow t)=(y \rightsquigarrow t) \wedge g,
\end{gathered}
$$

hence $(x \rightsquigarrow z, y \rightsquigarrow t) \in \theta_{S}$.
For $x \in A$ we denote by x / S the equivalence class of x relative to θ_{S} and by

$$
A[S]=A / \theta_{S}
$$

By $p_{S}: A \rightarrow A[S]$ we denote the canonical map defined by $p_{S}(x)=x / S$, for every $x \in A$. Clearly, in $A[S], \mathbf{0}=0 / S, \mathbf{1}=1 / S$ and for every $x, y \in A, x / S \wedge y / S=$ $(x \wedge y) / S, x / S \vee y / S=(x \vee y) / S, x / S \odot y / S=(x \odot y) / S, x / S \rightarrow y / S=(x \rightarrow$ $y) / S, x / S \rightsquigarrow y / S=(x \rightsquigarrow y) / S$.

So, p_{S} is an onto morphism of pseudo- $M T L$ algebras.
Remark 3.1. Since for every $s \in S \cap B(A), s \wedge s=s \wedge 1$ we deduce that $s / S=$ $1 / S=\mathbf{1}$, hence $p_{S}(S \cap B(A))=\{\mathbf{1}\}$.

Proposition 3.1. If $a \in A$, then $a / S \in B(A[S])$ iff there is $e \in S \cap B(A)$ such that $a \vee a^{-}, a \vee a^{\sim} \geq e$. So, if $e \in B(A)$, then $e / S \in B(A[S])$.

Proof. For $a \in A$, we have by Proposition 2.3, $a / S \in B(A[S]) \Leftrightarrow a / S \vee(a / S)^{-}=$ $a / S \vee(a / S)^{\sim}=\mathbf{1} \Leftrightarrow\left(a \vee a^{-}\right) / S=\left(a \vee a^{\sim}\right) / S=1 / S$ iff there is $e_{1}, e_{2} \in S \cap B(A)$ such that $\left(a \vee a^{-}\right) \wedge e_{1}=1 \wedge e_{1}=e_{1}$ and $\left(a \vee a^{\sim}\right) \wedge e_{2}=1 \wedge e_{2}=e_{2}$. If denote $e=e_{1} \wedge e_{2} \in S \cap B(A)$, then $a \vee a^{-}, a \vee a^{\sim} \geq e$.

If $e \in B(A)$, since $1 \in S \cap B(A)$ and $1=e \vee e^{-}=e \vee e^{\sim} \geq 1$, we deduce that $e / S \in B(A[S])$.

As in the case of $M T L$ algebras we have the following result:
Theorem 3.1. If A^{\prime} is a pseudo-MTL algebra and $f: A \rightarrow A^{\prime}$ is a morphism of pseudo-MTL algebras such that $f(S \cap B(A))=\{\mathbf{1}\}$, then there is an unique morphism of pseudo-MTL algebras $f^{\prime}: A[S] \rightarrow A^{\prime}$ such that the diagram

is commutative (i.e. $f^{\prime} \circ p_{S}=f$).
Definition 3.2. Theorem 3.1 allows us to call $A[S]$ the pseudo- $M T L$ algebra of fractions relative to the $\wedge-$ closed system S.

Remark 3.2. If pseudo-MTL algebra A is a $M T L-$ algebra, then $A[S]$ is a $M T L-$ algebra, called the MTL-algebra of fractions relative to the \wedge-closed system S.

Example 3.1. If A is a pseudo MTL-algebra and $S=\{1\}$ or S is such that $1 \in S$ and $S \cap(B(A) \backslash\{1\})=\varnothing$, then for $x, y \in A,(x, y) \in \theta_{S} \Longleftrightarrow x \wedge 1=y \wedge 1 \Longleftrightarrow x=y$, hence in this case $A[S]=A$.

Example 3.2. If A is a pseudo $M T L-$ algebra and S is a \wedge-closed system such that $0 \in S$ (for example $S=A$ or $S=B(A)$), then for every $x, y \in A,(x, y) \in \theta_{S}$ (since $x \wedge 0=y \wedge 0$ and $0 \in S \cap B(A))$, hence in this case $A[S]=\mathbf{0}$.

4. Strong multipliers on a pseudo MTL - algebra

The concept of maximal lattice of quotients for a distributive lattice was defined by J. Schmid in [17] taking as a guide-line the construction of complete ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek (see [13], p.36). The central role in the constructions of maximal lattice of quotients for a distributive lattice due to J. Schmid is played by the concept of multiplier (defined for a distributive lattice by W. H. Cornish in [5]).

In this section by A we denote the universe of a pseudo $M T L-$ algebra.
We denote by $C(A)=\{x \in A: x \odot(x \rightsquigarrow a)=(x \rightarrow a) \odot x$, for every $a \leq x, a \in A\}$. We remark that if A is a $M T L$ - algebra or a pseudo $B L-$ algebra, then $C(A)=A$.

Lemma 4.1. In a pseudo $M T L-$ algebra A if $e \in B(A)$ and $x \in C(A)$, then $e \odot x \in$ $C(A)$.

Proof. Let $a \in A$ such that $a \leq e \odot x$. Then $(e \odot x) \odot[(e \odot x) \rightsquigarrow a]=x \odot(e \odot$ $\left.[(e \odot x) \rightsquigarrow a]) \stackrel{c_{57}}{=} x \odot e \odot[(e \odot e \odot x) \rightsquigarrow(e \odot a)]\right)=$
$x \odot e \odot[(e \odot x) \rightsquigarrow(e \odot a)]) \stackrel{c_{57}}{=} x \odot e \odot(x \rightsquigarrow a)=e \odot x \odot(x \rightsquigarrow a) \stackrel{a \leq x, x \in C(A)}{=}$ $e \odot(x \rightarrow a) \odot x \stackrel{c_{57}}{=}[(x \odot e) \rightarrow(a \odot e)] \odot e \odot x=[(x \odot e \odot e) \rightarrow(a \odot e)] \odot e \odot x \stackrel{c_{57}}{=}$ $[(x \odot e) \rightarrow a] \odot(x \odot e)=[(e \odot x) \rightarrow a] \odot(e \odot x)$.
Also, we denote by $\mathcal{I}(A)=\{I \subseteq A$: if $x, y \in A, x \leq y$ and $y \in I$, then $x \in I\}$ and by $\mathcal{I}^{\prime}(A)=\{I=J \cap C(A), J \in \mathcal{I}(A)\}$. Clearly, if $I_{1}, I_{2} \in \mathcal{I}^{\prime}(A)$, then $I_{1} \cap I_{2} \in \mathcal{I}^{\prime}(A)$. Also, if $I \in \mathcal{I}^{\prime}(A)$, then $0 \in I$. If A is a $M T L$ - algebra or a pseudo $B L$ - algebra, then $\mathcal{I}^{\prime}(A)=\mathcal{I}(A)$ is the set of all ordered ideals of A.

Definition 4.1. By partial strong multiplier on A we mean a map $f: I \rightarrow A$, where $I \in \mathcal{I}^{\prime}(A)$, which verifies the next axioms:
$\left(M_{1}\right) f(e \odot x)=e \odot f(x)$, for every $e \in B(A)$ and $x \in I$;
$\left(M_{2}\right) x \odot(x \rightsquigarrow f(x))=f(x)$, for every $x \in I$;
$\left(M_{3}\right)$ If $e \in I \cap B(A)$, then $f(e) \in B(A)$;
$\left(M_{4}\right) x \wedge f(e)=e \wedge f(x)$, for every $e \in I \cap B(A)$ and $x \in I$.
Remark 4.1. The axiom $M_{2}, x \odot(x \rightsquigarrow f(x))=f(x)$ implies $f(x) \leq x$, for every $x \in I$, and since $x \in I \subseteq C(A)$, this axiom become $x \odot(x \rightsquigarrow f(x))=(x \rightarrow f(x)) \odot x=$ $f(x)$, for every $x \in I$.

Remark 4.2. If pseudo $M T L$-algebra A is a $M T L$-algebra, the Definition 4.1 coincide with the definition for partial strong multipliers in a MTL-algebra, see [15].

By $\operatorname{dom}(f) \in \mathcal{I}^{\prime}(A)$ we denote the domain of f; if $\operatorname{dom}(f)=C(A)$, we call f total. To simplify the language, we will use strong multiplier instead partial strong multiplier, using total to indicate that the domain of a certain multiplier is $C(A)$.
Example 4.1. The map $\mathbf{0}: C(A) \rightarrow A$ defined by $\mathbf{0}(x)=0$, for every $x \in C(A)$ is a total strong multiplier on A.

Example 4.2. The map $1: C(A) \rightarrow A$ defined by $1(x)=x$, for every $x \in C(A)$ is also a total strong multiplier on A.
Example 4.3. For $a \in B(A)$ and $I \in \mathcal{I}^{\prime}(A)$, the map $f_{a}: I \rightarrow A$ defined by $f_{a}(x)=a \wedge x \stackrel{c_{52}}{=} a \odot x$, for every $x \in I$ is a strong multiplier on A (called principal).

Indeed, for $x \in I$ and $e \in B(A)$, we have $f_{a}(e \odot x)=a \wedge(e \odot x)=a \wedge(e \wedge x)=$ $e \wedge(a \wedge x)=e \odot(a \wedge x)=e \odot f_{a}(x)$ and $x \odot\left(x \rightsquigarrow f_{a}(x)\right)=x \odot(x \rightsquigarrow(a \wedge x)) \stackrel{c_{30}}{=}$ $x \odot[(x \rightsquigarrow a) \wedge(x \rightsquigarrow x)]=x \odot(x \rightsquigarrow a)=x \wedge a=f_{a}(x)$.

Also, if $e \in I \cap B(A), f_{a}(e)=e \wedge a \in B(A)$ and $x \wedge(a \wedge e)=e \wedge(a \wedge x)$, for every $x \in I$.

If $\operatorname{dom}\left(f_{a}\right)=C(A)$, we denote f_{a} by $\overline{f_{a}}$; clearly, $\overline{f_{0}}=\mathbf{0}$ and $\overline{f_{1}}=\mathbf{1}$.
For $I \in \mathcal{I}^{\prime}(A)$, we denote $M(I, A)=\{f: I \rightarrow A \mid f$ is a strong multiplier on $A\}$ and $M(A)=\underset{I \in \mathcal{I}^{\prime}(A)}{\cup} M(I, A)$.

Proposition 4.1. If $I_{1}, I_{2} \in \mathcal{I}^{\prime}(A)$ and $f_{i} \in M\left(I_{i}, A\right), i=1,2$, then $\left(c_{60}\right) f_{1}(x) \odot\left[x \rightsquigarrow f_{2}(x)\right]=\left[x \rightarrow f_{1}(x)\right] \odot f_{2}(x)$, for every $x \in I_{1} \cap I_{2}$.

Proof. For $x \in I_{1} \cap I_{2}$ we have $f_{1}(x) \odot\left[x \rightsquigarrow f_{2}(x)\right] \stackrel{M_{2}}{=}\left[\left(x \rightarrow f_{1}(x)\right) \odot x\right] \odot(x \rightsquigarrow$ $\left.f_{2}(x)\right)=\left(x \rightarrow f_{1}(x)\right) \odot\left[x \odot\left(x \rightsquigarrow f_{2}(x)\right)\right] \stackrel{M_{2}}{=}\left[x \rightarrow f_{1}(x)\right] \odot f_{2}(x)$.
Definition 4.2. For $I_{1}, I_{2} \in \mathcal{I}^{\prime}(A)$ and $f_{i} \in M\left(I_{i}, A\right), i=1,2$, we define $f_{1} \wedge f_{2}$, $f_{1} \vee f_{2}, f_{1} \otimes f_{2}, f_{1} \leftrightarrow f_{2}, f_{1} \leftrightarrow f_{2}: I_{1} \cap I_{2} \rightarrow A$ by $\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x),\left(f_{1} \vee\right.$ $\left.f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x),\left(f_{1} \otimes f_{2}\right)(x)=f_{1}(x) \odot\left[x \rightsquigarrow f_{2}(x)\right] \stackrel{c_{60}}{=}\left[x \rightarrow f_{1}(x)\right] \odot f_{2}(x),\left(f_{1} \leftrightarrow\right.$ $\left.f_{2}\right)(x)=\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot x,\left(f_{1} \rightsquigarrow f_{2}\right)(x)=x \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right]$, for every $x \in I_{1} \cap$ I_{2}.

Lemma 4.2. $f_{1} \wedge f_{2} \in M\left(I_{1} \cap I_{2}, A\right)$.
Proof. It is sufficient to verify only M_{2} (for M_{1}, M_{3} and M_{4} see [15]).
For every $x \in I_{1} \cap I_{2}$ we have $x \odot\left[x \rightsquigarrow\left(f_{1} \wedge f_{2}\right)(x)\right]=x \odot\left[x \rightsquigarrow\left(f_{1}(x) \wedge f_{2}(x)\right)\right] \stackrel{c_{30}}{=}$
$x \odot\left[\left(x \rightsquigarrow f_{1}(x)\right) \wedge\left(x \rightsquigarrow f_{2}(x)\right)\right] \stackrel{c_{34}}{=}\left[x \odot\left(x \rightsquigarrow f_{1}(x)\right)\right] \wedge\left[x \odot\left(x \rightsquigarrow f_{2}(x)\right)\right] \stackrel{M_{2}}{=}$ $f_{1}(x) \wedge f_{2}(x)=\left(f_{1} \wedge f_{2}\right)(x)$
Lemma 4.3. $f_{1} \vee f_{2} \in M\left(I_{1} \cap I_{2}, A\right)$.
Proof. The axioms M_{1}, M_{3} and M_{4} are verified as in the case of $M T L$ - algebras (see [15]). To verify M_{2}, let $x \in I_{1} \cap I_{2}$. Then $x \odot\left[x \rightsquigarrow\left(f_{1} \vee f_{2}\right)(x)\right]=x \odot\left[x \rightsquigarrow\left(f_{1}(x) \vee\right.\right.$ $\left.\left.f_{2}(x)\right)\right] \stackrel{c_{32}}{=} x \odot\left[\left(x \rightsquigarrow f_{1}(x)\right) \vee\left(x \rightsquigarrow f_{2}(x)\right)\right] \stackrel{c_{30}}{=}\left[x \odot\left(x \rightsquigarrow f_{1}(x)\right)\right] \vee\left[x \odot\left(x \rightsquigarrow f_{2}(x)\right)\right]$ $\stackrel{M_{2}}{=} f_{1}(x) \vee f_{2}(x)=\left(f_{1} \vee f_{2}\right)(x)$.
Lemma 4.4. $f_{1} \otimes f_{2} \in M\left(I_{1} \cap I_{2}, A\right)$.
Proof. By using c_{57} and c_{58} the axioms M_{1}, M_{3} and M_{4} are verified as in the case of $M T L$ - algebras (see [15]). For M_{2}, let $x \in I_{1} \cap I_{2}$ and denote $f=f_{1} \otimes f_{2}$.

To prove the equality $x \odot(x \rightsquigarrow f(x))=f(x)$ since by $c_{1}, x \odot(x \rightsquigarrow f(x)) \leq f(x)$, it is sufficient to prove that $f(x) \leq x \odot(x \rightsquigarrow f(x))$.

We have $f(x)=f_{1}(x) \odot\left(x \rightsquigarrow f_{2}(x)\right)=x \odot\left(x \rightsquigarrow f_{1}(x)\right) \odot\left(x \rightsquigarrow f_{2}(x)\right)$ and $x \odot(x \rightsquigarrow f(x))=x \odot\left[x \rightsquigarrow\left(x \odot\left(x \rightsquigarrow f_{1}(x)\right) \odot\left(x \rightsquigarrow f_{2}(x)\right)\right)\right]$. So, to prove that $f(x) \leq x \odot(x \rightsquigarrow f(x))$ it is sufficient to prove that $x \odot\left(x \rightsquigarrow f_{1}(x)\right) \odot\left(x \rightsquigarrow f_{2}(x)\right) \leq$ $x \odot\left[x \rightsquigarrow\left(x \odot\left(x \rightsquigarrow f_{1}(x)\right) \odot\left(x \rightsquigarrow f_{2}(x)\right)\right)\right]$, that is $\alpha \leq x \rightsquigarrow(x \odot \alpha)$ (with $\alpha \stackrel{\text { not }}{=}(x \rightsquigarrow$ $\left.\left.f_{1}(x)\right) \odot\left(x \rightsquigarrow f_{2}(x)\right)\right)$, which is true using a_{3}.
Lemma 4.5. $f_{1} \leadsto f_{2} \in M\left(I_{1} \cap I_{2}, A\right)$.

Proof. By using c_{57} and c_{58} the axioms M_{1}, M_{3} and M_{4} are verified as in the case of $M T L-$ algebras (see [15]). For M_{2}, let $x \in I_{1} \cap I_{2}$ and denote $f=f_{1}$ $f_{2}: I_{1} \cap I_{2} \rightarrow A$; then $f(x)=x \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right]$. We have $f_{1}(x) \rightsquigarrow f_{2}(x) \leq x \rightsquigarrow$ $\left[x \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)\right]$, hence $x \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right] \leq x \odot\left[x \rightsquigarrow\left(x \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)\right)\right]$ $\Leftrightarrow f(x) \leq x \odot[x \rightsquigarrow f(x)] \stackrel{c^{\prime}}{\Leftrightarrow} f(x)=x \odot[x \rightsquigarrow f(x)]$.

Lemma 4.6. $f_{1} \leftrightarrow f_{2} \in M\left(I_{1} \cap I_{2}, A\right)$.
Proof. By using c_{57} and c_{58} the axioms M_{1}, M_{3} and M_{4} are verified as in the case of $M T L-$ algebras (see [15]). For M_{2}, let $x \in I_{1} \cap I_{2}$ and denote $f=f_{1} \leftrightarrow$ $f_{2}: I_{1} \cap I_{2} \rightarrow A$; then $f(x)=\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot x$. We have $f_{1}(x) \rightarrow f_{2}(x) \leq x \rightarrow$ $\left[\left(f_{1}(x) \rightarrow f_{2}(x)\right) \odot x\right]$, hence $\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot x \leq\left[x \rightarrow\left(\left(f_{1}(x) \rightarrow f_{2}(x)\right) \odot x\right)\right] \odot x$ $\Leftrightarrow f(x) \leq[x \rightarrow f(x)] \odot x \stackrel{c_{2}}{\Leftrightarrow} f(x)=[x \rightarrow f(x)] \odot x$.

Using Remark 4.1 we deduce that $x \odot(x \rightsquigarrow f(x))=(x \rightarrow f(x)) \odot x=f(x)$, for every $x \in I$.

Proposition 4.2. $(M(A), \wedge, \vee, \otimes, \leftrightarrow, \nprec \rightsquigarrow, \mathbf{0}, \mathbf{1})$ is a pseudo $M T L-$ algebra.
Proof. We verify the axioms of a pseudo $M T L-$ algebra.
$\left(a_{1}\right)$. Obviously $(M(A), \wedge, \vee, \mathbf{0}, \mathbf{1})$ is a bounded (distributive) lattice.
$\left(a_{2}\right)$. As in the case of $M T L$ - algebras (see [15]), using c_{60}.
$\left(a_{3}\right)$. Let $f_{i} \in M\left(I_{i}, A\right)$, where $I_{i} \in \mathcal{I}^{\prime}(A), i=1,2,3$.
¿From $f_{1} \leq f_{2} \leftrightarrow f_{3}$ for $x \in I_{1} \cap I_{2} \cap I_{3}$, we deduce that

$$
f_{1}(x) \leq\left(f_{2} \leftrightarrow f_{3}\right)(x) \Leftrightarrow f_{1}(x) \leq\left[f_{2}(x) \rightarrow f_{3}(x)\right] \odot x
$$

So, by c_{3}, we deduce that

$$
\begin{gathered}
f_{1}(x) \odot\left[x \rightsquigarrow f_{2}(x)\right] \leq\left[f_{2}(x) \rightarrow f_{3}(x)\right] \odot x \odot\left[x \rightsquigarrow f_{2}(x)\right] \Leftrightarrow \\
f_{1}(x) \odot\left[x \rightsquigarrow f_{2}(x)\right] \leq\left(f_{2}(x) \rightarrow f_{3}(x)\right) \odot f_{2}(x) \Leftrightarrow
\end{gathered}
$$

Since $\left(f_{2}(x) \rightarrow f_{3}(x)\right) \odot f_{2}(x) \leq f_{3}(x)$ we deduce that $\left(f_{1} \otimes f_{2}\right)(x) \leq f_{3}(x)$, for every $x \in I_{1} \cap I_{2} \cap I_{3}$, that is, $f_{1} \otimes f_{2} \leq f_{3}$.

Conversely, if $\left(f_{1} \otimes f_{2}\right)(x) \leq f_{3}(x)$, then we have $\left[x \rightarrow f_{1}(x)\right] \odot f_{2}(x) \leq f_{3}(x)$, for every $x \in I_{1} \cap I_{2} \cap I_{3}$. Obviously,

$$
\begin{gathered}
{\left[x \rightarrow f_{1}(x)\right] \leq f_{2}(x) \rightarrow f_{3}(x) \stackrel{c_{3}}{\Rightarrow}\left(x \rightarrow f_{1}(x)\right) \odot x \leq\left(f_{2}(x) \rightarrow f_{3}(x)\right) \odot x} \\
\Rightarrow f_{1}(x) \leq\left(f_{2}(x) \rightarrow f_{3}(x)\right) \odot x \Rightarrow f_{1}(x) \leq\left(f_{2} \leftrightarrow f_{3}\right)(x)
\end{gathered}
$$

Hence, $f_{1} \leq f_{2} \leftrightarrow f_{3}$ iff $f_{1} \otimes f_{2} \leq f_{3}$, for all $f_{1}, f_{2}, f_{3} \in M(A)$.
If $f_{2} \leq f_{1} \leadsto \nrightarrow f_{3}$ for $x \in I_{1} \cap I_{2} \cap I_{3}$, then we have

$$
f_{2}(x) \leq\left(f_{1} \nLeftarrow f_{3}\right)(x) \Leftrightarrow f_{2}(x) \leq x \odot\left[f_{1}(x) \rightsquigarrow f_{3}(x)\right] .
$$

So, by c_{3}, we have

$$
\begin{gathered}
{\left[x \rightarrow f_{1}(x)\right] \odot f_{2}(x) \leq\left[x \rightarrow f_{1}(x)\right] \odot x \odot\left[f_{1}(x) \rightsquigarrow f_{3}(x)\right] \Leftrightarrow} \\
\left(f_{1} \otimes f_{2}\right)(x) \leq f_{1}(x) \odot\left(f_{1}(x) \rightsquigarrow f_{3}(x)\right) .
\end{gathered}
$$

Since $f_{1}(x) \odot\left(f_{1}(x) \rightsquigarrow f_{3}(x)\right) \leq f_{3}(x)$ we deduce that $\left(f_{1} \otimes f_{2}\right)(x) \leq f_{3}(x)$, for every $x \in I_{1} \cap I_{2} \cap I_{3}$, that is, $f_{1} \otimes f_{2} \leq f_{3}$.

Conversely if $\left(f_{1} \otimes f_{2}\right)(x) \leq f_{3}(x)$, then we have $f_{1}(x) \odot\left[x \rightsquigarrow f_{2}(x)\right] \leq f_{3}(x)$, for every $x \in I_{1} \cap I_{2} \cap I_{3}$. It is obvious that

$$
\begin{gathered}
x \rightsquigarrow f_{2}(x) \leq f_{1}(x) \rightsquigarrow f_{3}(x) \stackrel{c_{3}}{\Rightarrow} x \odot\left(x \rightsquigarrow f_{2}(x)\right) \leq x \odot\left(f_{1}(x) \rightsquigarrow f_{3}(x)\right) \\
\quad \Rightarrow f_{2}(x) \leq x \odot\left(f_{1}(x) \rightsquigarrow f_{3}(x)\right) \Rightarrow f_{2}(x) \leq\left(f_{1} \rightsquigarrow f_{3}\right)(x)
\end{gathered}
$$

Hence，$f_{2} \leq f_{1}$ ans f_{3} iff $f_{1} \otimes f_{2} \leq f_{3}$ for all $f_{1}, f_{2}, f_{3} \in M(A)$ ．
$\left(a_{4}\right)$ ．For the preliniarity equation we have

$$
\begin{gathered}
{\left[\left(f_{1} \leftrightarrow f_{2}\right) \vee\left(f_{2} \leftrightarrow f_{1}\right)\right](x)=\left[\left(f_{1} \leftrightarrow f_{2}\right)(x)\right] \vee\left[\left(f_{2} \leftrightarrow f_{1}\right)(x)\right]=} \\
=\left[\left(f_{1}(x) \rightarrow f_{2}(x)\right) \odot x\right] \vee\left[\left(f_{2}(x) \rightarrow f_{1}(x)\right) \odot x\right]= \\
\stackrel{c_{30}}{=}\left[\left(f_{1}(x) \rightarrow f_{2}(x)\right) \vee\left(f_{2}(x) \rightarrow f_{1}(x)\right)\right] \odot x \stackrel{a_{4}}{=} \odot x=x=\mathbf{1}(x),
\end{gathered}
$$

and

$$
\begin{aligned}
{\left[\left(f_{1} \rightsquigarrow\right.\right.} & \left.\left.f_{2}\right) \vee\left(f_{2} \rightsquigarrow f_{1}\right)\right](x)=\left[\left(f_{1} \rightsquigarrow f_{2}\right)(x)\right] \vee\left[\left(f_{2} \rightsquigarrow f_{1}\right)(x)\right]= \\
& =\left[x \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)\right] \vee\left[x \odot\left(f_{2}(x) \rightsquigarrow f_{1}(x)\right)\right]= \\
\stackrel{c_{30}}{=} x \odot & {\left[\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right) \vee\left(f_{2}(x) \rightsquigarrow f_{1}(x)\right)\right] \stackrel{a_{4}}{=} x \odot 1=x=\mathbf{1}(x), }
\end{aligned}
$$

hence $\left(f_{1} \leftrightarrow f_{2}\right) \vee\left(f_{2} \leftrightarrow f_{1}\right)=\left(f_{1} \leftrightarrow f_{2}\right) \vee\left(f_{2} \leftrightarrow f_{1}\right)=\mathbf{1}$ ．
Finally，we deduce that $(M(A), \wedge, \vee, \otimes, \leftrightarrow, \leftrightarrow \rightsquigarrow, \mathbf{0}, \mathbf{1})$ is a pseudo $M T L-$ algebra．

Remark 4．3．To prove that $(M(A), \wedge, \vee, \otimes, \leftrightarrow,\lfloor\rightsquigarrow>, \mathbf{0}, \mathbf{1})$ is a pseudo $M T L$－algebra it is sufficient to ask for strong multipliers only the axioms M_{1} and M_{2} ．

Remark 4．4．If pseudo $M T L-$ algebra A is a pseudo BL－algebra（i．e．$(x \rightarrow$ $y) \odot x=x \odot(x \rightsquigarrow y)=x \wedge y$ ，for all $x, y \in A)$ ，then pseudo MTL－algebra $M(A)$ is also a pseudo $B L-$ algebra．Indeed，let $f_{i} \in M\left(I_{i}, A\right)$ ，where $I_{i} \in \mathcal{I}^{\prime}(A), i=1,2$ ． Then

$$
\begin{aligned}
\left(f_{1}\right. & \left.\leftrightarrow f_{2}\right) \otimes f_{1}=f_{1} \wedge f_{2} \Leftrightarrow\left[\left(f_{1} \leftrightarrow f_{2}\right) \otimes f_{1}\right](x)=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow \\
& \Leftrightarrow\left(f_{1} \leftrightarrow f_{2}\right)(x) \odot\left[x \rightsquigarrow f_{1}(x)\right]=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow \\
{\left[\left(f_{1}(x)\right.\right.} & \left.\left.\rightarrow f_{2}(x)\right) \odot x\right] \odot\left[x \rightsquigarrow f_{1}(x)\right]=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow \\
& \Leftrightarrow\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot\left[x \odot\left(x \rightsquigarrow f_{1}(x)\right)\right]=f_{1}(x) \wedge f_{2}(x) \Leftrightarrow \\
{\left[f_{1}(x)\right.} & \left.\rightarrow f_{2}(x)\right] \odot\left(x \wedge f_{1}(x)\right)=f_{1}(x) \wedge f_{2}(x) \Leftrightarrow \\
& \Leftrightarrow\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot f_{1}(x)=f_{1}(x) \wedge f_{2}(x),
\end{aligned}
$$

for every $x \in I_{1} \cap I_{2}$ ，which is true because A is a pseudo $B L-$ algebra．
Also，

$$
\begin{aligned}
& f_{1} \otimes\left(f_{1} \quad \text { an } \quad f_{2}\right)=f_{1} \wedge f_{2} \Leftrightarrow\left[f_{1} \otimes\left(f_{1} \text { かっ } f_{2}\right)\right](x)=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow \\
& \Leftrightarrow \quad\left[x \rightarrow f_{1}(x)\right] \odot\left[x \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)\right]=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow \\
& {\left[\left(x \quad \rightarrow \quad f_{1}(x)\right) \odot x\right] \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow} \\
& \Leftrightarrow \quad\left(x \wedge f_{1}(x)\right) \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow \\
& \Leftrightarrow \quad f_{1}(x) \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)=\left(f_{1} \wedge f_{2}\right)(x),
\end{aligned}
$$

for every $x \in I_{1} \cap I_{2}$ ，which is true because A is a pseudo $B L-$ algebra．
Remark 4．5．If pseudo MTL－algebra A is a $M T L$－algebra then pseudo MTL－ algebra $M(A)$ is also a $M T L$－algebra．Indeed if $I_{1}, I_{2} \in \mathcal{I}^{\prime}(A)$ and $f_{i} \in M\left(I_{i}, A\right)$ ， $i=1,2$ we have

$$
\left(f_{1} \leftrightarrow f_{2}\right)(x)=\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot x=x \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right]=\left(f_{1} \nprec \nrightarrow f_{2}\right)(x),
$$

for all $x \in I_{1} \cap I_{2}$ ，then $f_{1} \leftrightarrow f_{2}=f_{1} \leftrightarrow f_{2}$ ，and pseudo MTL－algebra $M(A)$ is commutative，so is a MTL－algebra．
Definition 4．3．（［12］）A pseudo MTL algebra A is called
（i）A pseudo IMTL algebra（pseudo involutive algebra）if it satisfies the equation $(p D N)\left(x^{-}\right)^{\sim}=\left(x^{\sim}\right)^{-}=x ;$
(ii) a pseudo WNM algebra (pseudo weak nilpotent minimum) if it satisfies the equation
$(W)(x \odot y)^{-} \vee[(x \wedge y) \rightarrow(x \odot y)]=(x \odot y)^{\sim} \vee[(x \wedge y) \rightsquigarrow(x \odot y)]=1 ;$
(iii) a pseudo $N M$ algebra (pseudo nilpotent minimum) if it is a WNM algebra satisfying the axiom $(p D N)$.

Theorem 4.1. If A is a pseudo IMTL algebra (resp. a pseudo $W N M$ algebra, a pseudo $N M$ algebra), then $M(A)$ is also a pseudo IMTL algebra (resp. a pseudo WNM algebra, a pseudo $N M$ algebra).

Proof. Suppose A is a pseudo $I M T L$ algebra. For $f \in M(I, A)$, with $I \in \mathcal{I}^{\prime}(A)$ and $x \in I$, we have $\left(f^{-}\right)^{\sim}=(f \leftrightarrow \mathbf{0}) \not \leftrightarrow \mathbf{0}$ and $\left(f^{\sim}\right)^{-}=(f \leftrightarrow \mathbf{0}) \leftrightarrow \mathbf{0}$, so $\left(f^{-}\right)^{\sim}=x \odot\left[(f(x))^{-} \odot x\right]^{\sim} \stackrel{c_{47}}{=} x \odot\left[x \rightsquigarrow\left((f(x))^{-}\right)^{\sim}\right] \stackrel{p D N}{=} x \odot[x \rightsquigarrow f(x)] \stackrel{M_{2}}{=} f(x)$, and $\left(f^{\sim}\right)^{-}(x)=\left[x \odot f^{\sim}(x)\right]^{-} \odot x \stackrel{c_{47}}{=}\left[x \rightarrow\left((f(x))^{\sim}\right)^{-}\right] \odot x \stackrel{p D N}{=}[x \rightarrow f(x)] \odot x \stackrel{M_{2}}{=} f(x)$, hence $\left(f^{-}\right)^{\sim}=\left(f^{\sim}\right)^{-}=f$, that is, $M(A)$ is a pseudo $I M T L$ algebra.

Suppose that A is a pseudo $W N M$ algebra. Let $f \in M(I, A), g \in M(J, A)$ with $I, J \in \mathcal{I}^{\prime}(A), x \in I \cap J$ and denote $a=f(x), b=g(x)$. We have $\left((f \otimes g)^{\sim} \vee((f \wedge g)\right.$) \rightarrow $(f \otimes g))(x)=\left((f \otimes g)^{\sim}(x)\right) \vee(x \odot((f \wedge g)(x) \rightsquigarrow(f \otimes g)(x)))=(x \odot(a \odot(x \rightsquigarrow$ $\left.b))^{\sim}\right) \vee(x \odot((a \wedge b) \rightsquigarrow(a \odot(x \rightsquigarrow b)))) \stackrel{c_{30}}{=} x \odot\left((a \odot(x \rightsquigarrow b))^{\sim} \vee((a \wedge b) \rightsquigarrow(a \odot(x \rightsquigarrow b)))\right)$.

Since $b \leq x \rightsquigarrow b$ we deduce that $a \wedge b \leq a \wedge(x \rightsquigarrow b)$, hence, using $c_{5},(a \wedge(x \rightsquigarrow$ $b)) \rightsquigarrow(a \odot(x \rightsquigarrow b)) \leq(a \wedge b) \rightsquigarrow(a \odot(x \rightsquigarrow b))$.

Since A is supposed a pseudo $W N M$-algebra we obtain $1=(a \odot(x \rightsquigarrow b))^{\sim} \vee$ $((a \wedge(x \rightsquigarrow b)) \rightsquigarrow(a \odot(x \rightsquigarrow b))) \leq(a \odot(x \rightsquigarrow b))^{\sim} \vee((a \wedge b) \rightsquigarrow(a \odot(x \rightsquigarrow b)))$, hence $(a \odot(x \rightsquigarrow b))^{\sim} \vee((a \wedge b) \rightsquigarrow(a \odot(x \rightsquigarrow b)))=1$. Then $\left((f \otimes g)^{\sim} \vee((f \wedge g)\right.$ ↔ $>$ $(f \otimes g)))(x)=x \odot 1=x=\mathbf{1}(x) \Leftrightarrow(f \otimes g)^{\sim} \vee((f \wedge g) \leftrightarrow \nrightarrow(f \otimes g))=\mathbf{1}$.

Also we have $\left((f \otimes g)^{-} \vee((f \wedge g) \leftrightarrow(f \otimes g))\right)(x)=\left((f \otimes g)^{-}(x)\right) \vee(((f \wedge g)(x) \rightarrow$ $(f \otimes g)(x)) \odot x)=\left(((x \rightarrow b) \odot a)^{-} \odot x\right) \vee(((a \wedge b) \rightarrow((x \rightarrow b) \odot a)) \odot x) \stackrel{c_{30}}{=}$ $\left(((x \rightarrow b) \odot a)^{-} \vee((a \wedge b) \rightarrow((x \rightarrow b) \odot a))\right) \odot x$.

Since $b \leq x \rightarrow b$ we deduce that $a \wedge b \leq a \wedge(x \rightarrow b)$, hence using $c_{5},(a \wedge(x \rightarrow$ $b)) \rightarrow((x \rightarrow b) \odot a) \leq(a \wedge b) \rightarrow((x \rightarrow b) \odot a)$.

Since A is supposed a pseudo $W N M$-algebra we obtain $1=((x \rightarrow b) \odot a)^{-} \vee$ $((a \wedge(x \rightarrow b)) \rightarrow((x \rightarrow b) \odot a)) \leq((x \rightarrow b) \odot a)^{-} \vee((a \wedge b) \rightarrow((x \rightarrow b) \odot a))$, hence $((x \rightarrow b) \odot a)^{-} \vee((a \wedge b) \rightarrow((x \rightarrow b) \odot a))=1$. Then $\left((f \otimes g)^{-} \vee((f \wedge g) \leftrightarrow\right.$ $(f \otimes g)))(x)=x \odot 1=x=\mathbf{1}(x) \Leftrightarrow(f \otimes g)^{-} \vee((f \wedge g) \leftrightarrow(f \otimes g))=\mathbf{1}$, that is $M(A)$ is a pseudo $W N M$ algebra.

Suppose now A is a pseudo $N M$ algebra. Then A is a pseudo $W N M$ algebra and a pseudo $I M T L$ algebra, so $M(A)$ is a pseudo $W N M$ algebra and a pseudo $I M T L$ algebra, hence $M(A)$ is a pseudo $N M$ algebra.

Lemma 4.7. Let the map $v_{A}: B(A) \rightarrow M(A)$ defined by $v_{A}(a)=\overline{f_{a}}$ for every $a \in B(A)$. Then v_{A} is a monomorphism of pseudo MTL-algebras.

Proof. Clearly, $v_{A}(0)=\overline{f_{0}}=\mathbf{0}$. Let $a, b \in B(A)$ and $x \in C(A)$. We have:

$$
\begin{gathered}
v_{A}(a \vee b)=v_{A}(a) \vee v_{A}(b), v_{A}(a \wedge b)=v_{A}(a) \wedge v_{A}(b), \\
\left(v_{A}(a) \otimes v_{A}(b)\right)(x)=v_{A}(a)(x) \odot\left(x \rightsquigarrow v_{A}(b)(x)\right)=(a \wedge x) \odot(x \rightsquigarrow(b \wedge x)) \\
=(a \odot x) \odot(x \rightsquigarrow(b \wedge x))=a \odot[x \odot(x \rightsquigarrow(b \wedge x))]=a \odot(b \wedge x) \\
=a \wedge(b \wedge x)=(a \wedge b) \wedge x=\left(v_{A}(a \wedge b)\right)(x)=\left(v_{A}(a \odot b)\right)(x),
\end{gathered}
$$

hence $v_{A}(a \odot b)=v_{A}(a) \otimes v_{A}(b)$.

Also, since $a \rightarrow b, a \rightsquigarrow b \in B(A)$, we have

$$
\begin{gathered}
\left(v_{A}(a) \leftrightarrow v_{A}(b)\right)(x)=\left[v_{A}(a)(x) \rightarrow v_{A}(b)(x)\right] \odot x=[(a \wedge x) \rightarrow(b \wedge x)] \odot x \\
=[(a \odot x) \rightarrow(b \odot x)] \odot x \stackrel{c_{58}}{=}(a \rightarrow b) \odot x=x \wedge(a \rightarrow b)=v_{A}(a \rightarrow b)(x), \\
\left(v_{A}(a) \text { 的 } v_{A}(b)\right)(x)=x \odot\left[v_{A}(a)(x) \rightsquigarrow v_{A}(b)(x)\right]=x \odot[(a \wedge x) \rightsquigarrow(b \wedge x)] \\
=x \odot[(x \odot a) \rightsquigarrow(x \odot b)] \stackrel{c_{5}}{=} x \odot(a \rightsquigarrow b)=x \wedge(a \rightsquigarrow b)=v_{A}(a \rightsquigarrow b)(x) .
\end{gathered}
$$

Consequently, we have $v_{A}(a) \leftrightarrow v_{A}(b)=v_{A}(a \rightarrow b), v_{A}(a) \leftrightarrow v_{A}(b)=v_{A}(a \rightsquigarrow b)$. This proves that v_{A} is a morphism of pseudo $M T L$-algebras.

To prove the injectivity of v_{A}, we let $a, b \in B(A)$ such that $v_{A}(a)=v_{A}(b)$. Then $a \wedge x=b \wedge x$, for every $x \in C(A)$, hence for $x=1 \in C(A)$ we obtain that $a \wedge 1=$ $b \wedge 1 \Rightarrow a=b$.

We have for pseudo $M T L$ - algebras the next analogous definitions, results and remarks as in [15] for $M T L-$ algebras:

Definition 4.4. A nonempty set $I \subseteq A$ is called regular if for every $x, y \in A$ such that $x \wedge e=y \wedge e$ for every $e \in I \cap B(A)$, then $x=y$.

For example $A, C(A)$ are regular subsets of A (since if $x, y \in A$ (or, $C(A)$) and $x \wedge e=y \wedge e$ for every $e \in B(A)$, then for $e=1$ we obtain $x \wedge 1=y \wedge 1 \Leftrightarrow x=y)$.

More generally, every subset of A which contains 1 is regular.
We denote $R(A)=\{I \subseteq A: I$ is a regular subset of $A\}$.
Lemma 4.8. If $I_{1}, I_{2} \in \mathcal{I}^{\prime}(A) \cap R(A)$, then $I_{1} \cap I_{2} \in \mathcal{I}^{\prime}(A) \cap R(A)$.
Remark 4.6. By Lemmas 4.2-4.6, 4.8 and Proposition 4.2 we deduce that $M_{r}(A)=$ $\left\{f \in M(A): \operatorname{dom}(f) \in \mathcal{I}^{\prime}(A) \cap R(A)\right\}$ is a pseudo MTL- subalgebra of $M(A)$.

Proposition 4.3. $M_{r}(A)$ is a Boolean subalgebra of $M(A)$.
Proof. Let $f: I \rightarrow A$ be a strong multiplier on A with $I \in \mathcal{I}^{\prime}(A) \cap \mathcal{R}(A)$. To prove that $M_{r}(A)$ is a Boolean algebra, using Proposition 2.5 it is suffice to prove that $f=\left(f^{-}\right)^{\sim}=\left(f^{\sim}\right)^{-}$and $f \otimes g=f \wedge g$, for all $g \in M_{r}(A)$. Let $g \in M_{r}(A), g: J \rightarrow A$.

Then for all $x \in I \cap J$ and $e \in I \cap J \cap B(A)$,

$$
\begin{gathered}
e \wedge[f \otimes g](x)=e \wedge[(x \rightarrow f(x)) \odot g(x)]=e \odot[x \rightarrow f(x)] \odot g(x)=[x \rightarrow f(x)] \odot e \odot g(x)= \\
\stackrel{c_{57}}{\left.\underline{c_{5}}[x \odot e) \rightarrow(f(x) \odot e)\right] \odot e \odot g(x)=[(e \odot x) \rightarrow(f(x) \odot e)] \odot e \odot g(x)=} \begin{array}{c}
=[(e \odot x) \rightarrow(f(e) \odot x)] \odot x \odot g(e)= \\
{ }^{c_{55}}[e \rightarrow f(e)] \odot x \odot g(e)=[e \rightarrow f(e)] \odot e \odot g(x)=[e \wedge f(e)] \odot g(x)= \\
=e \wedge f(e) \wedge g(x)=e \wedge f(e) \wedge(g(x) \wedge x)=e \wedge g(x) \wedge[f(e) \wedge x]=e \wedge g(x) \wedge[e \wedge f(x)]= \\
\quad=e \wedge[f(x) \wedge g(x)]=e \wedge[f \wedge g](x),
\end{array} .
\end{gathered}
$$

hence $[f \otimes g](x)=f(x) \wedge g(x)$, (since $I \cap J \in \mathcal{R}(A)$), so, $f \otimes g=f \wedge g$.
For all $x \in I$ we have
$\left(f^{-}\right)^{\sim}(x)=x \odot\left(f^{-}(x)\right)^{\sim}=x \odot\left[(f(x))^{-} \odot x\right]^{\sim} \stackrel{c_{47}}{=} x \odot\left[x \rightsquigarrow\left((f(x))^{-}\right)^{\sim}\right]$ and $\left(f^{\sim}\right)^{-}(x)=\left(f^{\sim}(x)\right)^{-} \odot x=\left[x \odot(f(x))^{\sim}\right]^{-} \odot x \stackrel{c_{47}}{=}\left[x \rightarrow\left((f(x))^{\sim}\right)^{-}\right] \odot x$,
so, for all $e \in I \cap B(A)$ we obtain

$$
\begin{aligned}
e \wedge\left(f^{-}\right)^{\sim}(x)= & e \wedge\left(x \odot\left[x \rightsquigarrow\left((f(x))^{-}\right)^{\sim}\right]\right)=e \odot x \odot\left[x \rightsquigarrow\left((f(x))^{-}\right)^{\sim}\right]= \\
& =x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot\left((f(x))^{-}\right)^{\sim}\right)\right]= \\
& =x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot\left[(f(x))^{-} \rightsquigarrow 0\right]\right)\right]= \\
\stackrel{c_{57}}{=} & x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot\left[\left(e \odot(f(x))^{-}\right) \rightsquigarrow 0\right]\right)\right]=
\end{aligned}
$$

$$
\begin{aligned}
& =x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot\left[e \odot(f(x))^{-}\right]^{\sim}\right)\right]= \\
& =x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot[e \odot[f(x) \rightarrow 0]]^{\sim}\right)\right]= \\
& \stackrel{c_{57}}{=} x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot e \odot\left([e \odot f(x)]^{-}\right)^{\sim}\right)\right]= \\
& =x \odot e \odot\left[(e \odot x) \rightsquigarrow\left(e \odot\left([x \odot f(e)]^{-}\right)^{\sim}\right)\right]= \\
& \stackrel{c_{57}}{\underline{C_{5}}} x \odot e \odot\left[x \rightsquigarrow\left([x \odot f(e)]^{-}\right)^{\sim}\right]=x \odot e \odot\left[x \rightsquigarrow\left([x \wedge f(e)]^{-}\right)^{\sim}\right]= \\
& \stackrel{c_{49}}{\underline{c_{2}}} x \odot e \odot\left[x \rightsquigarrow\left[x^{-} \vee(f(e))^{-}\right]^{\sim}\right]^{\underline{c_{48}}} x \odot e \odot\left[x \rightsquigarrow\left[\left(x^{-}\right)^{\sim} \wedge f(e)\right]\right]= \\
& \stackrel{c_{30}}{\underline{c_{3}}} x \odot e \odot\left(\left[x \rightsquigarrow\left(x^{-}\right)^{\sim}\right] \wedge[x \rightsquigarrow f(e)]\right)= \\
& \stackrel{c_{41}}{\underline{=}} x \odot e \odot(1 \wedge[x \rightsquigarrow f(e)])=x \odot e \odot[x \rightsquigarrow f(e)]= \\
& =e \odot x \odot[x \rightsquigarrow f(e)]=e \odot[x \wedge f(e)]=e \wedge x \wedge f(e)=x \wedge f(e)=e \wedge f(x),
\end{aligned}
$$

and

$$
\begin{gathered}
e \wedge\left(f^{\sim}\right)^{-}(x)=e \wedge\left[x \rightarrow\left((f(x))^{\sim}\right)^{-}\right] \odot x=\left[x \rightarrow\left((f(x))^{\sim}\right)^{-}\right] \odot e \odot x= \\
\stackrel{c_{57}}{=}\left[(x \odot e) \rightarrow\left(\left((f(x))^{\sim}\right)^{-} \odot e\right)\right] \odot e \odot x= \\
\stackrel{c_{57}}{=}\left[(x \odot e) \rightarrow\left(\left([e \odot f(x)]^{\sim}\right)^{-} \odot e\right)\right] \odot e \odot x= \\
=\left[(x \odot e) \rightarrow\left(\left([x \odot f(e)]^{\sim}\right)^{-} \odot e\right)\right] \odot e \odot x= \\
\stackrel{c_{57}}{=}\left[x \rightarrow\left([x \odot f(e)]^{\sim}\right)^{-}\right] \odot e \odot x=\left[x \rightarrow\left[\left(x^{\sim}\right)^{-} \wedge f(e)\right]\right] \odot x \odot e= \\
\stackrel{c_{30}}{=}\left(\left[x \rightarrow\left(x^{\sim}\right)^{-}\right] \wedge[x \rightarrow f(e)]\right) \odot x \odot e= \\
=(1 \wedge[x \rightarrow f(e)]) \odot x \odot e=[x \rightarrow f(e)] \odot x \odot e= \\
=[x \wedge f(e)] \odot e=e \wedge f(x) \wedge e=e \wedge f(x) .
\end{gathered}
$$

So, $f \otimes g=f \wedge g$ and $f=\left(f^{-}\right)^{\sim}=\left(f^{\sim}\right)^{-}$, that is, $M_{r}(A)$ is a Boolean algebra.
Remark 4.7. The axioms M_{3}, M_{4} are necessary in the proof of Proposition 4.3.
Definition 4.5. Given two strong multipliers f_{1}, f_{2} on A, we say that f_{2} extends f_{1} if $\operatorname{dom}\left(f_{1}\right) \subseteq \operatorname{dom}\left(f_{2}\right)$ and $f_{2 \mid \operatorname{dom}\left(f_{1}\right)}=f_{1}$; we write $f_{1} \leq f_{2}$ if f_{2} extends f_{1}. A strong multiplier f is called maximal if f can not be extended to a strictly larger domain.

Lemma 4.9. (i) If $f_{1}, f_{2} \in M(A), f \in M_{r}(A)$ and $f \leq f_{1}, f \leq f_{2}$, then f_{1} and f_{2} coincide on the $\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$,
(ii) Every strong multiplier $f \in M_{r}(A)$ can be extended to a strong maximal multiplier. More precisely, each principal strong multiplier f_{a} with $a \in B(A)$ and $\operatorname{dom}\left(f_{a}\right) \in \mathcal{I}^{\prime}(A) \cap R(A)$ can be uniquely extended to a total strong multiplier $\overline{f_{a}}$ and each non-principal strong multiplier can be extended to a strong maximal non-principal one.

Proof. As in the case of $M T L$ - algebras (see [15]), using Lemma 4.1.
On the Boolean algebra $M_{r}(A)$ we consider the relation ρ_{A} defined by $\left(f_{1}, f_{2}\right) \in \rho_{A}$ iff f_{1} and f_{2} coincide on the intersection of their domains.

Lemma 4.10. ρ_{A} is a congruence on Boolean algebra $M_{r}(A)$.

Proof. The reflexivity and the symmetry of ρ_{A} are immediately; to prove the
transitivity of ρ_{A} let $\left(f_{1}, f_{2}\right),\left(f_{2}, f_{3}\right) \in \rho_{A}$. Therefore f_{1}, f_{2} and respectively f_{2}, f_{3} coincide on the intersection of their domains. If by contrary, there exists $x_{0} \in$ $\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{3}\right)$ such that $f_{1}\left(x_{0}\right) \neq f_{3}\left(x_{0}\right)$, since $\operatorname{dom}\left(f_{2}\right) \in \mathcal{R}(A)$, there exists $e \in \operatorname{dom}\left(f_{2}\right) \cap B(A)$ such that $e \wedge f_{1}\left(x_{0}\right) \neq e \wedge f_{3}\left(x_{0}\right) \Leftrightarrow f_{1}\left(e \odot x_{0}\right) \neq f_{3}\left(e \odot x_{0}\right)$ which is contradictory, since by Lemma 4.1, $e \odot x_{0}=e \wedge x_{0} \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right) \cap \operatorname{dom}\left(f_{3}\right)$.

To prove the compatibility of ρ_{A} with the operations \wedge, \vee and \sim on $M_{r}(A)$, let $\left(f_{1}, f_{2}\right),\left(g_{1}, g_{2}\right) \in \rho_{A}$. So, we have f_{1}, f_{2} and respectively g_{1}, g_{2} coincide on the intersection of their domains. Let $x \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right) \cap \operatorname{dom}\left(g_{1}\right) \cap \operatorname{dom}\left(g_{2}\right)$. Then $f_{1}(x)=f_{2}(x)$ and $g_{1}(x)=g_{2}(x)$, hence

$$
\begin{aligned}
& \left(f_{1} \wedge g_{1}\right)(x)=f_{1}(x) \wedge g_{1}(x)=f_{2}(x) \wedge g_{2}(x)=\left(f_{2} \wedge g_{2}\right)(x), \\
& \left(f_{1} \vee g_{1}\right)(x)=f_{1}(x) \vee g_{1}(x)=f_{2}(x) \vee g_{2}(x)=\left(f_{2} \vee g_{2}\right)(x)
\end{aligned}
$$

For $x \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$ we have
$f_{1}^{\sim}(x)=\left(f_{1} \rightsquigarrow \mathbf{0}\right)(x)=x \odot\left[f_{1}(x) \rightsquigarrow \mathbf{0}(x)\right]=x \odot\left[f_{2}(x) \rightsquigarrow \mathbf{0}(x)\right]=\left(f_{2} \rightsquigarrow \boldsymbol{0}\right)(x)=f_{2}^{\sim}(x)$,
that is the pairs $\left(f_{1} \wedge g_{1}, f_{2} \wedge g_{2}\right),\left(f_{1} \vee g_{1}, f_{2} \vee g_{2}\right),\left(f_{1}^{\sim}, f_{2}^{\sim}\right)$ coincide on the intersection of their domains, hence ρ_{A} is compatible with the operations \wedge, \vee and \sim.

For $f \in M_{r}(A)$ with $I=\operatorname{dom}(f) \in \mathcal{I}^{\prime}(A) \cap R(A)$, we denote by $[f, I]$ the congruence class of f modulo ρ_{A} and $A^{\prime \prime}=M_{r}(A) / \rho_{A}$.

Since the class of Boolean algebras is equational, from Proposition 4.2, Remark 4.6 and Lemma 4.10 we deduce:

Theorem 4.2. $A^{\prime \prime}$ is a Boolean algebra, where for $[f, I],[g, J] \in A^{\prime \prime},[f, I] \wedge[g, J]=$ $[f \wedge g, I \cap J],[f, I] \vee[g, J]=[f \vee g, I \cap J],[f, I] \otimes[g, J]=[f \otimes g, I \cap J],[f, I] \leftrightarrow[g, J]=$ $[f \leftrightarrow g, I \cap J],[f, I] \leftrightarrow[g, J]=[f \leftrightarrow \nVdash g, I \cap J], \mathbf{0}=[\mathbf{0}, C(A)]$ and $\mathbf{1}=[\mathbf{1}, C(A)]$.

Remark 4.8. If we denote by $\mathcal{F}=\mathcal{I}^{\prime}(A) \cap R(A)$ and consider the partially ordered systems $\left\{\delta_{I, J}\right\}_{I, J \in \mathcal{F}, I \subseteq J}$ (where for $I, J \in \mathcal{F}, I \subseteq J, \delta_{I, J}: M(J, A) \rightarrow M(I, A)$ is defined by $\delta_{I, J}(f)=f_{\mid I}$), then by above construction of $A^{\prime \prime}$ we deduce that $A^{\prime \prime}$ is the inductive limit $A^{\prime \prime}=\underset{I \in \mathcal{F}}{\lim } M(I, A)$.

Lemma 4.11. Let the map $\overline{v_{A}}: B(A) \rightarrow A^{\prime \prime}$ defined by $\overline{v_{A}}(a)=\left[\overline{f_{a}}, C(A)\right]$ for every $a \in B(A)$. Then:
(i) $\overline{v_{A}}$ is a monomorphism of Boolean algebras;
(ii) $\overline{v_{A}}(B(A)) \in R\left(A^{\prime \prime}\right)$.

Proof. (i). Follows from Lemma 7.1.
(ii). As in the case of $M T L$ algebras (see [15]).

Remark 4.9. Since for every $a \in B(A), \overline{f_{a}}$ is the unique strong maximal multiplier on $\left[\overline{f_{a}}, C(A)\right]$ (by Lemma 7.7) we can identify $\left[\overline{f_{a}}, C(A)\right]$ with $\overline{f_{a}}$. So, since $\overline{v_{A}}$ is injective map, the elements of $B(A)$ can be identified with the elements of the set \{ $\left.\overline{f_{a}}: a \in B(A)\right\}$.

Lemma 4.12. In view of the identifications made above, if $[f, \operatorname{dom}(f)] \in A^{\prime \prime}$ (with $f \in M_{r}(A)$ and $\left.I=\operatorname{dom}(f) \in \mathcal{I}^{\prime}(A) \cap R(A)\right)$, then $I \cap B(A) \subseteq\{a \in B(A)$: $\left.\overline{f_{a}} \wedge[f, \operatorname{dom}(f)] \in B(A)\right\}$.

Proof. As in the case of $M T L$ algebras (see [15]).

5. Maximal pseudo MTL-algebra of quotients

The scope of this section is to define the notions of pseudo MTL -algebra of fractions and maximal pseudo $M T L$ - algebra of quotients for a pseudo $M T L$ - algebra.

Definition 5.1. Let A be a pseudo $M T L$ - algebra. A pseudo $M T L$ - algebra F is called pseudo $M T L$ - algebra of fractions of A if:
$\left(F r_{1}\right) B(A)$ is a pseudo $M T L$ - subalgebra of F;
(Fr2) For every $a^{\prime}, b^{\prime}, c^{\prime} \in F, a^{\prime} \neq b^{\prime}$, there exists $e \in B(A)$ such that $e \wedge a^{\prime} \neq e \wedge b^{\prime}$ and $e \wedge c^{\prime} \in B(A)$.

So, pseudo $M T L$ - algebra $B(A)$ is a pseudo $M T L$ - algebra of fractions of itself (since $1 \in B(A)$).

As a notational convenience, we write $A \preceq F$ to indicate that F is a pseudo $M T L$ - algebra of fractions of A.

Definition 5.2. $Q(A)$ is the maximal pseudo $M T L$ - algebra of quotients of A if $A \preceq Q(A)$ and for every pseudo $M T L$ - algebra F with $A \preceq F$ there exists a monomorphism of pseudo MTL - algebras $i: F \rightarrow Q(A)$.

Remark 5.1. If $A \preceq F$, then F is a Boolean algebra. Indeed, if $a^{\prime} \in F$ such that $\left(\left(a^{\prime}\right)^{-}\right)^{\sim} \neq a^{\prime}$ or $\left(\left(a^{\prime}\right)^{\sim}\right)^{-} \neq a^{\prime}$ or $a^{\prime} \wedge x \neq a^{\prime} \odot x$ for some $x \in F$ then there exists $e, f, g \in B(A)$ such that $e \wedge a^{\prime}, f \wedge a^{\prime}, g \wedge a^{\prime} \in B(A)$ and

$$
\begin{gathered}
\qquad \text { } e \wedge a^{\prime} \neq e \wedge\left(\left(a^{\prime}\right)^{-}\right)^{\sim}=\left(\left(e \wedge a^{\prime}\right)^{-}\right)^{\sim} \text { or } \\
f \wedge a^{\prime} \neq f \wedge\left(\left(a^{\prime}\right)^{\sim}\right)^{-}=\left(\left(f \wedge a^{\prime}\right)^{\sim}\right)^{-} \text {or } \\
g \wedge a^{\prime} \wedge x \neq g \wedge\left(a^{\prime} \odot x\right) \Leftrightarrow g \odot\left(a^{\prime} \wedge x\right) \neq g \odot\left(a^{\prime} \odot x\right) \Leftrightarrow \\
\left(g \odot a^{\prime}\right) \wedge(g \odot x) \neq\left(g \odot a^{\prime}\right) \odot(g \odot x) \Leftrightarrow\left(g \wedge a^{\prime}\right) \wedge(g \odot x) \neq\left(g \wedge a^{\prime}\right) \odot(g \odot x), \\
\text { a contradiction !. }
\end{gathered}
$$

We also have for pseudo $M T L$ - algebras the next analogous definitions, results and remarks as in [15] for $M T L$ - algebras:

Lemma 5.1. Let $A \preceq F$; then for every $a^{\prime}, b^{\prime} \in F, a^{\prime} \neq b^{\prime}$, and any finite sequence $c_{1}^{\prime}, \ldots, c_{n}^{\prime} \in F$, there exists $e \in B(A)$ such that $e \wedge a^{\prime} \neq e \wedge b^{\prime}$ and $e \wedge c_{i}^{\prime} \in B(A)$ for $i=1,2, \ldots, n(n \geq 2)$.

Lemma 5.2. Let $A \prec F$ and $a^{\prime} \in F$. Then $I_{a^{\prime}}=\left\{e \in B(A): e \wedge a^{\prime} \in B(A)\right\} \in$ $\mathcal{I}(B(A)) \cap R(A)=\mathcal{I}^{\prime}(B(A)) \cap R(A)$.

Theorem 5.1. $A^{\prime \prime}$ is the maximal pseudo MTL - algebra $Q(A)$ of quotients of A.
Remark 5.2. 1. If pseudo $M T L$ - algebra A is a $M T L$ - algebra or a pseudo $B L$ - algebra, then $Q(A)$ is the maximal MTL - algebra of quotients or the maximal pseudo $B L$ - algebra of quotients of A.
2. If A is a pseudo MTL - algebra with $B(A)=\{0,1\}=L_{2}$ and $A \preceq F$ then $F=\{0,1\}$, hence $Q(A)=A^{\prime \prime} \approx L_{2}$.
3. More general, if A is a pseudo MTL-algebra such that $B(A)$ is finite and $A \preceq F$ then $F=B(A)$, hence in this case $Q(A)=B(A)$.

6. Topologies on a pseudo MTL-algebra

Definition 6.1. A non-empty set \mathcal{F} of elements $I \in \mathcal{I}(A)$ will be called a topology on A if the following axioms hold:
$\left(\right.$ top $\left._{1}\right)$ If $I_{1} \in \mathcal{F}, I_{2} \in \mathcal{I}(A)$ and $I_{1} \subseteq I_{2}$, then $I_{2} \in \mathcal{F}$ (hence $A \in \mathcal{F}$);
$\left(\right.$ top $\left._{2}\right)$ If $I_{1}, I_{2} \in \mathcal{F}$, then $I_{1} \cap I_{2} \in \mathcal{F}$.
Remark 6.1. 1. \mathcal{F} is a topology on A iff \mathcal{F} is a filter of the lattice of power set of A; for this reason a topology on $\mathcal{I}(A)$ is usually called a Gabriel filter on $\mathcal{I}(A)$.
2. Clearly, if \mathcal{F} is a topology on A, then $(A, \mathcal{F} \cup\{\emptyset\})$ is a topological space.

Any intersection of topologies on A is a topology; so, the set $T(A)$ of all topologies of A is a complete lattice with respect to inclusion.

Example 6.1. If $I \in \mathcal{I}(A)$, then the set $\mathcal{F}(I)=\left\{I^{\prime} \in \mathcal{I}(A): I \subseteq I^{\prime}\right\}$ is a topology on A.

Example 6.2. If we denote $R(A)=\{I \subseteq A: I$ is a regular subset of $A\}$, then $\mathcal{F}=\mathcal{I}(A) \cap R(A)$ is a topology on A.

Example 6.3. A nonempty set $I \subseteq A$ will be called dense (see [10]) if for $x \in A$ such that $e \wedge x=0$ for every $e \in I \cap B(A)$, then $x=0$. If we denote by $D(A)$ the set of all dense subsets of A, then $R(A) \subseteq D(A)$ and $\mathcal{F}=\mathcal{I}(A) \cap D(A)$ is a topology on A.

Example 6.4. For any \wedge - closed subset S of A, the set $\mathcal{F}_{S}=\{I \in \mathcal{I}(A): I \cap S \cap$ $B(A) \neq \oslash\}$ is a topology on A.

7. Localization of pseudo MTL-algebras

In [10], G. Georgescu exhibited the localization lattice $L_{\mathcal{F}}$ of a distributive lattice L with respect to a topology \mathcal{F} on L in a similar way as for rings or monoids.

The concept of localization $M T L$ algebras was studied in [16] for commutative case (taking as a guide-line the case of distributive lattices).

The aim of this section is to define the notion of localization pseudo MTL - algebra of a pseudo $M T L$ - algebra. In the least part it is proved that the maximal pseudo $M T L$ - algebra of fractions and the pseudo $M T L$ - algebra of fractions relative to a \wedge-closed system are pseudo $M T L$ - algebras of localization.

In this section by A we consider a pseudo $M T L$ - algebra.
Let \mathcal{F} be a topology on A and we consider the relation $\theta_{\mathcal{F}}$ on A defined in the following way: $(x, y) \in \theta_{\mathcal{F}} \Leftrightarrow$ there exists $I \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for any $e \in I \cap B(A)$.
Lemma 7.1. $\theta_{\mathcal{F}}$ is a congruence on A.
Proof. See [16] for the case of $M T L$ - algebras.
We shall denote by $a / \theta_{\mathcal{F}}$ the congruence class of an element $a \in A$ and by $p_{\mathcal{F}}: A \rightarrow A / \theta_{\mathcal{F}}$ the canonical morphism of pseudo $M T L$-algebras.

Proposition 7.1. For $a \in A, a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$ iff there exists $I \in \mathcal{F}$ such that $a \vee a^{-}, a \vee a^{\sim} \geq e$ for every $e \in I \cap B(A)$. So, if $a \in B(A)$, then $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.

Proof. Using Proposition 2.3, for $a \in A$, we have $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right) \Leftrightarrow a / \theta_{\mathcal{F}} \vee$ $\left(a / \theta_{\mathcal{F}}\right)^{-}=a / \theta_{\mathcal{F}} \vee\left(a / \theta_{\mathcal{F}}\right)^{\sim}=1 / \theta_{\mathcal{F}} \Leftrightarrow\left(a \vee a^{-}\right) / \theta_{\mathcal{F}}=\left(a \vee a^{\sim}\right) / \theta_{\mathcal{F}}=1 / \theta_{\mathcal{F}} \Leftrightarrow$ there exist $K, J \in \mathcal{F}$ such that $\left(a \vee a^{-}\right) \wedge e=1 \wedge e=e$, for every $e \in K \cap B(A) \Leftrightarrow a \vee a^{-} \geq e$,
for every $e \in K \cap B(A)$ and $\left(a \vee a^{\sim}\right) \wedge e=1 \wedge e=e$, for every $e \in J \cap B(A) \Leftrightarrow a \vee a^{\sim} \geq e$, for every $e \in J \cap B(A)$.

If we denote $I=K \cap J$, then $I \in \mathcal{F}$ and for every $e \in I \cap B(A), a \vee a^{-}, a \vee a^{\sim} \geq e$.
If $a \in B(A)$, then $1=a \vee a^{-}=a \vee a^{\sim} \geq e$, for every $e \in I \cap B(A), I \in \mathcal{F}$, hence $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.
Corollary 7.1. If $\mathcal{F}=\mathcal{I}(A) \cap R(A)$, then for $a \in A, a \in B(A)$ iff $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.
We recall that for a pseudo $M T L-$ algebra A, we denote by $C(A)=\{x \in A$: $x \odot(x \rightsquigarrow a)=(x \rightarrow a) \odot x$, for every $a \leq x, a \in A\}$.

For a topology \mathcal{F} on a pseudo $M T L$-algebra A and we denote by $\mathcal{F}^{\prime}=\{I=$ $J \cap C(A): J \in \mathcal{F}\}$.
Definition 7.1. Let \mathcal{F} be a topology on A. A \mathcal{F} - multiplier is a mapping $f: I$ $\rightarrow A / \theta_{\mathcal{F}}$ where $I \in \mathcal{F}^{\prime}$ and for every $x \in I$ and $e \in B(A)$ the following axioms are fulfilled:
$\left(M_{5}\right) f(e \odot x)=e / \theta_{\mathcal{F}} \wedge f(x)=e / \theta_{\mathcal{F}} \odot f(x) ;$
$\left(M_{6}\right) x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightsquigarrow f(x)\right)=f(x)$.
Remark 7.1. The axiom $M_{6}, x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightsquigarrow f(x)\right)=f(x)$, for every $x \in I$, implies $f(x) \leq x / \theta_{\mathcal{F}}$, so, since $x / \theta_{\mathcal{F}} \in C\left(A / \theta_{\mathcal{F}}\right)$ this axiom become $x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightsquigarrow f(x)\right)=$ $\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right) \odot x / \theta_{\mathcal{F}}=f(x)$, for every $x \in I$.

By $\operatorname{dom}(f) \in \mathcal{F}^{\prime}$ we denote the domain of f; if $\operatorname{dom}(f)=C(A)$, we called f total.
To simplify language, we will use \mathcal{F} - multiplier instead partial \mathcal{F} - multiplier, using total to indicate that the domain of a certain \mathcal{F} - multiplier is $C(A)$.

If $\mathcal{F}=\{A\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of A so a \mathcal{F} - multiplier is a total strong multiplier in sense of Definition 4.1, which verify the conditions M_{1} and M_{2}.

The maps $\mathbf{0}, \mathbf{1}: C(A) \rightarrow A / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=0 / \theta_{\mathcal{F}}$ and $\mathbf{1}(x)=x / \theta_{\mathcal{F}}$ for every $x \in C(A)$ are \mathcal{F} - multipliers in the sense of Definition 7.1.

Also, for $a \in B(A)$ and $I \in \mathcal{F}^{\prime}, f_{a}: I \rightarrow A / \theta_{\mathcal{F}}$ defined by $f_{a}(x)=a / \theta_{\mathcal{F}} \wedge x / \theta_{\mathcal{F}}$ for every $x \in I$, is a \mathcal{F} - multiplier. If $\operatorname{dom}\left(f_{a}\right)=C(A)$, we denote f_{a} by $\overline{f_{a}}$; clearly, $\overline{f_{0}}=\mathbf{0}$.

We shall denote by $M\left(I, A / \theta_{\mathcal{F}}\right)$ the set of all the \mathcal{F} - multipliers having the domain $I \in \mathcal{F}^{\prime}$ and $M\left(A / \theta_{\mathcal{F}}\right)=\underset{I \in \mathcal{F}^{\prime}}{\cup} M\left(I, A / \theta_{\mathcal{F}}\right)$. If $I_{1}, I_{2} \in \mathcal{F}^{\prime}, I_{1} \subseteq I_{2}$ we have a canonical mapping $\varphi_{I_{1}, I_{2}}: M\left(I_{2}, A / \theta_{\mathcal{F}}\right) \rightarrow M\left(I_{1}, A / \theta_{\mathcal{F}}\right)$ defined by $\varphi_{I_{1}, I_{2}}(f)=f_{\mid I_{1}}$ for $f \in$ $M\left(I_{2}, A / \theta_{\mathcal{F}}\right)$. Let us consider the directed system of sets
$\left\langle\left\{M\left(I, A / \theta_{\mathcal{F}}\right)\right\}_{I \in \mathcal{F}^{\prime}},\left\{\varphi_{I_{1}, I_{2}}\right\}_{I_{1}, I_{2} \in \mathcal{F}^{\prime}, I_{1} \subseteq I_{2}}\right\rangle$ and denote by $A_{\mathcal{F}}$ the inductive limit (in the category of sets) $A_{\mathcal{F}}=\underset{I \in \mathcal{F}^{\prime}}{\lim } M\left(I, A / \theta_{\mathcal{F}}\right)$. For any $\mathcal{F}-$ multiplier $f: I \rightarrow A / \theta_{\mathcal{F}}$ with $I \in \mathcal{F}^{\prime}$ we shall denote by $\widehat{(I, f)}$ the equivalence class of f in $A_{\mathcal{F}}$.
Remark 7.2. If $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}, i=1,2$, are \mathcal{F} - multipliers, then $\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right)}$ (in $A_{\mathcal{F}}$) iff there exists $I \in \mathcal{F}^{\prime}, I \subseteq I_{1} \cap I_{2}$ such that $f_{1 \mid I}=f_{2 \mid I}$.
Proposition 7.2. If $I_{1}, I_{2} \in \mathcal{F}^{\prime}$ and $f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right), i=1,2$, then $\left(c_{61}\right) f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightsquigarrow f_{2}(x)\right]=\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right] \odot f_{2}(x)$, for every $x \in I_{1} \cap I_{2}$.

Proof. For $x \in I_{1} \cap I_{2}$ we have $f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightsquigarrow f_{2}(x)\right]=\left[\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot\right.$ $\left.x / \theta_{\mathcal{F}}\right] \odot\left(x / \theta_{\mathcal{F}} \rightsquigarrow f_{2}(x)\right)=\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightsquigarrow f_{2}(x)\right)\right]=\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.f_{1}(x)\right] \odot f_{2}(x)$.

Let $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}$, (with $I_{i} \in \mathcal{F}^{\prime}, i=1,2$), \mathcal{F}-multipliers. Let us consider the mappings $f_{1} \curlywedge f_{2}, f_{1} \curlyvee f_{2}, f_{1} \otimes f_{2}, f_{1} \leftrightarrow f_{2}, f_{1} \leftrightarrow \nrightarrow f_{2}: I_{1} \cap I_{2} \rightarrow A / \theta_{\mathcal{F}}$ defined by

$$
\left(f_{1} \curlywedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x),\left(f_{1} \curlyvee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x)
$$

$$
\begin{aligned}
\left(f_{1} \otimes f_{2}\right)(x) & =f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightsquigarrow f_{2}(x)\right] \stackrel{c_{61}}{=}\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right] \odot f_{2}(x), \\
& \left(f_{1} \leftrightarrow f_{2}\right)(x)=\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot x / \theta_{\mathcal{F}}, \\
& \left(f_{1} \rightsquigarrow f_{2}\right)(x)=x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right],
\end{aligned}
$$

for any $x \in I_{1} \cap I_{2}$, and let

$$
\begin{aligned}
\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right) \curlywedge \widehat{\left(I_{2}, f_{2}\right.}\right) & \left.\left.=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right), \widehat{\left(I_{1}, f_{1}\right.}\right) \curlyvee \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right) \\
\widehat{\left(I_{1}, f_{1}\right)} \otimes \widehat{\left(I_{2}, f_{2}\right)} & \left.\left.=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \otimes f_{2}\right), \widehat{\left(I_{1}, f_{1}\right.}\right) \leftrightarrow \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \leftrightarrow f_{2}\right), \\
\text { and } \widehat{\left(I_{1}, f_{1}\right)} & \left.\not \leftrightarrow \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \leftrightarrow f_{2}\right) .
\end{aligned}
$$

Clearly, the definitions of the operations $\curlywedge, \curlyvee, \otimes, \leftrightarrow \rightsquigarrow$ and \leftrightarrow on $A_{\mathcal{F}}$ are correct.
Lemma 7.2. $f_{1} \curlywedge f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. See [16] and Lemma 4.2.
Lemma 7.3. $f_{1} \curlyvee f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. See [16] and Lemma 4.3
Lemma 7.4. $f_{1} \otimes f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. See [16] and Lemma 4.4.
Lemma 7.5. $f_{1} \nprec f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. See [16] and Lemma 4.5.
Lemma 7.6. $f_{1} \leftrightarrow f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. See [16] and Lemma 4.6.
Proposition 7.3. $\left(A_{\mathcal{F}}, \curlywedge, \curlyvee, \otimes, \leftrightarrow, \nVdash, \mathbf{0}=(\widehat{C(A), 0}), \mathbf{1}=(\widehat{C(A), 1})\right)$ is a pseudo MTL-algebra.

Proof. See the proof of Proposition 4.2
Remark 7.3. $\left(M\left(A / \theta_{\mathcal{F}}\right), \curlywedge, \curlyvee, \otimes, \leftrightarrow, \nleftarrow \rightsquigarrow, \mathbf{0}, \mathbf{1}\right)$ is also a pseudo $M T L$-algebra.
Definition 7.2. The pseudo MTL-algebra $A_{\mathcal{F}}$ will be called the localization MTLalgebra of A with respect to the topology \mathcal{F}.

Remark 7.4. If pseudo $M T L$ - algebra A is a $M T L$ - algebra in [16] will be called $A_{\mathcal{F}}$ the localization $M T L$-algebra of A with respect to the topology \mathcal{F}.

Theorem 7.1. (i): If pseudo MTL-algebra A is a MTL-algebra (resp. a pseudo $B L$-algebra) then $A_{\mathcal{F}}$ is also a MTL-algebra (resp. a pseudo BL-algebra);
(ii): If pseudo MTL-algebra A is a pseudo IMTL-algebra (resp. a pseudo WNMalgebra or a pseudo $N M$-algebra) then $A_{\mathcal{F}}$ is also a pseudo IMTL-algebra (resp. a pseudo $W N M$-algebra or a pseudo $N M$-algebra).
Proof. (i). See Remarks 4.4 and 4.5.
(ii). See the proof of Theorem 4.1.

Remark 7.5. If pseudo MTL- algebra A is a $M T L$-algebra (resp. a pseudo $B L$ algebra, a pseudo IMTL-algebra, a pseudo WNM-algebra, a pseudo NM-algebra), then pseudo $M T L$ - algebra $M\left(A / \theta_{\mathcal{F}}\right)$ is a $M T L$-algebra (resp. a pseudo BL-algebra, a pseudo IMTL-algebra, a pseudo WNM-algebra, a pseudo NM-algebra).

Lemma 7.7. Let the map $v_{\mathcal{F}}: B(A) \rightarrow A_{\mathcal{F}}$ defined by $v_{\mathcal{F}}(a)=\left(\widehat{C(A), \overline{f_{a}}}\right)$ for every $a \in B(A)$. Then:
(i) $v_{\mathcal{F}}$ is a morphism of pseudo MTL-algebras;
(ii) For $a \in B(A),\left(C \overline{(A), \overline{f_{a}}}\right) \in B\left(A_{\mathcal{F}}\right)$;
(iii) $v_{\mathcal{F}}(B(A)) \in R\left(A_{\mathcal{F}}\right)$.

Proof. (i), (iii). As in the case of $M T L$ - algebras (see [16]).
(ii). For $a \in B(A)$ we have $a \vee a^{\sim}=a \vee a^{-}=1$, hence $(a \wedge x) \vee\left[x \odot(a \wedge x)^{\sim}\right] \stackrel{c_{48}}{=}$ $(a \wedge x) \vee\left[x \odot\left(a^{\sim} \vee x^{\sim}\right)\right] \stackrel{c_{30}}{=}(a \wedge x) \vee\left[\left(x \odot a^{\sim}\right) \vee\left(x \odot x^{\sim}\right)\right] \stackrel{c_{37}}{=}(a \wedge x) \vee\left[\left(x \odot a^{\sim}\right) \vee 0\right)=$ $(a \wedge x) \vee\left(x \wedge a^{\sim}\right) \stackrel{c_{35}}{=} x \wedge\left(a \vee a^{\sim}\right)=x \wedge 1=x$, and $(a \wedge x) \vee\left[(a \wedge x)^{-} \odot x\right] \stackrel{c_{49}}{\underline{c_{9}}}$ $(a \wedge x) \vee\left[\left(a^{-} \vee x^{-}\right) \odot x\right] \stackrel{c_{30}}{=}(a \wedge x) \vee\left[\left(a^{-} \odot x\right) \vee\left(x^{-} \odot x\right)\right] \stackrel{c_{37}}{=}(a \wedge x) \vee\left[\left(a^{-} \odot x\right) \vee 0\right)=$ $(a \wedge x) \vee\left(a^{-} \wedge x\right) \stackrel{c_{35}}{=}\left(a \vee a^{-}\right) \wedge x=x \wedge 1=x$, for every $x \in C(A)$. We deduce that $(a \wedge x) / \theta_{\mathcal{F}} \vee\left[x / \theta_{\mathcal{F}} \odot\left((a \wedge x) / \theta_{\mathcal{F}}\right)^{\sim}\right]=(a \wedge x) / \theta_{\mathcal{F}} \vee\left[\left((a \wedge x) / \theta_{\mathcal{F}}\right)^{-} \odot x / \theta_{\mathcal{F}}\right]=x / \theta_{\mathcal{F}}$ hence $\overline{f_{a}} \vee\left(\overline{f_{a}}\right)^{\sim}=\overline{f_{a}} \vee\left(\overline{f_{a}}\right)^{-}=\mathbf{1}$, that is, $\left(\overline{C(A), \overline{f_{a}}}\right) \curlyvee\left(\overline{C(A), \overline{f_{a}}}\right)^{\sim}=\left(\overline{C(A), \overline{f_{a}}}\right) \curlyvee$ $\left(\widehat{C(A), \bar{f}_{a}}\right)^{-}=(\widehat{C(A),} \mathbf{1})$, so by Proposition 2.3, $\left(\widehat{C(A), \overline{f_{a}}}\right) \in B\left(A_{\mathcal{F}}\right)$.

8. Applications

In the following we describe the localization pseudo $M T L$-algebra $A_{\mathcal{F}}$ in some special instances.

1. If $I \in \mathcal{I}(A)$, and \mathcal{F} is the topology $\mathcal{F}(I)=\left\{I^{\prime} \in \mathcal{I}(A): I \subseteq I^{\prime}\right\}$ (see Example 6.1), then $A_{\mathcal{F}}$ is isomorphic with $M\left(I \cap C(A), A / \theta_{\mathcal{F}}\right)$ and $v_{\mathcal{F}}: B(A) \rightarrow A_{\mathcal{F}}$ is defined by $v_{\mathcal{F}}(a)=\overline{f_{a \mid I}}$ for every $a \in B(A)$.

If I is a regular subset of A, then $\theta_{\mathcal{F}}$ is the identity, hence $A_{\mathcal{F}}$ is isomorphic with $M(I \cap C(A), A)($ see $[15])$, which in generally is not a Boolean algebra.
2. Main remark. To obtain the maximal pseudo $M T L$-algebra of quotients $Q(A)$ as a localization relative to a topology \mathcal{F} we have to develope another theory of multipliers (meaning we add new axioms for \mathcal{F}-multipliers).
Definition 8.1. Let \mathcal{F} be a topology on A. A strong $-\mathcal{F}$ - multiplier is a mapping $f: I \rightarrow A / \theta_{\mathcal{F}}$ (where $I \in \mathcal{F}^{\prime}=\left\{J \cap C(A): J \in \mathcal{F}\right.$) which verifies the axioms M_{5} and M_{6} (see Definition 7.1) and
$\left(M_{7}\right)$ If $e \in I \cap B(A)$, then $f(e) \in B\left(A / \theta_{\mathcal{F}}\right)$;
$\left(M_{8}\right)\left(x / \theta_{\mathcal{F}}\right) \wedge f(e)=\left(e / \theta_{\mathcal{F}}\right) \wedge f(x)$, for every $e \in I \cap B(A)$ and $x \in I$.
Remark 8.1. If $(A, \wedge, \vee, \odot, \rightarrow, \rightsquigarrow, 0,1)$ is a pseudo $M T L-$ algebra, the maps $\mathbf{0}, \mathbf{1}$: $C(A) \rightarrow A / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=0 / \theta_{\mathcal{F}}$ and $\mathbf{1}(x)=x / \theta_{\mathcal{F}}$ for every $x \in C(A)$ are strong $-\mathcal{F}$ - multipliers. We recall that if $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}$, (with $\left.I_{i} \in \mathcal{F}^{\prime}, i=1,2\right)$ are \mathcal{F}-multipliers $f_{1} \curlywedge f_{2}, f_{1} \curlyvee f_{2}, f_{1} \otimes f_{2}, f_{1} \leftrightarrow f_{2}, f_{1} \leftrightarrow \nrightarrow f_{2}: I_{1} \cap I_{2} \rightarrow A / \theta_{\mathcal{F}}$ defined by $\left(f_{1} \curlywedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x),\left(f_{1} \curlyvee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x),\left(f_{1} \otimes f_{2}\right)(x)=f_{1}(x) \odot$ $\left[x / \theta_{\mathcal{F}} \rightsquigarrow f_{2}(x)\right] \stackrel{c_{61}}{=}\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right] \odot f_{2}(x),\left(f_{1} \leftrightarrow f_{2}\right)(x)=\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot x / \theta_{\mathcal{F}}$, $\left(f_{1} \rightsquigarrow f_{2}\right)(x)=x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right]$, for any $x \in I_{1} \cap I_{2}$ are \mathcal{F}-multipliers. If f_{1}, f_{2} are strong- \mathcal{F} - multipliers then $f_{1} \curlywedge f_{2}, f_{1} \curlyvee f_{2}, f_{1} \otimes f_{2}, f_{1} \leftrightarrow f_{2}, f_{1} \leftrightarrow \nrightarrow f_{2}$ are also strong $-\mathcal{F}-$ multipliers. Indeed, if $e \in I_{1} \cap I_{2} \cap B(A)$, then

$$
\begin{gathered}
\left(f_{1} \curlywedge f_{2}\right)(e)=f_{1}(e) \wedge f_{2}(e) \in B\left(A / \theta_{\mathcal{F}}\right), \\
\left(f_{1} \curlyvee f_{2}\right)(e)=f_{1}(e) \vee f_{2}(e) \in B\left(A / \theta_{\mathcal{F}}\right), \\
\left(f_{1} \otimes f_{2}\right)(e)=\left[e / \theta_{\mathcal{F}} \rightarrow f_{1}(e)\right] \odot f_{2}(e)=\left[\left(e^{-}\right) / \theta_{\mathcal{F}} \vee f_{1}(e)\right] \odot f_{2}(e) \in B\left(A / \theta_{\mathcal{F}}\right), \\
\left(f_{1} \leftrightarrow f_{2}\right)(e)=\left[f_{1}(e) \rightarrow f_{2}(e)\right] \odot e / \theta_{\mathcal{F}}=\left[\left(f_{1}(e)\right)^{-} \vee f_{2}(e)\right] \odot e / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right),
\end{gathered}
$$

$$
\left(f_{1} \rightsquigarrow f_{2}\right)(e)=e / \theta_{\mathcal{F}} \odot\left[f_{1}(e) \rightsquigarrow f_{2}(e)\right]=e / \theta_{\mathcal{F}} \odot\left[\left(f_{1}(e)\right)^{\sim} \vee f_{2}(e)\right] \in B\left(A / \theta_{\mathcal{F}}\right) .
$$

For $e \in I_{1} \cap I_{2} \cap B(A)$ and $x \in I_{1} \cap I_{2}$ we have:

$$
\left.\begin{array}{rl}
x / \theta_{\mathcal{F}} & \wedge\left(f_{1} \curlywedge f_{2}\right)(e)=x / \theta_{\mathcal{F}}
\end{array}\right) f_{1}(e) \wedge f_{2}(e)=\left[x / \theta_{\mathcal{F}} \wedge f_{1}(e)\right] \wedge\left[x / \theta_{\mathcal{F}} \wedge f_{2}(e)\right]=
$$

and

$$
\begin{aligned}
x / \theta_{\mathcal{F}} & \wedge\left(f_{1} \curlyvee f_{2}\right)(e)=x / \theta_{\mathcal{F}} \wedge\left[f_{1}(e) \vee f_{2}(e)\right]= \\
& =\left[x / \theta_{\mathcal{F}} \wedge f_{1}(e)\right] \vee\left[x / \theta_{\mathcal{F}} \wedge f_{2}(e)\right]= \\
& =\left[e / \theta_{\mathcal{F}} \wedge f_{1}(x)\right] \vee\left[e / \theta_{\mathcal{F}} \wedge f_{2}(x)\right]= \\
=e / \theta_{\mathcal{F}} & \wedge\left[f_{1}(x) \vee f_{2}(x)\right]=e / \theta_{\mathcal{F}} \wedge\left(f_{1} \curlyvee f_{2}\right)(x)
\end{aligned}
$$

and

$$
\begin{gathered}
x / \theta_{\mathcal{F}} \wedge\left(f_{1} \otimes f_{2}\right)(e)=x / \theta_{\mathcal{F}} \wedge\left[\left(e / \theta_{\mathcal{F}} \rightarrow f_{1}(e)\right) \odot f_{2}(e)\right] \\
=\left[\left(e / \theta_{\mathcal{F}} \rightarrow f_{1}(e)\right) \odot f_{2}(e)\right] \odot x / \theta_{\mathcal{F}}=\left[\left(e / \theta_{\mathcal{F}} \rightarrow f_{1}(e)\right) \odot x / \theta_{\mathcal{F}}\right] \odot f_{2}(e) \\
\stackrel{c_{58}}{\underline{c_{5}}}\left[\left((e \odot x) / \theta_{\mathcal{F}} \rightarrow\left(f_{1}(e) \odot x / \theta_{\mathcal{F}}\right)\right) \odot x / \theta_{\mathcal{F}}\right] \odot f_{2}(e) \\
=\left[(e \odot x) / \theta_{\mathcal{F}} \rightarrow\left(f_{1}(e) \odot x / \theta_{\mathcal{F}}\right)\right] \odot\left[x / \theta_{\mathcal{F}} \odot f_{2}(e)\right] \\
=\left[(e \odot x) / \theta_{\mathcal{F}} \rightarrow\left(e / \theta_{\mathcal{F}} \odot f_{1}(x)\right)\right] \odot\left[e / \theta_{\mathcal{F}} \odot f_{2}(x)\right] \\
=\left[\left(\left(e / \theta_{\mathcal{F}} \odot x / \theta_{\mathcal{F}}\right) \rightarrow\left(e / \theta_{\mathcal{F}} \odot f_{1}(x)\right)\right) \odot e / \theta_{\mathcal{F}}\right] \odot f_{2}(x) \\
\stackrel{c_{55}}{=}\left[\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right. \\
\left.\left.\quad f_{1}(x)\right) \odot e / \theta_{\mathcal{F}}\right] \odot f_{2}(x)=\left[\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot f_{2}(x)\right] \odot e / \theta_{\mathcal{F}} \\
=\left[\left(f_{1} \otimes f_{2}\right)(x)\right] \odot e / \theta_{\mathcal{F}}=e / \theta_{\mathcal{F}} \wedge\left(f_{1} \otimes f_{2}\right)(x)
\end{gathered}
$$

and

$$
\begin{aligned}
& e / \theta_{\mathcal{F}} \wedge\left(f_{1} \leftrightarrow f_{2}\right)(x)=\left[\left(f_{1}(x) \rightarrow f_{2}(x)\right) \odot x / \theta_{\mathcal{F}}\right] \wedge e / \theta_{\mathcal{F}} \\
& =\left[\left(f_{1}(x) \rightarrow f_{2}(x)\right) \odot x / \theta_{\mathcal{F}}\right] \odot e / \theta_{\mathcal{F}}=\left[\left(f_{1}(x) \rightarrow f_{2}(x)\right) \odot e / \theta_{\mathcal{F}}\right] \odot x / \theta_{\mathcal{F}} \\
& \stackrel{c_{57}}{=}\left[\left(\left(f_{1}(x) \odot e / \theta_{\mathcal{F}}\right) \rightarrow\left(f_{2}(x) \odot e / \theta_{\mathcal{F}}\right)\right) \odot e / \theta_{\mathcal{F}}\right] \odot x / \theta_{\mathcal{F}} \\
& =\left[\left(\left(x / \theta_{\mathcal{F}} \odot f_{1}(e)\right) \rightarrow\left(x / \theta_{\mathcal{F}} \odot f_{2}(e)\right)\right) \odot e / \theta_{\mathcal{F}}\right] \odot x / \theta_{\mathcal{F}}= \\
& =\left[\left(\left(x / \theta_{\mathcal{F}} \odot f_{1}(e)\right) \rightarrow\left(x / \theta_{\mathcal{F}} \odot f_{2}(e)\right)\right) \odot x / \theta_{\mathcal{F}}\right] \odot e / \theta_{\mathcal{F}} \stackrel{c^{c_{58}}}{=}\left[\left(f_{1}(e) \rightarrow f_{2}(e)\right) \odot x / \theta_{\mathcal{F}}\right] \odot e / \theta_{\mathcal{F}}= \\
& =\left[\left(f_{1}(e) \rightarrow f_{2}(e)\right) \odot e / \theta_{\mathcal{F}}\right] \odot x / \theta_{\mathcal{F}}=\left[\left(f_{1} \leftrightarrow f_{2}\right)(e)\right] \odot x / \theta_{\mathcal{F}}=x / \theta_{\mathcal{F}} \wedge\left(f_{1} \leftrightarrow f_{2}\right)(e)
\end{aligned}
$$

and

$$
\begin{gathered}
e / \theta_{\mathcal{F}} \wedge\left(f_{1} \rightsquigarrow f_{2}\right)(x)=e / \theta_{\mathcal{F}} \wedge\left[x / \theta_{\mathcal{F}} \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)\right] \\
=(e \odot x) / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightsquigarrow f_{2}(x)\right]=x / \theta_{\mathcal{F}} \odot\left[e / \theta_{\mathcal{F}} \odot\left(f_{1}(x) \rightsquigarrow f_{2}(x)\right)\right] \\
\stackrel{c_{5 \mathcal{F}}}{=} x / \theta_{\mathcal{F}} \odot\left[e / \theta_{\mathcal{F}} \odot\left(\left(e / \theta_{\mathcal{F}} \odot f_{1}(x)\right) \rightsquigarrow\left(e / \theta_{\mathcal{F}} \odot f_{2}(x)\right)\right)\right] \\
=x / \theta_{\mathcal{F}} \odot\left[e / \theta_{\mathcal{F}} \odot\left(\left(x / \theta_{\mathcal{F}} \odot f_{1}(e)\right) \rightsquigarrow\left(x / \theta_{\mathcal{F}} \odot f_{2}(e)\right)\right)\right]= \\
=e / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \odot\left(\left(x / \theta_{\mathcal{F}} \odot f_{1}(e)\right) \rightsquigarrow\left(x / \theta_{\mathcal{F}} \odot f_{2}(e)\right)\right)\right] \stackrel{c_{5 \mathcal{F}}}{=} e / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \odot\left(f_{1}(e) \rightsquigarrow f_{2}(e)\right)\right]= \\
=x / \theta_{\mathcal{F}} \odot\left[e / \theta_{\mathcal{F}} \odot\left(f_{1}(e) \rightsquigarrow f_{2}(e)\right)\right]=x / \theta_{\mathcal{F}} \odot\left(f_{1} \rightsquigarrow \rightarrow f_{2}\right)(e)=x / \theta_{\mathcal{F}} \wedge\left(f_{1} \rightsquigarrow f_{2}\right)(e) .
\end{gathered}
$$

Remark 8.2. Analogous as in the case of \mathcal{F} - multipliers if we work with strong- \mathcal{F} multipliers we obtain a pseudo MTL- subalgebra of $A_{\mathcal{F}}$ denoted by $s-A_{\mathcal{F}}$ which will be called the strong-localization pseudo MTL-algebra of A with respect to the topology \mathcal{F}.

So, if $\mathcal{F}=\mathcal{I}(A) \cap R(A)$ is the topology of regular ideals, then $\theta_{\mathcal{F}}$ is the identity congruence of A and we obtain the definition for multipliers on A, so

$$
s-A_{\mathcal{F}}=\underset{I \in \mathcal{F}^{\prime}}{\lim }(s-M(I, A)),
$$

where $s-M(I, A)$ is the set of strong multipliers of A having the domain I (see Definition 4.1, $\left.M_{1}-M_{4}\right)$.

In this situation we obtain:
Proposition 8.1. In the case $\mathcal{F}=\mathcal{I}(A) \cap R(A), A_{\mathcal{F}}$ is exactly the maximal pseudo MTL-algebra $Q(A)$ of quotients of A which is a Boolean algebra. If pseudo MTLalgebra A is a MTL- algebra, $A_{\mathcal{F}}$ is exactly the maximal $M T L$-algebra $Q(A)$ of quotients of A.
3. Denoting by \mathcal{D} the topology of dense subsets of A, then (since $R(A) \subseteq D(A)$) there exists a morphism of pseudo $M T L$-algebras $\alpha: Q(A) \rightarrow s-A_{\mathcal{D}}$ such that the diagrame

is commutative (i.e. $\alpha \circ \overline{v_{A}}=v_{\mathcal{D}}$). Indeed, if $[f, I] \in Q(A)$ (with $I \in \mathcal{I}^{\prime}(A) \cap R(A)$ and $f: I \rightarrow A$ a strong multiplier in the sense of Definition 4.1) we denote by $f_{\mathcal{D}}$ the strong - \mathcal{D}-multiplier $f_{\mathcal{D}}: I \rightarrow A / \theta_{\mathcal{D}}$ defined by $f_{\mathcal{D}}(x)=f(x) / \theta_{\mathcal{D}}$ for every $x \in I$. Thus, α is defined by $\alpha([f, I])=\left[f_{\mathcal{D}}, I\right]$.
4. Let $S \subseteq A$ a \wedge-closed system of pseudo $M T L$ - algebra A.

As in the case of $M T L$-algebras we obtain the following result:
Proposition 8.2. If \mathcal{F}_{S} is the topology associated with a \wedge-closed system $S \subseteq A$, then the pseudo MTL-algebra $s-A_{\mathcal{F}_{S}}$ is isomorphic with $B(A[S])$.
Remark 8.3. In the proof of Proposition 8.2 the axiom M_{8} is not necessarily.

Concluding remarks

Since in particular a $M T L$ - algebra is a pseudo $M T L$ - algebra we obtain in this paper a part of the results about localization of $M T L$ - algebras, so we deduce that the main results of this paper are generalization of the analogous results relative to $M T L$ - algebras in [15], [16].

We use in the construction of localization pseudo $M T L$ - algebra $A_{\mathcal{F}}$ the Boolean center $B(A)$ of a pseudo $M T L$ - algebra A; as a consequence of this fact, $s-A_{\mathcal{F}}$ is a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the localization for pseudo $M T L$ - algebras or residuated lattices without use the Boolean center.

References

[1] R. Balbes, Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
[2] T. S. Blyth, M. F. Janovitz, Residuation Theory, Pergamon Press, 1972.
[3] D. Buşneag, D. Piciu, Residuated lattices of fractions relative to a \wedge-closed system, Bull. Math. Soc. Math. Roumanie, Tome 49, (97), No. 1, (2006), 13-24.
[4] L. Ciungu, Some classes of pseudo-MTL algebras, Bull. Math. Soc. Sci. Math. Roumanie, Tome 50 (98), No. 3, (2007), 223-247.
[5] W. H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra, 32 (1974), 339-355.
[6] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: Part I,II, Multiple Valued Logic, 8, No.5-6, (2002), 673-714, 717-750.
[7] F. Esteva, L. Godo, Monoidal t-norm based logic : towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, 124 (2001), 271-288.
[8] P. Flondor, G. Georgescu, A. Iorgulescu, Pseudo t-norms and pseudo-BL algebras, Soft Computing, 5, No 5 (2001), 355-371.
[9] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at structural logic, Studies in Logic and the foundations of math., Vol. 151, Elsevier Science, 2007.
[10] G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis, 21 (1985), 181-197.
[11] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
[12] A. Iorgulescu, Algebras of logic as BCK algebras, Ed. ASE, Bucharest, 2008.
[13] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
[14] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
[15] D. Piciu, A. Jeflea, MTL-algebra of fractions and maximal MTL-algebra of quotients, Bull. Soc. Sci. Math. Roumanie, submitted.
[16] D. Piciu, A. Jeflea, Localization of MTL-algebras, Studia Logica, submitted.
[17] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics, vol.6, no. 3 (1980).
[18] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai, 33, Szeged, Hungary, (1980).
[19] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.
(Antoaneta Jeflea) University Spiru Haret, Faculty of Bookkeeping Financial
Management,32-34, Unirii st., Constantुa, Romania
E-mail address: antojeflea@yahoo.com

[^0]: Received: 11 March 2009.

