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1. Introduction

Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced
by Hájek in [11] to cope with the logic of continuous t-norms and their residua.
Monoidal logic (ML from now on), is a logic whose algebraic counterpart is the
class of residuated; MTL-algebras (see [7]) are algebraic structures for the Esteva-
Godo monoidal t-norm based logic (MTL), a many-valued propositional calculus that
formalizes the structure of the real unit interval [0, 1], induced by a left–continuous
t-norm.

Pseudo BL− algebras were introduced by A. Di Nola, G. Georgescu and A. Iorgulescu
in [6] as a non-commutative extension of Hájek’s BL−algebras. Pseudo BL−algebras
are bounded non-commutative residuated lattices (A,∧,∨,�,→,�, 0, 1) which sat-
isfy the pseudo-divisibility condition x ∧ y = (x → y) � x = x � (x � y) and the
pseudo-prelinearity condition (x → y) ∨ (y → x) = (x� y) ∨ (y � x) = 1.

Depending on the above conditions, there are two directions to extend pseudo
BL−algebras. One direction investigates the (bounded) non-commutative residuated
lattices satisfying the pseudo-divisibility condition which were studied under the name
(bounded) divisible pseudo - residuated lattices or bounded Rl - monoids. The second
direction deals with (bounded) non-commutative residuated lattices with the pseudo-
prelinearity condition, that is pseudo MTL− algebras.

Pseudo MTL algebras were in [8] under the name weak-BL algebras in order to
obtain a structure on [0, 1], since there are not pseudo BL−algebras on [0, 1].

So, Pseudo MTL− algebras are non-commutative fuzzy structures which arise
from pseudo t-norms, namely, pseudo BL−algebras without the pseudo-divisibility
condition.

In this paper we develope a theory of localization for pseudo MTL - algebras and
we deal with generalizations of results which are obtained in [15] and [16].

This paper is organized as follows: In Section 2 we recall the basic definitions
and we put in evidence many rules of calculus in pseudo MTL - algebras and a
characterizations for the boolean elements in a pseudo MTL - algebra. In Section 3
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we introduce the pseudo MTL - algebra of fractions relative to a ∧− closed system.
In Section 4 we develop a theory for strong multipliers on a pseudo MTL - algebra
and in Section 5 we define the notions of pseudo MTL - algebra of fractions and
maximal pseudo MTL - algebra of quotients for a pseudo MTL - algebra. In the
least part of this section it is proved the existence of the maximal pseudo MTL -
algebra of quotients.

A remarkable construction in ring theory is the localization ring AF associated
with a Gabriel topology F on a ring A.

Using the model of localization ring, in [10], G. Georgescu defined for a bounded
distributive lattice L the localization lattice LF of L with respect to a topology F on
L and prove that the maximal lattice of quotients for a distributive lattice is a lattice
of localization (relative to the topology of regular ideals); analogous results we have
for the lattice of fractions of a bounded distributive lattice relative to a ∧− closed
system.

In Sections 6 and 7 we develop a theory of localization for pseudo MTL - algebras.
So, for a pseudo MTL - algebra A we define the notion of localization pseudo MTL
- algebra relative to a topology F on A and in Section 8 we describe the localization
pseudo MTL - algebra AF in some special instances.

Since MTL− algebras are particular classes of pseudo MTL− algebras, the results
of this paper generalize a part of the results from [15], [16] for MTL− algebras.

2. Definitions and preliminaries

Definition 2.1. A pseudo MTL- algebra ([8]) is an algebra (A,∧,∨,�,→,�, 0, 1)
of type (2, 2, 2, 2, 2, 0, 0) equipped with an order ≤ satisfying the following axioms:
(a1) (A,∧,∨, 0, 1) is a bounded lattice relative to the order ≤;
(a2) (A,�, 1) is a monoid;
(a3) x � y ≤ z iff x ≤ y → z iff y ≤ x� z, for every x, y, z ∈ A;
(a4) (x → y) ∨ (y → x) = (x � y) ∨ (y � x) = 1, for every x, y ∈ A (pseudo-

prelinearity).

Remark 2.1. If A satisfies only the axioms a1, a2 and a3 then A is called a residuated
lattice.

Remark 2.2. If additionally for any x, y ∈ A the structure A by Definition 2.1
satisfies the axiom

(a5): (x → y) � x = x � (x � y) = x ∧ y (pseudo-divisibility), then A is a pseudo
BL- algebra.

Remark 2.3. If A satisfies the axioms a1, a2, a3 and a5 then it is a bounded divisible
residuated lattice. These structures were also studied under the name bounded RL-
monoids.

Remark 2.4. A pseudo MTL- algebra A is called commutative if the operation � is
commutative. In this case the operations → and� coincide, and thus, a commutative
pseudo-MTL algebra is a MTL algebra.

A totally ordered pseudo-MTL algebra is called a chain.
For examples of pseudo-MTL algebras see [4] and [12].
In [4], [6], [8], [12] it is proved that if A is a residuated lattice and a, a1, ..., an, b, bi, c ∈

A, (i ∈ I) then we have the following rules of calculus:
(c1) a � (a� b) ≤ b ≤ a� (a � b) and a � (a� b) ≤ a ≤ b� (b � a),
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(c2) (a → b) � a ≤ a ≤ b → (a �b) and (a → b) � a ≤ b ≤ a → (b �a),
(c3) if a ≤ b then a � c ≤ b � c and c � a ≤ c � b,
(c4) if a ≤ b then c� a ≤ c� b and c → a ≤ c → b,
(c5) if a ≤ b then b� c ≤ a� c and b → c ≤ a → c,
(c6) a ≤ b iff a → b = 1 iff a� b = 1,
(c7) a� a = a → a = 1,
(c8) 1� a = 1 → a = a,
(c9) b ≤ a� b and b ≤ a → b,

(c10) a � b ≤ a ∧ b and a � b ≤ a, b,
(c11) a� 1 = a → 1 = 1,
(c12) a� b ≤ (c � a)� (c � b),
(c13) a → b ≤ (a � c) → (b � c),
(c14) if a ≤ b then a ≤ c� b and a ≤ c → b,
(c15) (b� c) � a ≤ b� (c � a) and a � (b → c) ≤ b → (a � c),
(c16) if a ≤ b then b� 0 ≤ a� 0 and b → 0 ≤ a → 0,
(c17) 0 � a = a � 0 = 0,
(c18) (a� b) � (b� c) ≤ a� c and (b → c) � (a → b) ≤ a → c,
(c19) (a1 � a2) � (a2 � a3) � ... � (an−1 � an) ≤ a1 � an,
(c20) (an−1 → an) � ... � (a2 → a3) � (a1 → a2) ≤ a1 → an,
(c21) a ∨ b = ((a� b) → b) ∧ ((b� a) → a),
(c22) a ∨ b = ((a → b)� b) ∧ ((b → a)� a),
(c23) a� (b� c) = (b � a)� c and a → (b → c) = (a � b) → c,
(c24) a� b = a� (a ∧ b),
(c25) a → b = a → (a ∧ b),
(c26) c � (a ∧ b) ≤ (c � a) ∧ (c � b) and (a ∧ b) � c ≤ (a � c) ∧ (b � c),
(c27) if a ∨ b = 1 then a → b = a� b = b,
(c28) if a ∨ b = 1 then, for each natural number n ≥ 1, an ∨ bn = 1,
(c29) for each natural number n ≥ 1, (a → b)n ∨ (b → a)n = (a� b)n ∨ (b� a)n = 1,
(c30) a � (

∨

i∈I

bi) =
∨

i∈I

(a � bi),

(
∨

i∈I

bi) � a =
∨

i∈I

(bi � a),

a� (
∧

i∈I

bi) =
∧

i∈I

(a� bi),

a → (
∧

i∈I

bi) =
∧

i∈I

(a → bi),

(
∨

i∈I

bi)� a =
∧

i∈I

(bi � a),

(
∨

i∈I

bi) → a =
∧

i∈I

(bi → a),

(whenever the arbitrary meets and unions exist)

Proposition 2.1. ([4], [7], [8]) If A is a pseudo MTL−algebra, then for every
x, y, z ∈ A we have :

(c31) if x ∨ y = 1 then x � y = x ∧ y;
(c32) x → (y ∨ z) = (x → y) ∨ (x → z) and x� (y ∨ z) = (x� y) ∨ (x� z);
(c33) (x ∧ y) → z = (x → z) ∨ (y → z) and (x ∧ y)� z = (x� z) ∨ (y � z);
(c34) x � (y ∧ z) = (x � y) ∧ (x � z) and (y ∧ z) � x = (y � x) ∧ (z � x) ;
(c35) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

In a pseudo MTL−algebra A we denote a∼ = a � 0 and a− = a → 0, for every
a ∈ A. Using these notations we have the following rules of calculus in a pseudo
MTL−algebra :
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(c36) 1∼ = 1− = 0, 0∼ = 0− = 1,
(c37) a � a∼ = a− � a = 0,
(c38) b ≤ a∼ iff a � b = 0,
(c39) b ≤ a− iff b � a = 0,
(c40) a ≤ a− � b, a ≤ a∼ → b,
(c41) a ≤ (a∼)−, a ≤ (a−)∼,
(c42) a� b ≤ b∼ → a∼, a → b ≤ b− � a−,
(c43) a → b∼ = b� a−, a� b− = b → a∼,
(c44) a ≤ b implies b∼ ≤ a∼ and b− ≤ a−,
(c45) (( a∼)−)∼ = a∼, (( a−)∼)− = a−,
(c46) a → a∼ = a� a−,
(c47) (b � a)∼ = a� b∼, (a� b)− = a → b−,
(c48) (a ∧ b)∼ = a∼ ∨ b∼, (a ∨ b)∼ = a∼ ∧ b∼,
(c49) (a ∧ b)− = a− ∨ b−, (a ∨ b)− = a− ∧ b−,
(c50) (a ∨ b)−∼ = a−∼ ∨ b−

∼

, (a ∨ b)∼− = a∼− ∨ b∼−,
(c51) a− � b− = a−∼ → b−

∼

= a → b−
∼

and b∼ → a∼ = a∼− � b∼− = a� b∼−.

2.1. The Boolean center of a pseudo MTL-algebra. Let (L,∨,∧, 0, 1) be a
bounded lattice. Recall that an element a ∈ L is called complemented if there is an
element b ∈ L such that a∨ b = 1 and a ∧ b = 0; if such element b exists it is called a
complement of a. We will denote b = a′ and the set of all complemented elements in
L by B(L). Complements are generally not unique, unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be dis-
tributive, the complements are unique (following c35 in a pseudo MTL− algebra the
complements are unique).

Lemma 2.1. ([9]) Suppose that A is a residuated lattice and a ∈ A have a complement
b ∈ A. Then, the following hold:
(i) If c is another complement of a in A, then c = b ;

(ii) a′ = b and b′ = a;
(iii) a2 = a.

Remark 2.5. Since in particular a pseudo MTL− algebra is a residuated lattice,
Lemma 2.1 is also true if A is a pseudo MTL− algebra.

In the following we denote by A the universe of a pseudo MTL− algebra A and
by B(A) the set of all complemented elements of A.

Lemma 2.2. If e ∈ B(A), then e′ = e− = e∼ and (e−)∼ = (e∼)− = e, where by e′

we denote the complement of e.

Proof. If e ∈ B(A), and a = e′, then e∨a = 1 and e∧a = 0. Since e�a ≤ e∧a = 0,
then e � a = 0, hence a ≤ e � 0 = e∼ and a � e ≤ e ∧ a = 0, then a � e = 0,

hence a ≤ e → 0 = e−. On the another hand, e− = e− � 1 = e− � (e ∨ a) c30=
(e− � e) ∨ (e− � a) = 0 ∨ (e− � a) = e− � a, hence e− ≤ a, and e∼ = 1 � e∼ =
(e ∨ a) � e∼

c30= (e � e∼) ∨ (a � e∼) = 0 ∨ (a � e∼) = a � e∼, hence e∼ ≤ a, that is
e− = e∼ = a. The equality (e−)∼ = (e∼)− = e follows from Lemma 2.1, (ii).�
Proposition 2.2. ([9]) If e, f ∈ B(A), then e ∧ f, e ∨ f, e → f, e � f ∈ B(A) and
for every x ∈ A,

(c52): e � x = e ∧ x = x � e.

Corollary 2.1. ([9]) The set B(A) is the universe of a Boolean subalgebra of A,
called the Boolean center of A.
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Proposition 2.3. For e ∈ A the following are equivalent:
(i) e ∈ B(A),

(ii) e ∨ e− = e ∨ e∼ = 1 .

Proof. (i) ⇒ (ii). Follows from Lemma 2.2.

(i) ⇒ (ii). From e ∨ e− = 1 we deduce that 0 = 1∼ = (e ∨ e−)∼
c48= e∼ ∧ (e−)∼

c41≥
e∼ ∧ e, so e∼ ∧ e = 0. We have e ∨ e∼ = 1 and e ∧ e∼ = 0, so e ∈ B(A).�
Proposition 2.4. If e ∈ B(A) then:
(i) e2 = e and e = (e∼)− = (e−)∼,

(ii) e− → e = e and e → e− = e−,
(ii′) e∼ � e = e and e� e∼ = e∼,
(iii) (e → x) → e = e, for every x ∈ A,
(iii′) (e� x)� e = e, for every x ∈ A,
(iv) e∧x = (e → x)� e = (x → e)�x = e� (e� x) = x� (x� e), for every x ∈ A.

Proof. (i). Follows from Lemma 2.1 (iii) and Lemma 2.2.
(ii). If e ∈ B(A), then e ∨ e− = 1. Since, by c22, 1 = e ∨ e− = [(e → e−) �

e−] ∧ [(e− → e) � e], we deduce that (e → e−) � e− = (e− → e) � e = 1, hence
e → e− ≤ e− and e− → e ≤ e that is, e → e− = e− and e− → e = e.

(ii′). As for (ii) using c21.
(iii). If x ∈ A, then from 0 ≤ x we deduce using c4 and c5 that e− ≤ e → x

hence (e → x) → e ≤ e− → e = e, by (ii). Since e ≤ (e → x) → e we obtain
(e → x) → e = e.

(iii′). As for (iii).
(iv). For x ∈ A and e ∈ B(A), since by c52, e∧x = e�x = x�e ≤ (e → x)�e, (x →

e) � x, e � (e � x), x � (x � e) ≤ x, e we deduce that (e → x) � e = (x → e) � x =
e � (e� x) = x � (x� e) = e ∧ x. �
Proposition 2.5. For e ∈ A the following are equivalent:
(i) e ∈ B(A),

(ii) e = (e∼)− = (e−)∼ and e ∧ x = e � x, for every x ∈ A.

Proof. (i) ⇒ (ii). By Propositions 2.2 and 2.4.
(ii) ⇒ (i). Suppose e = (e∼)− = (e−)∼ and e ∧ x = e � x, for every x ∈ A.
For x = e−, e∼ using c37 we obtain e− ∧ e = e− � e = 0 and e ∧ e∼ = e � e∼ = 0,

so, we have: 1 = 0∼ = (e− ∧ e)∼
c48= (e−)∼ ∨ e∼ = e∨ e∼, and 1 = 0− = (e ∧ e∼)− c49=

e− ∨ (e∼)− = e− ∨ e, hence e∼ ∨ e = e− ∨ e = 1 and using Proposition 2.3 we deduce
that e ∈ B(A). �
Proposition 2.6. If e ∈ B(A) and x ∈ A, then

(c53) x → e = (x � e∼)− = x− ∨ e,
(c54) x� e = (e− � x)∼ = e ∨ x∼.

Proof. We have

x → e = x → (e∼)− c47= (x � e∼)− = (x ∧ e∼)− c49= x− ∨ (e∼)− = x− ∨ e,

x� e = x� (e−)∼
c47= (e− � x)∼ = (e− ∧ x)∼

c48= (e−)∼ ∨ x∼ = e ∨ x∼. �
Lemma 2.3. If e, f ∈ B(A) and x, y ∈ A, then:

(c55) e ∨ (x � y) = (e ∨ x) � (e ∨ y),
(c56) e ∧ (x � y) = (e ∧ x) � (e ∧ y),
(c57) e � (x� y) = e � [(e � x)� (e � y)] and (x → y)� e = [(x � e) → (y � e)]� e,
(c58) x� (e� f) = x� [(x� e)� (x� f)] and (e → f)� x = [(e� x) → (f � x)]� x,
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(c59) e → (x → y) = (e → x) → (e → y) and e� (x� y) = (e� x)� (e� y).

Proof. (c55). We have

(e ∨ x) � (e ∨ y) c30= [(e ∨ x) � e] ∨ [(e ∨ x) � y] = [(e ∨ x) � e] ∨ [(e � y) ∨ (x � y)]

= [(e ∨ x) ∧ e] ∨ [(e � y) ∨ (x � y)] = e ∨ (e � y) ∨ (x � y) = e ∨ (x � y).

(c56). We have

(e ∧ x) � (e ∧ y) = (e � x) � (e � y) = (e � e) � (x � y) = e � (x � y) = e ∧ (x � y).

(c57). By c13 we have x → y ≤ (x�e) → (y�e), hence by c3, (x → y)�e ≤ [(x�e) →
(y� e)]� e. Conversely, [(x� e) → (y � e)]� e ≤ e and [(x� e) → (y� e)]� (x� e) ≤
y� e ≤ y so [(x� e) → (y� e)]� e ≤ x → y. Hence [(x� e) → (y� e)]� e ≤ (x → y)∧
e = (x → y) � e.

By c12 we have x� y ≤ (e�x)� (e�y), hence by c3, e�(x� y) ≤ e� [(e�x)�
(e�y)]. Conversely, e�[(e�x)� (e�y)] ≤ e and (e�x)�[(e�x)� (e�y)] ≤ e�y ≤ y
so e � [(e � x)� (e � y)] ≤ x� y.

Hence e � [(e � x)� (e � y)] ≤ e ∧ (x� y) = e � (x� y).
(c58). We have

[(e � x) → (f � x)] � x = [(e � x) → (f ∧ x)] � x

c30= [((e � x) → f) ∧ ((e � x) → x)] � x

= [((e � x) → f) ∧ 1] � x = [(e � x) → f ] � x = [(x � e) → f ] � x

c23= [x → (e → f)] � x = x ∧ (e → f) = x � (e → f).

We have
x � [(x � e)� (x � f)] = x � [(x � e)� (x ∧ f)]

c30= x � [((x � e)� x) ∧ ((x � e)� f)] = x � [1 ∧ ((x � e)� f)]

= x � [(x � e)� f ] = x � [(e � x)� f ] c23= x � [x� (e� f)]

= x ∧ (e� f) = x � (e� f).

(c59).We have

(e → x) → (e → y) c23= [(e → x)�e] → y = (e∧x) → y = (e�x) → y
c23= e → (x → y),

(e� x)� (e� y) c23= [e�(e� x)]� y = (e∧x)� y = (x�e)� y
c23= e� (x� y). �

3. Pseudo-MTL algebra of fractions relative to a ∧− closed system

Definition 3.1. A nonempty subset S ⊆ A is called ∧−closed system in A if 1 ∈ S
and x, y ∈ S implies x ∧ y ∈ S.

We denote by S(A) the set of all ∧−closed system of A (clearly {1}, A ∈ S(A)).
For S ∈ S(A), on the pseudo - MTL algebra A we consider the relation θS defined

by
(x, y) ∈ θS iff there exists e ∈ S ∩ B(A) such that x ∧ e = y ∧ e.

Lemma 3.1. θS is a congruence on A.



128 A. JEFLEA

Proof. The reflexivity, symmetry and transitivity of θS are immediately.
The compatibility of θS with the operations ∧,∨,� is as in the case of MTL

algebras. To prove the compatibility of θS with the operations → and�, let x, y, z, t ∈
A such that (x, y) ∈ θS and (z, t) ∈ θS . Thus there exists e, f ∈ S ∩ B(A) such that
x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we denote g = e ∧ f ∈ S ∩ B(A).

We obtain using c57:

(x → z) ∧ g = (x → z) � g = [(x � g) → (z � g)] � g

= [(y � g) → (t � g)] � g = (y → t) � g = (y → t) ∧ g,

hence (x → z, y → t) ∈ θS and

(x� z) ∧ g = g � (x� z) = g � [(g � x)� (g � z)]

= g � [(g � y)� (g � t)] = g � (y � t) = (y � t) ∧ g,

hence (x� z, y � t) ∈ θS . �
For x ∈ A we denote by x/S the equivalence class of x relative to θS and by

A[S] = A/θS .

By pS : A → A[S] we denote the canonical map defined by pS(x) = x/S, for every
x ∈ A. Clearly, in A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A, x/S ∧ y/S =
(x ∧ y)/S, x/S ∨ y/S = (x ∨ y)/S, x/S � y/S = (x � y)/S, x/S → y/S = (x →
y)/S, x/S � y/S = (x� y)/S.

So, pS is an onto morphism of pseudo-MTL algebras.

Remark 3.1. Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that s/S =
1/S = 1, hence pS(S ∩ B(A)) = {1}.
Proposition 3.1. If a ∈ A, then a/S ∈ B(A[S]) iff there is e ∈ S ∩ B(A) such that
a ∨ a−, a ∨ a∼ ≥ e. So, if e ∈ B(A), then e/S ∈ B(A[S]).

Proof. For a ∈ A, we have by Proposition 2.3, a/S ∈ B(A[S]) ⇔ a/S ∨ (a/S)− =
a/S ∨ (a/S)∼ = 1 ⇔ (a ∨ a−)/S = (a ∨ a∼)/S = 1/S iff there is e1, e2 ∈ S ∩ B(A)
such that (a ∨ a−) ∧ e1 = 1 ∧ e1 = e1 and (a ∨ a∼) ∧ e2 = 1 ∧ e2 = e2. If denote
e = e1 ∧ e2 ∈ S ∩ B(A), then a ∨ a−, a ∨ a∼ ≥ e.

If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 = e ∨ e− = e ∨ e∼ ≥ 1, we deduce that
e/S ∈ B(A[S]). �

As in the case of MTL algebras we have the following result:

Theorem 3.1. If A′ is a pseudo-MTL algebra and f : A → A′ is a morphism of
pseudo-MTL algebras such that f(S∩B(A)) = {1}, then there is an unique morphism
of pseudo-MTL algebras f ′ : A[S] → A′ such that the diagram

A
pS−→ A[S]

↘
f

↙
f ′

A′

is commutative (i.e. f ′ ◦ pS = f).

Definition 3.2. Theorem 3.1 allows us to call A[S] the pseudo-MTL algebra of
fractions relative to the ∧−closed system S.

Remark 3.2. If pseudo-MTL algebra A is a MTL− algebra, then A[S] is a MTL−
algebra, called the MTL-algebra of fractions relative to the ∧−closed system S.
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Example 3.1. If A is a pseudo MTL− algebra and S = {1} or S is such that 1 ∈ S
and S ∩ (B(A)\{1}) = ∅, then for x, y ∈ A, (x, y) ∈ θS ⇐⇒ x∧ 1 = y ∧ 1 ⇐⇒ x = y,
hence in this case A[S] = A.

Example 3.2. If A is a pseudo MTL− algebra and S is a ∧−closed system such
that 0 ∈ S (for example S = A or S = B(A)), then for every x, y ∈ A, (x, y) ∈ θS

(since x ∧ 0 = y ∧ 0 and 0 ∈ S ∩ B(A)), hence in this case A[S] = 0.

4. Strong multipliers on a pseudo MTL - algebra

The concept of maximal lattice of quotients for a distributive lattice was defined by
J. Schmid in [17] taking as a guide-line the construction of complete ring of quotients
by partial morphisms introduced by G. Findlay and J. Lambek (see [13], p.36). The
central role in the constructions of maximal lattice of quotients for a distributive lat-
tice due to J. Schmid is played by the concept of multiplier (defined for a distributive
lattice by W. H. Cornish in [5]).

In this section by A we denote the universe of a pseudo MTL− algebra.
We denote by C(A) = {x ∈ A : x�(x� a) = (x → a)�x, for every a ≤ x, a ∈ A}.

We remark that if A is a MTL− algebra or a pseudo BL− algebra, then C(A) = A.

Lemma 4.1. In a pseudo MTL− algebra A if e ∈ B(A) and x ∈ C(A), then e� x ∈
C(A).

Proof. Let a ∈ A such that a ≤ e � x. Then (e � x) � [(e � x) � a] = x � (e �
[(e � x)� a]) c57= x � e � [(e � e � x)� (e � a)]) =

x � e � [(e � x) � (e � a)]) c57= x � e � (x � a) = e � x � (x � a)
a≤x,x∈C(A)

=
e � (x → a) � x

c57= [(x � e) → (a � e)] � e � x = [(x � e � e) → (a � e)] � e � x
c57=

[(x � e) → a] � (x � e) = [(e � x) → a] � (e � x).�
Also, we denote by I(A) = {I ⊆ A : if x, y ∈ A, x ≤ y and y ∈ I, then x ∈ I} and

by I ′(A) = {I = J ∩C(A), J ∈ I(A)}. Clearly, if I1, I2 ∈ I′(A), then I1 ∩ I2 ∈ I′(A).
Also, if I ∈ I′(A), then 0 ∈ I. If A is a MTL− algebra or a pseudo BL− algebra,
then I ′(A) = I(A) is the set of all ordered ideals of A.

Definition 4.1. By partial strong multiplier on A we mean a map f : I → A, where
I ∈ I′(A), which verifies the next axioms:

(M1) f(e � x) = e � f(x), for every e ∈ B(A) and x ∈ I;
(M2) x � (x� f(x)) = f(x), for every x ∈ I;
(M3) If e ∈ I ∩ B(A), then f(e) ∈ B(A);
(M4) x ∧ f(e) = e ∧ f(x), for every e ∈ I ∩ B(A) and x ∈ I.

Remark 4.1. The axiom M2, x � (x � f(x)) = f(x) implies f(x) ≤ x, for every
x ∈ I, and since x ∈ I ⊆ C(A), this axiom become x�(x� f(x)) = (x → f(x))�x =
f(x), for every x ∈ I.

Remark 4.2. If pseudo MTL−algebra A is a MTL−algebra, the Definition 4.1
coincide with the definition for partial strong multipliers in a MTL−algebra, see [15].

By dom(f) ∈ I ′(A) we denote the domain of f ; if dom(f) = C(A), we call f
total. To simplify the language, we will use strong multiplier instead partial strong
multiplier, using total to indicate that the domain of a certain multiplier is C(A).

Example 4.1. The map 0 : C(A) → A defined by 0(x) = 0, for every x ∈ C(A) is a
total strong multiplier on A.
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Example 4.2. The map 1 : C(A) → A defined by 1(x) = x, for every x ∈ C(A) is
also a total strong multiplier on A.

Example 4.3. For a ∈ B(A) and I ∈ I ′(A), the map fa : I → A defined by
fa(x) = a ∧ x

c52= a� x, for every x ∈ I is a strong multiplier on A (called principal).

Indeed, for x ∈ I and e ∈ B(A), we have fa(e � x) = a ∧ (e � x) = a ∧ (e ∧ x) =
e ∧ (a ∧ x) = e � (a ∧ x) = e � fa(x) and x � (x � fa(x)) = x � (x � (a ∧ x)) c30=
x � [(x� a) ∧ (x� x)] = x � (x� a) = x ∧ a = fa(x).

Also, if e ∈ I ∩B(A), fa(e) = e ∧ a ∈ B(A) and x∧ (a ∧ e) = e∧ (a ∧ x), for every
x ∈ I.

If dom(fa) = C(A), we denote fa by fa ; clearly, f0 = 0 and f1 = 1.
For I ∈ I′(A), we denote M(I, A) = {f : I → A | f is a strong multiplier on A}

and M(A) = ∪
I∈I′(A)

M(I, A).

Proposition 4.1. If I1, I2 ∈ I′(A) and fi ∈ M(Ii, A), i = 1, 2, then
(c60) f1(x) � [x� f2(x)] = [x → f1(x)] � f2(x), for every x ∈ I1∩ I2.

Proof. For x ∈ I1∩ I2 we have f1(x) � [x � f2(x)] M2= [(x → f1(x)) � x] � (x �
f2(x)) = (x → f1(x)) � [x � (x� f2(x))] M2= [x → f1(x)] � f2(x). �
Definition 4.2. For I1, I2 ∈ I′(A) and fi ∈ M(Ii, A), i = 1, 2, we define f1 ∧ f2,
f1∨ f2, f1 ⊗ f2, f1 ↔ f2, f1� f2 : I1 ∩ I2 → A by (f1 ∧ f2)(x) = f1(x)∧ f2(x), (f1 ∨
f2)(x) = f1(x)∨f2(x), (f1⊗f2)(x) = f1(x)�[x� f2(x)] c60= [x → f1(x)]�f2(x), (f1 ↔
f2)(x) = [f1(x) → f2(x)]� x, (f1 � f2)(x) = x � [f1(x)� f2(x)], for every x ∈ I1∩
I2.

Lemma 4.2. f1 ∧ f2 ∈ M(I1 ∩ I2, A).

Proof. It is sufficient to verify only M2 (for M1, M3 and M4 see [15]).
For every x ∈ I1∩ I2 we have x� [x� (f1 ∧ f2)(x)] = x� [x� (f1(x)∧ f2(x))] c30=
x � [(x � f1(x)) ∧ (x � f2(x))] c34= [x � (x � f1(x))] ∧ [x � (x � f2(x))] M2=

f1(x) ∧ f2(x) = (f1 ∧ f2)(x).�
Lemma 4.3. f1 ∨ f2 ∈ M(I1 ∩ I2, A).

Proof. The axioms M1, M3 and M4 are verified as in the case of MTL− algebras
(see [15]). To verify M2, let x ∈ I1∩ I2. Then x�[x� (f1∨f2)(x)] = x�[x� (f1(x)∨
f2(x))] c32= x � [(x � f1(x)) ∨ (x � f2(x))] c30= [x � (x � f1(x))] ∨[x � (x � f2(x))]
M2= f1(x) ∨ f2(x) = (f1 ∨ f2)(x) . �
Lemma 4.4. f1 ⊗ f2 ∈ M(I1 ∩ I2, A).

Proof. By using c57 and c58 the axioms M1, M3 and M4 are verified as in the case
of MTL− algebras (see [15]). For M2, let x ∈ I1∩ I2 and denote f = f1 ⊗ f2.

To prove the equality x � (x� f(x)) = f(x) since by c1, x � (x � f(x)) ≤ f(x),
it is sufficient to prove that f(x) ≤ x � (x� f(x)).

We have f(x) = f1(x) � (x � f2(x)) = x � (x � f1(x)) � (x � f2(x)) and
x � (x � f(x)) = x � [x � (x � (x � f1(x)) � (x � f2(x)))]. So, to prove that
f(x) ≤ x � (x� f(x)) it is sufficient to prove that x � (x� f1(x)) � (x� f2(x)) ≤
x� [x� (x� (x� f1(x))� (x� f2(x)))], that is α ≤ x� (x�α) (with α

not= (x�
f1(x)) � (x� f2(x))), which is true using a3.�
Lemma 4.5. f1 � f2 ∈ M(I1 ∩ I2, A).
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Proof. By using c57 and c58 the axioms M1, M3 and M4 are verified as in the
case of MTL− algebras (see [15]). For M2, let x ∈ I1∩ I2 and denote f = f1 �
f2 : I1 ∩ I2 → A; then f(x) = x � [f1(x) � f2(x)]. We have f1(x) � f2(x) ≤ x �
[x � (f1(x) � f2(x))], hence x � [f1(x) � f2(x)] ≤ x � [x � (x � (f1(x) � f2(x)))]
⇔ f(x) ≤ x � [x� f(x)] c1⇔ f(x) = x � [x� f(x)]. �
Lemma 4.6. f1 ↔ f2 ∈ M(I1 ∩ I2, A).

Proof. By using c57 and c58 the axioms M1, M3 and M4 are verified as in the
case of MTL− algebras (see [15]). For M2, let x ∈ I1∩ I2 and denote f = f1 ↔
f2 : I1 ∩ I2 → A; then f(x) = [f1(x) → f2(x)] � x. We have f1(x) → f2(x) ≤ x →
[(f1(x) → f2(x)) � x], hence [f1(x) → f2(x)] � x ≤ [x → ((f1(x) → f2(x)) � x)] � x

⇔ f(x) ≤ [x → f(x)] � x
c2⇔ f(x) = [x → f(x)] � x.

Using Remark 4.1 we deduce that x � (x � f(x)) = (x → f(x)) � x = f(x), for
every x ∈ I. �
Proposition 4.2. (M(A),∧,∨,⊗,↔,�,0,1) is a pseudo MTL− algebra.

Proof. We verify the axioms of a pseudo MTL− algebra.
(a1). Obviously (M(A),∧,∨,0,1) is a bounded (distributive) lattice.
(a2). As in the case of MTL− algebras (see [15]), using c60.
(a3). Let fi ∈ M(Ii, A), where Ii ∈ I′(A), i = 1, 2, 3.
¿From f1 ≤ f2 ↔ f3 for x ∈ I1 ∩ I2 ∩ I3, we deduce that

f1(x) ≤ (f2 ↔ f3)(x) ⇔ f1(x) ≤ [f2(x) → f3(x)] � x.

So, by c3,we deduce that

f1(x) � [x� f2(x)] ≤ [f2(x) → f3(x)] � x � [x� f2(x)] ⇔
f1(x) � [x� f2(x)] ≤ (f2(x) → f3(x)) � f2(x) ⇔

Since (f2(x) → f3(x))� f2(x) ≤ f3(x) we deduce that (f1 ⊗ f2)(x) ≤ f3(x), for every
x ∈ I1 ∩ I2 ∩ I3, that is, f1 ⊗ f2 ≤ f3.

Conversely, if (f1 ⊗ f2)(x) ≤ f3(x), then we have [x → f1(x)] � f2(x) ≤ f3(x), for
every x ∈ I1 ∩ I2 ∩ I3. Obviously,

[x → f1(x)] ≤ f2(x) → f3(x) c3⇒ (x → f1(x)) � x ≤ (f2(x) → f3(x)) � x

⇒ f1(x) ≤ (f2(x) → f3(x)) � x ⇒ f1(x) ≤ (f2 ↔ f3)(x).
Hence, f1 ≤ f2 ↔ f3 iff f1 ⊗ f2 ≤ f3, for all f1, f2, f3 ∈ M(A).

If f2 ≤ f1 � f3 for x ∈ I1 ∩ I2 ∩ I3, then we have

f2(x) ≤ (f1 � f3)(x) ⇔ f2(x) ≤ x � [f1(x)� f3(x)].
So, by c3, we have

[x → f1(x)] � f2(x) ≤ [x → f1(x)] � x � [f1(x)� f3(x)] ⇔
(f1 ⊗ f2)(x) ≤ f1(x) � (f1(x)� f3(x)).

Since f1(x)� (f1(x)� f3(x)) ≤ f3(x) we deduce that (f1 ⊗ f2)(x) ≤ f3(x), for every
x ∈ I1 ∩ I2 ∩ I3, that is, f1 ⊗ f2 ≤ f3.

Conversely if (f1 ⊗ f2)(x) ≤ f3(x), then we have f1(x) � [x � f2(x)] ≤ f3(x), for
every x ∈ I1 ∩ I2 ∩ I3. It is obvious that

x� f2(x) ≤ f1(x)� f3(x) c3⇒ x � (x� f2(x)) ≤ x � (f1(x)� f3(x))

⇒ f2(x) ≤ x � (f1(x)� f3(x)) ⇒ f2(x) ≤ (f1 � f3)(x).
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Hence, f2 ≤ f1 � f3 iff f1 ⊗ f2 ≤ f3 for all f1, f2, f3 ∈ M(A).
(a4). For the preliniarity equation we have

[(f1 ↔ f2) ∨ (f2 ↔ f1)](x) = [(f1 ↔ f2)(x)] ∨ [(f2 ↔ f1)(x)] =
= [(f1(x) → f2(x)) � x] ∨ [(f2(x) → f1(x)) � x] =

c30= [(f1(x) → f2(x)) ∨ (f2(x) → f1(x))] � x
a4= 1 � x = x = 1(x),

and
[(f1 � f2) ∨ (f2 � f1)](x) = [(f1 � f2)(x)] ∨ [(f2 � f1)(x)] =

= [x � (f1(x)� f2(x))] ∨ [x � (f2(x)� f1(x))] =
c30= x � [(f1(x)� f2(x)) ∨ (f2(x)� f1(x))] a4= x � 1 = x = 1(x),

hence (f1 ↔ f2) ∨ (f2 ↔ f1) = (f1 � f2) ∨ (f2 � f1) = 1.
Finally, we deduce that (M(A),∧,∨,⊗,↔,�,0,1) is a pseudo MTL− algebra.

�
Remark 4.3. To prove that (M(A),∧,∨,⊗,↔,�,0,1) is a pseudo MTL-algebra
it is sufficient to ask for strong multipliers only the axioms M1 and M2.

Remark 4.4. If pseudo MTL− algebra A is a pseudo BL− algebra (i.e. (x →
y) � x = x � (x � y) = x ∧ y , for all x, y ∈ A), then pseudo MTL− algebra M(A)
is also a pseudo BL− algebra. Indeed, let fi ∈ M(Ii, A), where Ii ∈ I′(A), i = 1, 2.
Then

(f1 ↔ f2) ⊗ f1 = f1 ∧ f2 ⇔ [(f1 ↔ f2) ⊗ f1](x) = (f1 ∧ f2)(x) ⇔
⇔ (f1 ↔ f2)(x) � [x� f1(x)] = (f1 ∧ f2)(x) ⇔

[(f1(x) → f2(x)) � x] � [x� f1(x)] = (f1 ∧ f2)(x) ⇔
⇔ [f1(x) → f2(x)] � [x � (x� f1(x))] = f1(x) ∧ f2(x) ⇔

[f1(x) → f2(x)] � (x ∧ f1(x)) = f1(x) ∧ f2(x) ⇔
⇔ [f1(x) → f2(x)] � f1(x) = f1(x) ∧ f2(x),

for every x ∈ I1 ∩ I2, which is true because A is a pseudo BL− algebra.
Also,

f1 ⊗ (f1 � f2) = f1 ∧ f2 ⇔ [f1 ⊗ (f1 � f2)](x) = (f1 ∧ f2)(x) ⇔
⇔ [x → f1(x)] � [x � (f1(x)� f2(x))] = (f1 ∧ f2)(x) ⇔

[(x → f1(x)) � x] � (f1(x)� f2(x)) = (f1 ∧ f2)(x) ⇔
⇔ (x ∧ f1(x)) � (f1(x)� f2(x)) = (f1 ∧ f2)(x) ⇔
⇔ f1(x) � (f1(x)� f2(x)) = (f1 ∧ f2)(x),

for every x ∈ I1 ∩ I2, which is true because A is a pseudo BL− algebra. �
Remark 4.5. If pseudo MTL -algebra A is a MTL -algebra then pseudo MTL -
algebra M(A) is also a MTL -algebra. Indeed if I1, I2 ∈ I′(A) and fi ∈ M(Ii, A),
i = 1, 2 we have

(f1 ↔ f2)(x) = [f1(x) → f2(x)] � x = x � [f1(x)� f2(x)] = (f1 � f2)(x),

for all x ∈ I1 ∩ I2, then f1 ↔ f2 = f1 � f2, and pseudo MTL -algebra M(A) is
commutative, so is a MTL -algebra.

Definition 4.3. ([12]) A pseudo MTL algebra A is called
(i) A pseudo IMTL algebra (pseudo involutive algebra) if it satisfies the equation

(pDN) (x−)∼ = (x∼)− = x;
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(ii) a pseudo WNM algebra (pseudo weak nilpotent minimum) if it satisfies the
equation
(W ) (x � y)− ∨ [(x ∧ y) → (x � y)] = (x � y)∼ ∨ [(x ∧ y)� (x � y)] = 1;

(iii) a pseudo NM algebra (pseudo nilpotent minimum) if it is a WNM algebra
satisfying the axiom (pDN).

Theorem 4.1. If A is a pseudo IMTL algebra (resp. a pseudo WNM algebra, a
pseudo NM algebra), then M(A) is also a pseudo IMTL algebra (resp. a pseudo
WNM algebra, a pseudo NM algebra).

Proof. Suppose A is a pseudo IMTL algebra. For f ∈ M(I, A), with I ∈ I′(A)
and x ∈ I, we have (f−)∼ = (f ↔ 0) � 0 and (f∼)− = (f � 0) ↔ 0, so

(f−)∼ = x� [(f(x))−�x]∼ c47= x� [x� ((f(x))−)∼]
pDN
= x� [x� f(x)] M2= f(x), and

(f∼)−(x) = [x � f∼(x)]− � x
c47= [x → ((f(x))∼)−] � x

pDN
= [x → f(x)] � x

M2= f(x),
hence (f−)∼ = (f∼)− = f, that is, M(A) is a pseudo IMTL algebra.

Suppose that A is a pseudo WNM algebra. Let f ∈ M(I, A), g ∈ M(J, A) with
I, J ∈ I ′(A), x ∈ I∩J and denote a = f(x), b = g(x). We have ((f ⊗g)∼∨((f ∧g)�
(f ⊗ g)))(x) = ((f ⊗ g)∼(x)) ∨ (x � ((f ∧ g)(x) � (f ⊗ g)(x))) = (x � (a � (x �
b))∼)∨(x�((a∧b)� (a�(x� b)))) c30= x�((a�(x� b))∼∨((a∧b)� (a�(x� b)))).

Since b ≤ x � b we deduce that a ∧ b ≤ a ∧ (x � b), hence, using c5, (a ∧ (x �
b))� (a � (x� b)) ≤ (a ∧ b)� (a � (x� b)).

Since A is supposed a pseudo WNM−algebra we obtain 1 = (a � (x � b))∼ ∨
((a ∧ (x � b)) � (a � (x � b))) ≤ (a � (x � b))∼ ∨ ((a ∧ b) � (a � (x � b))),
hence (a � (x� b))∼ ∨ ((a ∧ b)� (a � (x� b))) = 1. Then ((f ⊗ g)∼ ∨ ((f ∧ g)�
(f ⊗ g)))(x) = x � 1 = x = 1(x) ⇔ (f ⊗ g)∼ ∨ ((f ∧ g)� (f ⊗ g)) = 1.

Also we have ((f ⊗ g)− ∨ ((f ∧ g) ↔ (f ⊗ g)))(x) = ((f ⊗ g)−(x)) ∨ (((f ∧ g)(x) →
(f ⊗ g)(x)) � x) = (((x → b) � a)− � x) ∨ (((a ∧ b) → ((x → b) � a)) � x) c30=
(((x → b) � a)− ∨ ((a ∧ b) → ((x → b) � a))) � x.

Since b ≤ x → b we deduce that a ∧ b ≤ a ∧ (x → b), hence using c5, (a ∧ (x →
b)) → ((x → b) � a) ≤ (a ∧ b) → ((x → b) � a).

Since A is supposed a pseudo WNM−algebra we obtain 1 = ((x → b) � a)− ∨
((a ∧ (x → b)) → ((x → b) � a)) ≤ ((x → b) � a)− ∨ ((a ∧ b) → ((x → b) � a)),
hence ((x → b) � a)− ∨ ((a ∧ b) → ((x → b) � a)) = 1. Then ((f ⊗ g)− ∨ ((f ∧ g) ↔
(f ⊗ g)))(x) = x� 1 = x = 1(x) ⇔ (f ⊗ g)− ∨ ((f ∧ g) ↔ (f ⊗ g)) = 1, that is M(A)
is a pseudo WNM algebra.

Suppose now A is a pseudo NM algebra. Then A is a pseudo WNM algebra and
a pseudo IMTL algebra, so M(A) is a pseudo WNM algebra and a pseudo IMTL
algebra, hence M(A) is a pseudo NM algebra.�

Lemma 4.7. Let the map vA : B(A) → M(A) defined by vA(a) = fa for every
a ∈ B(A). Then vA is a monomorphism of pseudo MTL− algebras.

Proof. Clearly, vA(0) = f0 = 0. Let a, b ∈ B(A) and x ∈ C(A). We have:

vA(a ∨ b) = vA(a) ∨ vA(b), vA(a ∧ b) = vA(a) ∧ vA(b),

(vA(a) ⊗ vA(b))(x) = vA(a)(x) � (x� vA(b)(x)) = (a ∧ x) � (x� (b ∧ x))

= (a � x) � (x� (b ∧ x)) = a � [x � (x� (b ∧ x))] = a � (b ∧ x)

= a ∧ (b ∧ x) = (a ∧ b) ∧ x = (vA(a ∧ b))(x) = (vA(a � b))(x),

hence vA(a � b) = vA(a) ⊗ vA(b).
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Also, since a → b, a� b ∈ B(A), we have

(vA(a) ↔ vA(b))(x) = [vA(a)(x) → vA(b)(x)] � x = [(a ∧ x) → (b ∧ x)] � x

= [(a � x) → (b � x)] � x
c58= (a → b) � x = x ∧ (a → b) = vA(a → b)(x),

(vA(a)� vA(b))(x) = x � [vA(a)(x)� vA(b)(x)] = x � [(a ∧ x)� (b ∧ x)]

= x � [(x � a)� (x � b)] c58= x � (a� b) = x ∧ (a� b) = vA(a� b)(x).
Consequently, we have vA(a) ↔ vA(b) = vA(a → b), vA(a) � vA(b) = vA(a � b).
This proves that vA is a morphism of pseudo MTL-algebras.

To prove the injectivity of vA, we let a, b ∈ B(A) such that vA(a) = vA(b). Then
a ∧ x = b ∧ x, for every x ∈ C(A), hence for x = 1 ∈ C(A) we obtain that a ∧ 1 =
b ∧ 1 ⇒ a = b.�

We have for pseudo MTL− algebras the next analogous definitions, results and
remarks as in [15] for MTL− algebras:

Definition 4.4. A nonempty set I ⊆ A is called regular if for every x, y ∈ A such
that x ∧ e = y ∧ e for every e ∈ I ∩ B(A), then x = y.

For example A, C(A) are regular subsets of A (since if x, y ∈ A (or, C(A)) and
x ∧ e = y ∧ e for every e ∈ B(A), then for e = 1 we obtain x ∧ 1 = y ∧ 1 ⇔ x = y).

More generally, every subset of A which contains 1 is regular.
We denote R(A) = {I ⊆ A : I is a regular subset of A}.

Lemma 4.8. If I1, I2 ∈ I′(A) ∩ R(A), then I1 ∩ I2 ∈ I′(A) ∩ R(A).

Remark 4.6. By Lemmas 4.2-4.6, 4.8 and Proposition 4.2 we deduce that Mr(A) =
{f ∈ M(A) : dom(f) ∈ I′(A) ∩ R(A)} is a pseudo MTL− subalgebra of M(A).

Proposition 4.3. Mr(A) is a Boolean subalgebra of M(A).

Proof. Let f : I → A be a strong multiplier on A with I ∈ I ′(A) ∩ R(A). To
prove that Mr(A) is a Boolean algebra, using Proposition 2.5 it is suffice to prove that
f = (f−)∼ = (f∼)− and f ⊗ g = f ∧ g, for all g ∈ Mr(A). Let g ∈ Mr(A), g : J → A.

Then for all x ∈ I ∩ J and e ∈ I ∩ J ∩ B(A),

e∧[f⊗g](x) = e∧[(x → f(x))�g(x)] = e�[x → f(x)]�g(x) = [x → f(x)]�e�g(x) =
c57= [(x � e) → (f(x) � e)] � e � g(x) = [(e � x) → (f(x) � e)] � e � g(x) =

= [(e � x) → (f(e) � x)] � x � g(e) =
c58= [e → f(e)] � x � g(e) = [e → f(e)] � e � g(x) = [e ∧ f(e)] � g(x) =

= e∧f(e)∧g(x) = e∧f(e)∧ (g(x)∧x) = e∧g(x)∧ [f(e)∧x] = e∧g(x)∧ [e∧f(x)] =
= e ∧ [f(x) ∧ g(x)] = e ∧ [f ∧ g](x),

hence [f ⊗ g](x) = f(x) ∧ g(x), (since I ∩ J ∈ R(A)), so, f ⊗ g = f ∧ g.
For all x ∈ I we have
(f−)∼(x) = x � (f−(x))∼ = x � [(f(x))− � x]∼ c47= x � [x � ((f(x))−)∼] and

(f∼)−(x) = (f∼(x))− � x = [x � (f(x))∼]− � x
c47= [x → ((f(x))∼)−] � x,

so, for all e ∈ I ∩ B(A) we obtain

e ∧ (f−)∼(x) = e ∧ (x � [x� ((f(x))−)∼]) = e � x � [x� ((f(x))−)∼] =

= x � e � [(e � x)� (e � ((f(x))−)∼)] =
= x � e � [(e � x)� (e � [(f(x))− � 0])] =

c57= x � e � [(e � x)� (e � [(e � (f(x))−)� 0])] =
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= x � e � [(e � x)� (e � [e � (f(x))−]∼)] =

= x � e � [(e � x)� (e � [e � [f(x) → 0]]∼)] =

c57= x � e � [(e � x)� (e � e � ([e � f(x)]−)∼)] =

= x � e � [(e � x)� (e � ([x � f(e)]−)∼)] =

c57= x � e � [x� ([x � f(e)]−)∼] = x � e � [x� ([x ∧ f(e)]−)∼] =

c49= x � e � [x� [x− ∨ (f(e))−]∼] c48= x � e � [x� [(x−)∼ ∧ f(e)]] =

c30= x � e � ([x� (x−)∼] ∧ [x� f(e)]) =

c41= x � e � (1 ∧ [x� f(e)]) = x � e � [x� f(e)] =

= e � x � [x� f(e)] = e � [x ∧ f(e)] = e ∧ x ∧ f(e) = x ∧ f(e) = e ∧ f(x),

and

e ∧ (f∼)−(x) = e ∧ [x → ((f(x))∼)−] � x = [x → ((f(x))∼)−] � e � x =

c57= [(x � e) → (((f(x))∼)− � e)] � e � x =

c57= [(x � e) → (([e � f(x)]∼)− � e)] � e � x =

= [(x � e) → (([x � f(e)]∼)− � e)] � e � x =

c57= [x → ([x � f(e)]∼)−] � e � x = [x → [(x∼)− ∧ f(e)]] � x � e =

c30= ([x → (x∼)−] ∧ [x → f(e)]) � x � e =

= (1 ∧ [x → f(e)]) � x � e = [x → f(e)] � x � e =

= [x ∧ f(e)] � e = e ∧ f(x) ∧ e = e ∧ f(x).

So, f ⊗ g = f ∧ g and f = (f−)∼ = (f∼)−, that is, Mr(A) is a Boolean algebra. �

Remark 4.7. The axioms M3, M4 are necessary in the proof of Proposition 4.3.

Definition 4.5. Given two strong multipliers f1, f2 on A, we say that f2 extends f1

if dom(f1) ⊆ dom(f2) and f2|dom(f1) = f1; we write f1 ≤ f2 if f2 extends f1. A strong
multiplier f is called maximal if f can not be extended to a strictly larger domain.

Lemma 4.9. (i) If f1, f2 ∈ M(A), f ∈ Mr(A) and f ≤ f1, f ≤ f2, then f1 and f2

coincide on the dom(f1) ∩ dom(f2),
(ii) Every strong multiplier f ∈ Mr(A) can be extended to a strong maximal mul-

tiplier. More precisely, each principal strong multiplier fa with a ∈ B(A) and
dom(fa) ∈ I′(A) ∩ R(A) can be uniquely extended to a total strong multiplier
fa and each non-principal strong multiplier can be extended to a strong maximal
non-principal one.

Proof. As in the case of MTL− algebras (see [15]), using Lemma 4.1.
On the Boolean algebra Mr(A) we consider the relation ρA defined by (f1, f2) ∈ ρA

iff f1 and f2 coincide on the intersection of their domains.

Lemma 4.10. ρA is a congruence on Boolean algebra Mr(A).
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Proof. The reflexivity and the symmetry of ρA are immediately; to prove the

transitivity of ρA let (f1, f2), (f2, f3) ∈ ρA. Therefore f1, f2 and respectively f2, f3

coincide on the intersection of their domains. If by contrary, there exists x0 ∈
dom(f1) ∩ dom(f3) such that f1(x0) �= f3(x0), since dom(f2) ∈ R(A), there exists
e ∈ dom(f2)∩B(A) such that e∧f1(x0) �= e∧f3(x0) ⇔ f1(e�x0) �= f3(e�x0) which
is contradictory, since by Lemma 4.1, e�x0 = e∧x0 ∈ dom(f1)∩dom(f2)∩dom(f3).

To prove the compatibility of ρA with the operations ∧,∨ and ∼ on Mr(A), let
(f1, f2), (g1, g2) ∈ ρA. So, we have f1, f2 and respectively g1, g2 coincide on the in-
tersection of their domains. Let x ∈ dom(f1) ∩ dom(f2) ∩ dom(g1) ∩ dom(g2). Then
f1(x) = f2(x) and g1(x) = g2(x), hence

(f1 ∧ g1)(x) = f1(x) ∧ g1(x) = f2(x) ∧ g2(x) = (f2 ∧ g2)(x),

(f1 ∨ g1)(x) = f1(x) ∨ g1(x) = f2(x) ∨ g2(x) = (f2 ∨ g2)(x).

For x ∈ dom(f1) ∩ dom(f2) we have

f∼

1 (x) = (f1 � 0)(x) = x�[f1(x)� 0(x)] = x�[f2(x)� 0(x)] = (f2 � 0)(x) = f∼

2 (x),

that is the pairs (f1∧g1, f2∧g2), (f1∨g1, f2∨g2), (f∼

1 , f∼

2 ) coincide on the intersection
of their domains, hence ρA is compatible with the operations ∧,∨ and ∼. �

For f ∈ Mr(A) with I = dom(f) ∈ I′(A)∩R(A), we denote by [f, I] the congruence
class of f modulo ρA and A′′ = Mr(A)/ρA .

Since the class of Boolean algebras is equational, from Proposition 4.2, Remark 4.6
and Lemma 4.10 we deduce:

Theorem 4.2. A′′ is a Boolean algebra, where for [f, I], [g, J ] ∈ A′′, [f, I] ∧ [g, J ] =
[f ∧g, I ∩J ], [f, I]∨ [g, J ] = [f ∨g, I ∩J ], [f, I]⊗ [g, J ] = [f ⊗g, I∩J ], [f, I] ↔ [g, J ] =
[f ↔ g, I ∩ J ], [f, I]� [g, J ] = [f � g, I ∩ J ],0 = [0, C(A)] and 1 = [1, C(A)].

Remark 4.8. If we denote by F = I ′(A) ∩ R(A) and consider the partially ordered
systems {δI,J}I,J∈F ,I⊆J (where for I, J ∈ F , I ⊆ J, δI,J : M(J, A) → M(I, A) is
defined by δI,J(f) = f|I), then by above construction of A′′ we deduce that A′′ is the
inductive limit A′′ = lim−→

I∈F
M(I, A).

Lemma 4.11. Let the map vA : B(A) → A′′ defined by vA(a) = [fa, C(A)] for every
a ∈ B(A). Then:
(i) vA is a monomorphism of Boolean algebras;

(ii) vA(B(A)) ∈ R(A′′).

Proof. (i). Follows from Lemma 7.1.
(ii). As in the case of MTL algebras (see [15]). �

Remark 4.9. Since for every a ∈ B(A), fa is the unique strong maximal multiplier
on [fa, C(A)] (by Lemma 7.7) we can identify [fa, C(A)] with fa. So, since vA is
injective map, the elements of B(A) can be identified with the elements of the set {
fa : a ∈ B(A)}.
Lemma 4.12. In view of the identifications made above, if [f, dom(f)] ∈ A′′ (with
f ∈ Mr(A) and I = dom(f) ∈ I′(A) ∩ R(A)), then I ∩ B(A) ⊆ {a ∈ B(A) :
fa ∧ [f, dom(f)] ∈ B(A)}.

Proof. As in the case of MTL algebras (see [15]).�
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5. Maximal pseudo MTL-algebra of quotients

The scope of this section is to define the notions of pseudo MTL -algebra of frac-
tions and maximal pseudo MTL - algebra of quotients for a pseudo MTL - algebra.

Definition 5.1. Let A be a pseudo MTL - algebra. A pseudo MTL - algebra F is
called pseudo MTL - algebra of fractions of A if:

(Fr1) B(A) is a pseudo MTL - subalgebra of F ;
(Fr2) For every a′, b′, c′ ∈ F, a′ �= b′, there exists e ∈ B(A) such that e∧ a′ �= e∧ b′ and

e ∧ c′ ∈ B(A).

So, pseudo MTL - algebra B(A) is a pseudo MTL - algebra of fractions of itself
(since 1 ∈ B(A)).

As a notational convenience, we write A � F to indicate that F is a pseudo MTL
- algebra of fractions of A.

Definition 5.2. Q(A) is the maximal pseudo MTL - algebra of quotients of A
if A � Q(A) and for every pseudo MTL - algebra F with A � F there exists a
monomorphism of pseudo MTL - algebras i : F → Q(A).

Remark 5.1. If A � F , then F is a Boolean algebra. Indeed, if a′ ∈ F such that
((a′)−)∼ �= a′ or ((a′)∼)− �= a′ or a′ ∧ x �= a′ � x for some x ∈ F then there exists
e, f, g ∈ B(A) such that e ∧ a′, f ∧ a′, g ∧ a′ ∈ B(A) and

e ∧ a′ �= e ∧ ((a′)−)∼ = ((e ∧ a′)−)∼ or

f ∧ a′ �= f ∧ ((a′)∼)− = ((f ∧ a′)∼)− or

g ∧ a′ ∧ x �= g ∧ (a′ � x) ⇔ g � (a′ ∧ x) �= g � (a′ � x) ⇔
(g � a′) ∧ (g � x) �= (g � a′) � (g � x) ⇔ (g ∧ a′) ∧ (g � x) �= (g ∧ a′) � (g � x),

a contradiction !.

We also have for pseudo MTL - algebras the next analogous definitions, results
and remarks as in [15] for MTL - algebras:

Lemma 5.1. Let A � F ; then for every a′, b′ ∈ F, a′ �= b′, and any finite sequence
c′1, ..., c′n ∈ F, there exists e ∈ B(A) such that e ∧ a′ �= e ∧ b′ and e ∧ c′i ∈ B(A) for
i = 1, 2, ..., n (n ≥ 2).

Lemma 5.2. Let A ≺ F and a′ ∈ F. Then Ia′ = {e ∈ B(A) : e ∧ a′ ∈ B(A)} ∈
I(B(A)) ∩ R(A) = I ′(B(A)) ∩ R(A).

Theorem 5.1. A′′ is the maximal pseudo MTL - algebra Q(A) of quotients of A.

Remark 5.2. 1. If pseudo MTL - algebra A is a MTL - algebra or a pseudo BL
- algebra, then Q(A) is the maximal MTL - algebra of quotients or the maximal
pseudo BL - algebra of quotients of A.

2. If A is a pseudo MTL - algebra with B(A) = {0, 1} = L2 and A � F then
F = {0, 1}, hence Q(A) = A′′ ≈ L2.

3. More general, if A is a pseudo MTL− algebra such that B(A) is finite and A � F
then F = B(A), hence in this case Q(A) = B(A).



138 A. JEFLEA

6. Topologies on a pseudo MTL-algebra

Definition 6.1. A non-empty set F of elements I ∈ I(A) will be called a topology
on A if the following axioms hold:

(top1) If I1 ∈ F , I2 ∈ I(A) and I1 ⊆ I2, then I2 ∈ F (hence A ∈ F);
(top2) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

Remark 6.1. 1. F is a topology on A iff F is a filter of the lattice of power set of
A; for this reason a topology on I(A) is usually called a Gabriel filter on I(A).

2. Clearly, if F is a topology on A, then (A,F ∪{∅}) is a topological space.

Any intersection of topologies on A is a topology; so, the set T (A) of all topologies
of A is a complete lattice with respect to inclusion.

Example 6.1. If I ∈ I(A), then the set F(I) = {I ′ ∈ I(A) : I ⊆ I ′} is a topology
on A.

Example 6.2. If we denote R(A) = {I ⊆ A : I is a regular subset of A}, then
F = I(A) ∩ R(A) is a topology on A.

Example 6.3. A nonempty set I ⊆ A will be called dense (see [10]) if for x ∈ A such
that e∧ x = 0 for every e ∈ I ∩B(A), then x = 0. If we denote by D(A) the set of all
dense subsets of A, then R(A) ⊆ D(A) and F = I(A) ∩ D(A) is a topology on A.

Example 6.4. For any ∧− closed subset S of A, the set FS = {I ∈ I(A) : I ∩ S ∩
B(A) �= �} is a topology on A.

7. Localization of pseudo MTL-algebras

In [10], G. Georgescu exhibited the localization lattice LF of a distributive lattice
L with respect to a topology F on L in a similar way as for rings or monoids.

The concept of localization MTL algebras was studied in [16] for commutative case
(taking as a guide-line the case of distributive lattices).

The aim of this section is to define the notion of localization pseudo MTL - algebra
of a pseudo MTL - algebra. In the least part it is proved that the maximal pseudo
MTL− algebra of fractions and the pseudo MTL - algebra of fractions relative to a
∧ -closed system are pseudo MTL - algebras of localization.

In this section by A we consider a pseudo MTL - algebra.
Let F be a topology on A and we consider the relation θF on A defined in the

following way: (x, y) ∈ θF ⇔ there exists I ∈ F such that e ∧ x = e ∧ y for any
e ∈ I ∩ B(A).

Lemma 7.1. θF is a congruence on A.

Proof. See [16] for the case of MTL− algebras. �
We shall denote by a/θF the congruence class of an element a ∈ A and by
pF : A → A/θF the canonical morphism of pseudo MTL-algebras.

Proposition 7.1. For a ∈ A, a/θF ∈ B(A/θF ) iff there exists I ∈ F such that
a ∨ a−, a ∨ a∼ ≥ e for every e ∈ I ∩ B(A). So, if a ∈ B(A), then a/θF ∈ B(A/θF ).

Proof. Using Proposition 2.3, for a ∈ A, we have a/θF ∈ B(A/θF) ⇔ a/θF ∨
(a/θF)− = a/θF ∨ (a/θF)∼ = 1/θF ⇔ (a ∨ a−)/θF = (a ∨ a∼)/θF = 1/θF ⇔ there
exist K, J ∈ F such that (a∨a−)∧e = 1∧e = e, for every e ∈ K∩B(A) ⇔ a∨a− ≥ e,
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for every e ∈ K∩B(A) and (a∨a∼)∧e = 1∧e = e, for every e ∈ J∩B(A) ⇔ a∨a∼ ≥ e,
for every e ∈ J ∩ B(A).

If we denote I = K ∩ J, then I ∈ F and for every e ∈ I ∩B(A), a∨ a−, a∨ a∼ ≥ e.
If a ∈ B(A), then 1 = a ∨ a− = a ∨ a∼ ≥ e, for every e ∈ I ∩ B(A), I ∈ F , hence

a/θF ∈ B(A/θF ).�
Corollary 7.1. If F = I(A) ∩R(A), then for a ∈ A, a ∈ B(A) iff a/θF ∈ B(A/θF ).

We recall that for a pseudo MTL− algebra A, we denote by C(A) = {x ∈ A :
x � (x� a) = (x → a) � x, for every a ≤ x, a ∈ A}.

For a topology F on a pseudo MTL−algebra A and we denote by F ′ = {I =
J ∩ C(A) : J ∈ F}.
Definition 7.1. Let F be a topology on A. A F− multiplier is a mapping f : I
→ A/θF where I ∈ F ′ and for every x ∈ I and e ∈ B(A) the following axioms are
fulfilled:

(M5) f(e � x) = e/θF ∧ f(x) = e/θF � f(x);
(M6) x/θF � (x/θF � f(x)) = f(x).

Remark 7.1. The axiom M6, x/θF�(x/θF � f(x)) = f(x), for every x ∈ I, implies
f(x) ≤ x/θF , so, since x/θF ∈ C(A/θF ) this axiom become x/θF � (x/θF � f(x)) =
(x/θF → f(x)) � x/θF = f(x), for every x ∈ I.

By dom(f) ∈ F ′ we denote the domain of f ; if dom(f) = C(A), we called f total.
To simplify language, we will use F− multiplier instead partial F− multiplier,

using total to indicate that the domain of a certain F− multiplier is C(A).
If F = {A}, then θF is the identity congruence of A so a F− multiplier is a total

strong multiplier in sense of Definition 4.1, which verify the conditions M1 and M2.
The maps 0,1 : C(A) → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every

x ∈ C(A) are F− multipliers in the sense of Definition 7.1.
Also, for a ∈ B(A) and I ∈ F ′, fa : I → A/θF defined by fa(x) = a/θF ∧ x/θF

for every x ∈ I, is a F− multiplier. If dom(fa) = C(A), we denote fa by fa ; clearly,
f0 = 0.

We shall denote by M(I, A/θF) the set of all the F− multipliers having the domain
I ∈ F ′ and M(A/θF) = ∪

I∈F ′
M(I, A/θF). If I1, I2 ∈ F ′ , I1 ⊆ I2 we have a canonical

mapping ϕI1,I2 : M(I2, A/θF) → M(I1, A/θF) defined by ϕI1,I2(f) = f|I1 for f ∈
M(I2, A/θF). Let us consider the directed system of sets

〈{M(I, A/θF)}I∈F ′ , {ϕI1,I2}I1,I2∈F ′,I1⊆I2〉 and denote by AF the inductive limit
(in the category of sets) AF = lim−→

I∈F ′
M(I, A/θF ). For any F− multiplier f : I → A/θF

with I ∈ F ′ we shall denote by (̂I, f) the equivalence class of f in AF .

Remark 7.2. If fi : Ii → A/θF , i = 1, 2, are F− multipliers, then (̂I1, f1) = (̂I2, f2)
(in AF ) iff there exists I ∈ F ′ , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Proposition 7.2. If I1, I2 ∈ F ′ and fi ∈ M(Ii, A/θF), i = 1, 2, then
(c61) f1(x) � [x/θF � f2(x)] = [x/θF → f1(x)] � f2(x), for every x ∈ I1∩ I2.

Proof. For x ∈ I1∩ I2 we have f1(x) � [x/θF � f2(x)] = [(x/θF → f1(x)) �
x/θF ] � (x/θF � f2(x)) = (x/θF → f1(x)) � [x/θF � (x/θF � f2(x))] = [x/θF →
f1(x)] � f2(x).�

Let fi : Ii → A/θF , (with Ii ∈ F ′, i = 1, 2), F−multipliers. Let us consider the
mappings f1 � f2, f1 � f2, f1 ⊗ f2, f1 ↔ f2, f1 � f2 : I1 ∩ I2 → A/θF defined by

(f1 � f2)(x) = f1(x) ∧ f2(x), (f1 � f2)(x) = f1(x) ∨ f2(x),
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(f1 ⊗ f2)(x) = f1(x) � [x/θF � f2(x)] c61= [x/θF → f1(x)] � f2(x),

(f1 ↔ f2)(x) = [f1(x) → f2(x)] � x/θF ,

(f1 � f2)(x) = x/θF � [f1(x)� f2(x)],
for any x ∈ I1 ∩ I2, and let

(̂I1, f1)� (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2), (̂I1, f1)� (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1) ⊗ (̂I2, f2) = ̂(I1 ∩ I2, f1 ⊗ f2), (̂I1, f1) ↔ (̂I2, f2) = ̂(I1 ∩ I2, f1 ↔ f2),

and (̂I1, f1) � (̂I2, f2) = ̂(I1 ∩ I2, f1 � f2).

Clearly, the definitions of the operations �,�,⊗,� and ↔ on AF are correct.

Lemma 7.2. f1 � f2 ∈ M(I1 ∩ I2, A/θF).

Proof. See [16] and Lemma 4.2. �

Lemma 7.3. f1 � f2 ∈ M(I1 ∩ I2, A/θF).

Proof. See [16] and Lemma 4.3.�

Lemma 7.4. f1 ⊗ f2 ∈ M(I1 ∩ I2, A/θF).

Proof. See [16] and Lemma 4.4. �

Lemma 7.5. f1 � f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. See [16] and Lemma 4.5. �

Lemma 7.6. f1 ↔ f2 ∈ M(I1 ∩ I2, A/θF).

Proof. See [16] and Lemma 4.6.�

Proposition 7.3. (AF ,�,�,⊗,↔,�,0 = ̂(C(A),0),1 = ̂(C(A),1)) is a pseudo
MTL-algebra.

Proof. See the proof of Proposition 4.2.�

Remark 7.3. (M(A/θF),�,�,⊗,↔,�,0,1) is also a pseudo MTL-algebra.

Definition 7.2. The pseudo MTL-algebra AF will be called the localization MTL-
algebra of A with respect to the topology F .

Remark 7.4. If pseudo MTL− algebra A is a MTL− algebra in [16] will be called
AF the localization MTL-algebra of A with respect to the topology F .

Theorem 7.1. (i): If pseudo MTL-algebra A is a MTL−algebra (resp. a pseudo
BL-algebra) then AF is also a MTL−algebra (resp. a pseudo BL-algebra);

(ii): If pseudo MTL-algebra A is a pseudo IMTL-algebra (resp. a pseudo WNM -
algebra or a pseudo NM -algebra) then AF is also a pseudo IMTL-algebra (resp.
a pseudo WNM -algebra or a pseudo NM -algebra).

Proof. (i). See Remarks 4.4 and 4.5.
(ii). See the proof of Theorem 4.1. �

Remark 7.5. If pseudo MTL− algebra A is a MTL−algebra (resp. a pseudo BL-
algebra, a pseudo IMTL-algebra, a pseudo WNM -algebra, a pseudo NM -algebra),
then pseudo MTL− algebra M(A/θF ) is a MTL−algebra (resp. a pseudo BL-algebra,
a pseudo IMTL-algebra, a pseudo WNM -algebra, a pseudo NM -algebra).
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Lemma 7.7. Let the map vF : B(A) → AF defined by vF (a) = ̂(C(A), fa) for every
a ∈ B(A). Then:
(i) vF is a morphism of pseudo MTL-algebras;

(ii) For a ∈ B(A), ̂(C(A), fa) ∈ B(AF );
(iii) vF (B(A)) ∈ R(AF ).

Proof. (i), (iii). As in the case of MTL− algebras (see [16]).
(ii). For a ∈ B(A) we have a ∨ a∼ = a ∨ a− = 1, hence (a ∧ x) ∨ [x � (a ∧ x)∼] c48=

(a∧x)∨ [x� (a∼ ∨x∼)] c30= (a∧x)∨ [(x� a∼)∨ (x�x∼)] c37= (a∧x)∨ [(x� a∼)∨ 0) =
(a ∧ x) ∨ (x ∧ a∼) c35= x ∧ (a ∨ a∼) = x ∧ 1 = x, and (a ∧ x) ∨ [(a ∧ x)− � x] c49=
(a∧x)∨ [(a− ∨x−)�x] c30= (a∧x)∨ [(a− �x)∨ (x− �x)] c37= (a∧x)∨ [(a− �x)∨ 0) =
(a ∧ x) ∨ (a− ∧ x) c35= (a ∨ a−) ∧ x = x ∧ 1 = x, for every x ∈ C(A). We deduce that
(a ∧ x)/θF ∨ [x/θF � ((a ∧ x)/θF )∼] = (a ∧ x)/θF ∨ [((a ∧ x)/θF )− � x/θF ] = x/θF
hence fa ∨ (fa)∼ = fa ∨ (fa)− = 1 , that is, ̂(C(A), fa)� ̂(C(A), fa)

∼

= ̂(C(A), fa)�
̂(C(A), fa)

−
= ̂(C(A),1), so by Proposition 2.3, ̂(C(A), fa) ∈ B(AF ).�

8. Applications

In the following we describe the localization pseudo MTL-algebra AF in some
special instances.

1. If I ∈ I(A), and F is the topology F(I) = {I ′ ∈ I(A) : I ⊆ I ′} (see Example
6.1), then AF is isomorphic with M(I ∩C(A), A/θF ) and vF : B(A) → AF is defined
by vF (a) = fa|I for every a ∈ B(A).

If I is a regular subset of A, then θF is the identity, hence AF is isomorphic with
M(I ∩ C(A), A) (see [15]), which in generally is not a Boolean algebra.

2. Main remark. To obtain the maximal pseudo MTL -algebra of quotients
Q(A) as a localization relative to a topology F we have to develope another theory
of multipliers (meaning we add new axioms for F -multipliers).

Definition 8.1. Let F be a topology on A. A strong - F− multiplier is a mapping
f : I → A/θF (where I ∈ F ′ = {J ∩C(A) : J ∈ F) which verifies the axioms M5 and
M6 (see Definition 7.1) and

(M7) If e ∈ I ∩ B(A), then f(e) ∈ B(A/θF );
(M8) (x/θF ) ∧ f(e) = (e/θF) ∧ f(x), for every e ∈ I ∩ B(A) and x ∈ I.

Remark 8.1. If (A,∧,∨,�,→,�, 0, 1) is a pseudo MTL− algebra, the maps 0,1 :
C(A) → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every x ∈ C(A) are
strong - F− multipliers. We recall that if fi : Ii → A/θF , (with Ii ∈ F ′, i = 1, 2)
are F−multipliers f1� f2, f1� f2, f1 ⊗ f2, f1 ↔ f2, f1 � f2 : I1 ∩ I2 → A/θF defined
by (f1 � f2)(x) = f1(x) ∧ f2(x), (f1 � f2)(x) = f1(x) ∨ f2(x), (f1 ⊗ f2)(x) = f1(x) �
[x/θF � f2(x)] c61= [x/θF → f1(x)] � f2(x), (f1 ↔ f2)(x) = [f1(x) → f2(x)] � x/θF ,
(f1 � f2)(x) = x/θF � [f1(x) � f2(x)], for any x ∈ I1 ∩ I2 are F−multipliers. If
f1, f2 are strong - F− multipliers then f1 � f2, f1 � f2, f1 ⊗ f2, f1 ↔ f2, f1 � f2 are
also strong - F− multipliers. Indeed, if e ∈ I1 ∩ I2 ∩ B(A), then

(f1 � f2)(e) = f1(e) ∧ f2(e) ∈ B(A/θF),

(f1 � f2)(e) = f1(e) ∨ f2(e) ∈ B(A/θF),
(f1 ⊗ f2)(e) = [e/θF → f1(e)] � f2(e) = [(e−)/θF ∨ f1(e)] � f2(e) ∈ B(A/θF ),
(f1 ↔ f2)(e) = [f1(e) → f2(e)] � e/θF = [(f1(e))− ∨ f2(e)] � e/θF ∈ B(A/θF ),
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(f1 � f2)(e) = e/θF � [f1(e)� f2(e)] = e/θF � [(f1(e))∼ ∨ f2(e)] ∈ B(A/θF ).

For e ∈ I1 ∩ I2 ∩ B(A) and x ∈ I1∩ I2 we have:

x/θF ∧ (f1 � f2)(e) = x/θF ∧ f1(e) ∧ f2(e) = [x/θF ∧ f1(e)] ∧ [x/θF ∧ f2(e)] =

= [e/θF ∧ f1(x)] ∧ [e/θF ∧ f2(x)] = e/θF ∧ (f1 � f2)(x)

and
x/θF ∧ (f1 � f2)(e) = x/θF ∧ [f1(e) ∨ f2(e)] =

= [x/θF ∧ f1(e)] ∨ [x/θF ∧ f2(e)] =

= [e/θF ∧ f1(x)] ∨ [e/θF ∧ f2(x)] =

= e/θF ∧ [f1(x) ∨ f2(x)] = e/θF ∧ (f1 � f2)(x)

and
x/θF ∧ (f1 ⊗ f2)(e) = x/θF ∧ [(e/θF → f1(e)) � f2(e)]

= [(e/θF → f1(e)) � f2(e)] � x/θF = [(e/θF → f1(e)) � x/θF ] � f2(e)
c58= [((e � x)/θF → (f1(e) � x/θF )) � x/θF ] � f2(e)

= [(e � x)/θF → (f1(e) � x/θF )] � [x/θF � f2(e)]

= [(e � x)/θF → (e/θF � f1(x))] � [e/θF � f2(x)]

= [((e/θF � x/θF) → (e/θF � f1(x))) � e/θF ] � f2(x)
c57= [(x/θF → f1(x)) � e/θF ] � f2(x) = [(x/θF → f1(x)) � f2(x)] � e/θF

= [(f1 ⊗ f2)(x)] � e/θF = e/θF ∧ (f1 ⊗ f2)(x)

and
e/θF ∧ (f1 ↔ f2)(x) = [(f1(x) → f2(x)) � x/θF ] ∧ e/θF

= [(f1(x) → f2(x)) � x/θF ] � e/θF = [(f1(x) → f2(x)) � e/θF ] � x/θF
c57= [((f1(x) � e/θF) → (f2(x) � e/θF)) � e/θF ] � x/θF

= [((x/θF � f1(e)) → (x/θF � f2(e))) � e/θF ] � x/θF =

= [((x/θF�f1(e)) → (x/θF�f2(e)))�x/θF ]�e/θF
c58= [(f1(e) → f2(e))�x/θF ]�e/θF =

= [(f1(e) → f2(e)) � e/θF ] � x/θF = [(f1 ↔ f2)(e)] � x/θF = x/θF ∧ (f1 ↔ f2)(e)

and
e/θF ∧ (f1 � f2)(x) = e/θF ∧ [x/θF � (f1(x)� f2(x))]

= (e � x)/θF � [f1(x)� f2(x)] = x/θF � [e/θF � (f1(x)� f2(x))]
c57= x/θF � [e/θF � ((e/θF � f1(x))� (e/θF � f2(x)))]

= x/θF � [e/θF � ((x/θF � f1(e))� (x/θF � f2(e)))] =

= e/θF�[x/θF�((x/θF�f1(e))� (x/θF�f2(e)))]
c58= e/θF�[x/θF�(f1(e)� f2(e))] =

= x/θF � [e/θF � (f1(e)� f2(e))] = x/θF � (f1 � f2)(e) = x/θF ∧ (f1 � f2)(e).

Remark 8.2. Analogous as in the case of F− multipliers if we work with strong-F−
multipliers we obtain a pseudo MTL− subalgebra of AF denoted by s − AF which
will be called the strong-localization pseudo MTL− algebra of A with respect to the
topology F .
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So, if F = I(A) ∩ R(A) is the topology of regular ideals, then θF is the identity
congruence of A and we obtain the definition for multipliers on A, so

s − AF =lim−→(
I∈F ′

s − M(I, A)),

where s − M(I, A) is the set of strong multipliers of A having the domain I (see
Definition 4.1, M1 − M4).

In this situation we obtain:

Proposition 8.1. In the case F = I(A) ∩ R(A), AF is exactly the maximal pseudo
MTL-algebra Q(A) of quotients of A which is a Boolean algebra. If pseudo MTL−
algebra A is a MTL− algebra, AF is exactly the maximal MTL-algebra Q(A) of
quotients of A.

3. Denoting by D the topology of dense subsets of A, then (since R(A) ⊆ D(A))
there exists a morphism of pseudo MTL -algebras α : Q(A) → s − AD such that the
diagrame

B(A) vA−→ Q(A)
↘
vD

↙
α

s − AD
is commutative (i.e. α ◦ vA = vD). Indeed, if [f, I] ∈ Q(A) (with I ∈ I′(A) ∩ R(A)
and f : I → A a strong multiplier in the sense of Definition 4.1) we denote by fD the
strong - D−multiplier fD : I → A/θD defined by fD(x) = f(x)/θD for every x ∈ I.
Thus, α is defined by α([f, I]) = [fD, I].

4. Let S ⊆ A a ∧−closed system of pseudo MTL- algebra A.
As in the case of MTL−algebras we obtain the following result:

Proposition 8.2. If FS is the topology associated with a ∧−closed system S ⊆ A,
then the pseudo MTL-algebra s − AFS is isomorphic with B(A[S]).

Remark 8.3. In the proof of Proposition 8.2 the axiom M8 is not necessarily.

Concluding remarks
Since in particular a MTL− algebra is a pseudo MTL− algebra we obtain in this

paper a part of the results about localization of MTL− algebras, so we deduce that
the main results of this paper are generalization of the analogous results relative to
MTL− algebras in [15], [16].

We use in the construction of localization pseudo MTL− algebra AF the Boolean
center B(A) of a pseudo MTL− algebra A; as a consequence of this fact, s − AF is
a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the local-
ization for pseudo MTL− algebras or residuated lattices without use the Boolean
center.

References

[1] R. Balbes, Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
[2] T. S. Blyth, M. F. Janovitz, Residuation Theory, Pergamon Press, 1972.
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