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Blow-up boundary solutions for a class of nonhomogeneous
logistic equations

IONICA ANDREI

ABSTRACT. In this paper we will be concerned with the equations Ap(yu = g(z)f(u), where
Q) is a bounded domain, g is a non-negative continuous function on {2 which is allowed to be
unbounded on §2 and non-linearity f is a non-negative non-decreasing functions. We show that
the equation Ap;yu = g(z)f(u) admits a non-negative local weak solution u € Wllo’f(x)(ﬂ) n
C(Q) such that u(zx) — oo as x — 9Q if Apyw = —g(z) in the weak sense for some

w € Wol’p(z)(ﬂ) and f satisfies a generalized Keller-Osserman condition.
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1. Introduction

Differential equations and variational problems with nonstandard p(z)-growth
conditions have been studied intensively in the recent years. The results this paper
have been obtained by Mohammed [24] in the case p > 1 is a real number.

In this paper, we will be concerned with local weak solutions to equations of the
form

Apy = H(z,u), x €l (1)

where Q € R” is a bounded domain and Ap(zyv = div(|Vo|P®)=2V) is the p(z)-
Laplacian, a function defined on R™ with 1 < p(z) < oo and H : @ x R — R is a
continuous function with H(x,t) = g(x)f(t).

By weak solution to (1) in the domain £ we mean a function u € WP (Q) which
satisfies

/Q |Vul|P®) =2V - Vodr = — /Q H(z,u)pdx (2)

for all ¢ € Wol’p(z)(ﬂ).
By local weak solution to (1) in the domain  we mean a function u € VVllo’Cp(x)(Q)

which is a weak solution of (1) on D for every sub-domain D with D C ().
By local weak solution u of (1) we mean a (local weak) blow-up solution u which
is continuous on {2 and

u(z) — oo as d(xz,00) — 0.
We study in this paper the solutions u € I/Vllo’cp(z)(Q) N C(Q) to the problem
{ —div(|Vu|P®)=2Vu) = g(x) f(u) in ()

u(x) — 00 as d(z,080) — 0.
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146 I. ANDREI

The function ¢ is supposed that is non-negative, which satisfies the following condi-
tion:
for any xg € Q satisfying g(zo) = 0, there exists a sub-domain

O with O C © containing x( such that g(z) > 0 for all z € 9O. (4)

Suppose that the non-linearity f satisfies
(F1) f : [0,00) — [0,00) is a non-decreasing C! function such that f(0) = 0,
and
(F2) f(s) > 0 for s > 0.
The growth condition on f at infinity,

e} 1 t

/1 Wdt < oo, where F(t):= /0 f(s)ds, (5)
first introduced by Keller [18] and Osserman [25] and is crucial in the investigation of
existence of blow-up solutions.

We will refer to the condition (5) as the generalized Keller-Osserman, or simply
the Keller-Osserman condition.

Keller [18] and Osserman [25] gave the condition (5) that a necessary and sufficient
for the equation Au = f(u) to admit a blow-up solution on a bounded domain §2
(with p > 1 a real number).

The Keller-Osserman type condition around the origin we have, also, in [26].

The important results clung of blow-up solutions have been obtained in the papers
1, 2,3,5,7,8,9, 12, 15, 20, 21, 23] and references therein. Cirstea and Ridulescu
[6, 10, 11] prove the uniqueness and asymptotic behavior of solutions for problem

Au=g(z)f(u), v € Q, u(zr) — oo, as dist (x,00) — oo, (6)

when g € C%%(Q) is a nonnegative function and f is regularly varying.
We recall some definitions and basic properties of the variable exponent Lebesgue—
Sobolev spaces LP(*)(Q) and Wol’p(x)(fl), where Q is a bounded domain in RY.
Set C1(Q) = {h € C(Q) : min,qh(z) > 1}. For any h € C(Q) we define
h* = sup h(x) and h™ = inf h(z).
€N €N
For any p € C (), we introduce the variable exponent Lebesque space

LP@)(Q) = {u : u is a measurable real valued function such that

/ (@)@ der < oo},
Q

endowed with the so—called Luzemburg norm
p(z)
de <15,

|u|p(x) = inf {M > 0; /
Q

which is a separable and reflexive Banach space. For basic properties of the variable
exponent Lebesgue spaces we refer to [19]. If 0 < || < co and p1, p2 are variable ex-
ponents in Cy (Q) such that p; < ps in ©, then the embedding LP?*(*)(Q) — LP1(#)(Q)
is continuous, [19, Theorem 2.8].

Let Lp/(””)(Q) be the conjugate space of LP(*)(Q), obtained by conjugating the
exponent pointwise that is, 1/p(z) + 1/p'(z) = 1, [19, Corollary 2.7]. For any u €

ulz)
I




BLOW-UP BOUNDARY SOL. FOR A CLASS OF NONHOMOGENEOUS LOGISTIC EQ. 147

LP®)(Q) and v € Lp/(“’)(Q) the following Holder type inequality

/ uv dx
Q
is valid.

An important role in manipulating the generalized Lebesgue—Sobolev spaces is
played by the modular of the LP(*)(Q) space, which is the mapping Pp(z) LP@)(Q) —
R given by

1 1
<l —=+—— Ulp(z) |VIp (z 7
(p > )I lp(2)[V]p () (7)

potor () = [ JuP® da,
Q

If (un), u € LP®)(Q) then the following relations hold

ey <L (=1L>1) & pyy(u) <1(=1; > 1) (8)
fulpey > 1 = July < ppoy (@) < Julfy, (9)
ulp@) <1 = IUI§<+I> < pp(ay(u) < Julby (10)
lun = tulp@y =0 & py(ay(un —u) =0, (11)

since pt < oco. For a proof of these facts see [19].
We will need the following comparison principle for weak solutions to equations.

Theorem 1.1. (Weak comparison principle). Let G : R — R be continuous and
further assume that it is non-increasing in the second variable. Let u,v € Wl’p(“’)(Q)
satisfy the inequalities

/ |Vu[P@ =2y . Vi < / G(z,u)p
Q Q
and

/ |Vo[P®=2vy . Vi > / G(z,v)p
Q Q

for all non-negative p € Wol’p(x)(Q). Then the inequality u < v on OS2 implies u < v
in §Q.

Proof. See Lemma 2.3 in [28].
The other result which using is the following interior regularity result for weak
solutions to equations. It is due to DiBenedetto [13] and Tolksdorf [27].

Theorem 1.2. (DiBenedetto-Tolksdorf C1* interior regularity). Suppose h(x,t) is
measurable in x €  and continuous in t € R such that |h(x,t)] <T on Q x R. Let
u e WP 0 L>(Q) be a weak solution of Apyu = h(z,u). Given a sub-domain D
with D C Q, there is a > 0 and a positive constant C, depending on n, p, T, ||ul|s
and D such that

[Vu(z)| < C and |Vu(z) — Vu(y)| < Cle —y|*, =z,y€ D. (12)

The paper is organized as follows. In Section 2 we present a sufficient condition on
the weight ¢ for problem (3) to admit a local weak blow-up solution. In Section 3 we
investigated asymptotic boundary behavior of blow-up solutions.
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2. Existence of blow-up solutions

In this section we assume that H(z,t) satisfies the assumptions in Theorem 1.2.
We start with the following lemma that extends a result of Lair (see Theorem 1 of
[20], see also [24]) to the p(z)-Laplacian case.

Lemma 2.1. Let D C RY be a bounded domain. Suppose that g € C(D) satisfied
(4) on D. Let f satisfy the Keller-Osserman condition. Then the problem

div(|VuP®)=2Vu) = g(z) f (u) in D,
{ u(z) — o0 ! as d(xz,0D) — 0, (13)

admits a non-negative solution u € I/Vllo’f(z)(D) NCH*(D), 0 < a < 1.

Proof. We follow the method used by Mohammed [24]. Let uj, € W'P(®) (D) be a
weak solutions of

{ div(|VuP™)=2Vu) = g(z)f(u) x€ D, (14)

u(z) =k x € 0D,

for each k = 1,2, ..., (see [12, Theorem 4.2]). Using the fact that u = 0 is a solution
of the above Dirichlet problem with k = 0, by the comparison principle we see that

0 <wug(z) <upyi(x), x €D,
for all k = 1,2, .... By proceeding as in [20] we find that {uy} is uniformly bounded
on sub-domains that are compactly contained in D. Let us consider U with U C D a
sub-domain and take xp € U. We have the following alternative: either g(zo) > 0 or
g(xo) = 0. Suppose that g(xg) > 0. Then there is a ball B containing z such that
g > 0 on 2B. Let w be a blow-up solution of A,yu = mf(u), u = oo on J(2B),
where m > 0 is the minimum of g on 2B. The existence of such a blow-up solutions
follows from [14, 22, 23]. Using again the comparison principle we deduce that u, < w
on 2B. But w is locally bounded. Therefore uy < C' on B for all £k = 1,2,..., and
some C' > 0. Now, suppose that g(xg) = 0. Since condition (4) it follows that there
exists a sub-domain O with O C D such that g(z) > 0 for all # € 9O. Now, arguing
as in [20] we deduce that ux, < C on 9O for some C and all k = 1,2, .... Using again
the comparison principle we see that uy < C on O for all k = 1, 2,.... Therefore in any
case we have that given xy € U there is a ball B C U containing xy and a positive
constant C'p such that 0 < uyp < Cp on B for all k =1,2,.... By covering U by such
balls we obtain that {uy} is indeed uniformly bounded on U.

From the Theorem 1.2 we see that sequences {uy,} and {Vuy} are equicontinuous in
subdomains compactly contained in €2, and thus we can find a subsequence, which we
still denote by {us}, such that up — u and Vuy — v uniformly on compact subsets of
D for some u € C(D) and v € (C(D))". We immediately see that v = Vu on D, and
it follows from the interior C1“ estimate (12) that Vu € C*(D) for some 0 < o < 1.

Therefore u € Wl’p(x)(D) NCY*(D). Let U with U C D and ¢ € Wol’p(z)(U). Using

loc

again (12) we easily get that |Vu[P(*) =1 Ve| < C|Vp| on U and since the function
€ — |¢[P(*)=2¢ is continuous on R™, we deduce that

Vg (2)[P@ 2V (z) - Vo(z) — |Vu(z) PP ~2Vu(z) - Vo(z) for z € U.

Then by the dominated convergence theorem we obtain that

/|VUk(a?)|p(”)_2Vuk(x)-VsO(a?)—>/ Vu(2) P2V u(z) - V(o).
U U
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Taking into account that 0 < f(ug) < f(ury1) and f(ur(x)) — f(u(x)) for each
x € U, with the monotone convergence theorem we get

/ gf(ur)p — / gf(u)e.
U U
Thus it follows that

/U Vul®)2Vu Vo = - /U of (W, e WP W),

and we see that u is a local weak solution of A,yu = gf(u) on D. Using the fact
that up = k on 0D we obtain that u(z) — oo as x — 9D. [ | O

Now, we assume that f satisfies the Keller Osserman condition (5). Then it follows
that (see Lemma 2.1 of [17])

(p(x)—1)/p(x)
o (F®) _
0

(15)

We obtain that for ¢ > 0,

L T e@-n S

Next, we define 7 : (0,00) — (0,7(0+)) given by

S
() ::/1t Pl e 2

which is a decreasing function.
Next, we assume the following condition on g € C'(€2) (introduced in [24]), which
we will tell off to as the G-condition.
There exist a sequence { Dy} of domains such that
(1) ﬁk Q Dk+1; k= ]., 2,
(2) Q=U,—; D
(3) g satisfied condition (4) on each Dy.
We consider the following Dirichlet problem:
{ div(|Vw|P®=2Vy) = —g(x), =€ Q,

w(x) =0 x € N). (16)

Next, we prove the following result

Theorem 2.1. Let f be a function satisfying the Keller-Osserman condition, and
suppose that g € C () satisfy the G-condition. Then (3) admits a non-negative blow-
up solution, if the Dirichlet problem (16) has a weak solution.

Proof. We follow the method used by Mohammed [24]. Using the G-condition it
follows that there exist domains D; with 3]» C Djt1 C Q such that U;‘;l D; =Q,
and g satisfying the condition (4) on each D;. Since g € C(D;) and g verifies condition
(4) on Dj, by the Lemma 2.1 obtain that for each j there exists u; a local weak blow-
up solution of (3) with D; replacing . Using the comparison principle we get that
Uj41 S Uj; On Dj.

Now let ¢ > 0 be fixed, and we denote v;(x) := v(u;(x) +¢), © € D;. Then, it
follows that

Vo7 2005 = |y (uy + )7 2 (u; + ) [V [P 2V,



150 I. ANDREI

and
+_ +
V(W + 2P 2 (g +9)) = 0~ Dy + )2y + )V,
We also have that
/ |ij|p(m)72vvj'v¢§/ Vo, P =2V, - Vi

J DJ

o +_

= [ IVl 2V, 9 (W P (s + o))
+_

- [ 1Vl Y9 (s P s+ 9)

—= [ artw) s+l s o

J

+ +_
0" 1) [Vl W) + el s e
J

where ¢ € C°(D;) is a non-negative test function.
If we denote that

/ t-2 1 1 1 fl(t)
|y (t)|p Y'(t) = _m and ~"(t) = pt—1f()p /7D’

then we have the equation
_ . / .+5)
VU-N 2VU--V<,0=/ QMQO—/ vu,lﬁf(uﬂigo
w2 o, T +9° " o,V Py o)

Therefore, we obtain that

/ [V, [P =2V, - Ve S/ ge, 0< e Cie(D;y).

J DJ
Using the density argument we get that the above inequality is still valid for all
0 < e Wy (D).
Using again the comparison principle, we obtain that
vi(z) <w(xz) for all z € Dj, (17)

where w is a local weak solution to the Dirichlet problem (16). Let D a domain in
Q with D C Q. We choose m such that D C D,,. We observe that the sequence
{u;(®)}52,,4+1, with € Dy, is a monotone non-increasing sequence bounded below
by v~ !(w). Using the regularity theorem we also obtain that {Vu; }52 1s equicon-
tinuous on Dj,. Hence by diagonal extraction we find a subsequence {u;} such that
uj(z) — u(z) and Vu;(z) — Vu(z) for € D. We observe that for all k£ > m+1 the
following inequalities holds:

\Vug|PS Vol < CnlVel,  fug) < f(umi1) on D,

where ¢ € C§°(D).
Taking into account these inequalities and the pointwise convergence we obtain

Vg ()P 2 Vuy, - Vo — [VuP™ 2y - Ve, flur) — f(u) on D.

By the Lebesgue convergence theorem, we see that

/ Vup (@) P2V (2) - Veole) — / V(@) Vu(z) - V()
D D
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and

/Dgf(uk)saﬂ/Dgf(uw-

Thus, we have that

/D Vur® 2 Vu Vo = - /D of (e, e CE(D).

Using the usual density argument, we obtain that the above equation continues to hold
for any ¢ € Wol’p(x) (D), and it follows that u is a local weak solution of A, yu = g f(u)
on Q. But, by (17) we observe, since £ > 0 is arbitrary, that v(u) < w on Q. Taking
U C Q a neighborhood of the boundary 9 such that 0 < w < (0+) it follows that
w(x) >y Hw(x)) on U and so u(z) — oo as x — O. [ | O

Corollary 2.1. We assume that g € C(Q) for which the Dirichlet problem (16)
admits a weak solution w and let f be a function which satisfies the Keller-Osserman
condition. Then we have

u(@) =y~ (w())

for any non-negative blow-up solution u of (3) and for x near 9.
Proof. Since the proof of the above theorem we observe that the function
v(z) =v(u+e), >0,

where u is a non-negative blow-up solution of (3), which satisfies the inequality

/Q Vo) =2V - Vi < /Qgsa, 0<peW, " (@)

Using again the comparison principle we get
Yu+e)(x) <w(x), xe€.
Thus, we have
u(z) +e >~y Y w(x)) for = near Q.
Using the fact that € > 0 is arbitrary, we conclude that u(z) >y~ (w(z)). ® O

3. Asymptotic boundary behavior of blow-up solutions

In this section we investigated asymptotic boundary behavior of blow-up solutions
of (3) near the boundary 9€2. We denote by d(z) the distance of 2 € Q to the boundary
00 and with d(z, D) the distance of x € D to 9D for other domains D. For the next
result we assume that € is a bounded domain with C? boundary 92. We know that
(see [16]) these exists a positive number p = p(€2), depending only on €2, such that
the distance function d(z), x € Q is in C?(T,,), where  is a bounded domain in R"
with boundary 9 of class C? and

T,:{zeQ:dx) < p}.

Moreover, we have that

Vd(z)| =1, xzel,.

Next, we prove the following result.
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Theorem 3.1. Let 05 be of class C?, let f a function which satisfies the Keller-
Osserman condition, let g € C(Q) be such that the Dirichlet problem (16) has a
solution. If supg g(z)d(x)I =P @@=V < N < 0o for some 0 < 3 < 1, then there is
a neighborhood O of the boundary 02 and a positive constant «, depending only on
Q and the weight g, such that for any non-negative blow-up solution u of (3),

u(@) = v (ad(z)?), @€ O.
Proof. We follow the method used by Mohamed [24]. Let [ be a real number such
that 0 < 3 < 1, and let v(x) = ad(x)” with a > 0 to be determined later. Using the
fact that v € C2(I',,), and that |Vd(z)| =1 on T, we get
Vo = afBd(x)’~*Vd(x)
and
|vv|p(l’)*2vv — (aﬂ)p(z)’ld(x)(p(””)’1)(5’1)Vd(x).
Set M := max{|Ad(z)| : z € T,,}.
OnT, ={z e Q:d(z) <n}, where 0 < n < p1, we have:
—div(|VoP®=2V0) — g(z)
= d(x) PO =D (0B in(ap) - V(p(x) — 1) Vd(z) - d(x)
+d(z) - (B—1)-V(p(z) — 1) -d(z)lnd(z) + 1 + d(z) - Ad(x)]
_g(x)d(x)(p(x)—l)(l—ﬁ)ﬂ}
> d(a) PO VEDTH (0O Hin(ap) - V(p(z) — 1)Vd(z) - d(x)
+d(z)- (B—1)-V(p(z) — 1) -d(z)ind(x) + 1+ d(x) - M] — N}
We now choose 1 > 0 small enough and « > 0 big enough such that
—div(|Vo[P®~2V0) — g(x) > 0.
Taking into account this choices of o and 7 it follows that the function v satisfies
—div(|Vu[P®72V0) — g(z) >0 on T,

Now, since w is the solution to the Dirichlet problem (16) it follows from Corrollary
2.1 that for any blow-up solution u of (3), we have u(z) > v~ !(w(z)) in some neigh-
borhood U of 9€2. We choose i > 0 such that I';, C U and « large enough such that
an® > w on the set {x € Q: d(x) = n} so that v > w on the boundary dI',,. Using the
weak comparison principle we get that w < v on I';. Hence we see that u > v~ 1(v)
on I';,. With this the proof is complete. [ | O

We assume that f satisfies the Keller-Osserman condition and we consider the

function
1

where 1/(q(s)) +1/(p(s)) = 1
The function v is decreasing and let ¢ be the inverse of the function . Next,

we use the following condition, introduced in [3]. At this condition we will as the
Bandle-Marcus condition on f. Suppose that the function ¢ defined in (18) satisfy

lim inf (6Y)
A
We recall a result from [3](see also [24])

>1 for any 0< <1 (19)
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Lemma 3.1. Assume that ¢ € Cltg, 00) is strictly monotone decreasing and satisfies
(19) and let ¢ := =1, If is given a positive number ~y there exist positive numbers
Ny, Py with the following property:

Ify>1, then ¢ ((1—=n)p) <vd(p) forall ne€0,n,], pel0,p,]; (20)

If v <1, then ¢((1+n)p) Zvd(p) foralln€[0,ny], pe[0,p,]. (21)

Given a bounded domain D with C? boundary 0D and a function f with satisfies
the Keller-Osserman condition, we note that if u € I/Vllo’f(m)(D) N C(D) is a solution
of

Apyu = f(u), wu(x)— o0, x—3dD,
then by [23] it is known that

80 Fd(e,0D)) (22)

A similar result for weak blow-up solutions of (3) when g € C(Q) we prove in the
next theorem.

Let Q be a bounded domain in R". We say that Q satisfies a uniform inte-
rior(exterior) sphere condition if there is R > 0 such that for any y € 9Q and any
0 < r < R there is a ball B := B,(z) contained in Q (contained in the complement
Q°) such that 0B N 9N = {y}. (see [24])

Theorem 3.2. We assume that Q) is a bounded domain that satisfies both the uniform
interior and exterior sphere conditions. Let f be a function which satisfies both the
Keller-Osserman and the Bandle-Marcus conditions. If g € C(Q) such that g > 0 on
the boundary O then for any non-negative solution u of (3) we have

i @
d(z)—0 ¢(g(x)V/P"d(x))

Proof. We follow the method introduced by Bandle and Marcus in [3] (see also [23],
[24]). Let z € 99Q. First we prove that

= 1. (23)

im sup — 4@
LS ST @)

Let ¢ > 0. Taking v = 1 4 ¢ in Lemma 3.1 we find n. < 1 and p. > 0 such that
(20) holds for all n € [0,7:], p € [0, pc]. We choose n > 0 such that 2n — n? < 7..
We observe that gl/”+ (z)d(x) — 0 as x — z and we see that gl/p+ is continuous
on Q. Hence there is r1 = r1(z,n) such that |¢*/?" (z) — g/?" (2)| < ¢*/?" (2)n and
g?" (2)d(x,0B) < p. when |z — z| <11, z € Q.

We observe that g'/?" (z) > ¢'/?" (z)(1—n) for any x € €, |z — z| < 1. Hence, for
such = we see that

a7 > g () (1 =) > g1 (@) (1 - )

Taking into account the fact that ¢ is decreasing and the above inequality, we have
that

6 (a7 d(@)) <6 (¢ (@)d(@)) (1= 2y —nP), weQla—z|<n.
It follows from (20) of Lemma 3.1 and the above inequality that

6 (V" d(@)) < (1 +e)o (67 (@)d@)), zeQ lo—zl<r.  (24)
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Using the fact that € satisfies the interior sphere condition we choose a ball B :=
B(zg,r) C Q such that 0BN 0N = {z}. We assume that the radius r is small enough
such that » <r1/2 and ¢ > 0 on B.

Set @ = inf{g(x) : x € B} > 0 and let w € I/Vllo’cp(z)(B) N C(B) be a blow-up
solution of
Apyw = af(w).
It follows from the comparison principle that
u(z) <w(z), ze€B (25)

Letting af instead of f in (18) and taking ¢ for the corresponding inverse, we observe
that

0°(s) = o(a’/"s).
It follows from (22) that
lim w(z)
d(2,0B)—0 ¢p(a/P" d(x,B))
Also for the each € > 0 given there exists a p > 0 such that

w(z) < (1+4+¢e)p (al/p+d(x,8B)) ,  with € B and d(z,0B) < p. (26)

=1.

Next, we choose x € B on segment ZTgz such that d(x,0B) = d(x). We observe that
for this # we have from (24) and (26) that

o (o7 d(r,0B)) < (142 (67" (@)d())
From the above inequality and (25) we obtain that
u() < (142 (97" (2)d(x))

for x € B which lies on the segment Tgz. Hence
: u(x)
lim sup———F———— < 1. 27
aw=0” " G(g7 (@)d(@) 0
Taking into account the fact that (2 satisfies the exterior sphere condition and using
a similar argument as in the above we can show that

N u(z)
lim inf ——F————
d(x)—0" G(g'/P" (x)d(x)) ~
Let z € 00 and let B = B(xg,r) € Q° such that 0B N 02 = {z}. We denote

D(r) = B(xo,2r) \ B(xg,r) and set § := sup{g(z) : x € QN D(r)}. From [23] it
follows that there exists w € VVllocp (x)(D(r)) a solution of
Apyw = Bf(w), w(x) — oo on dB(xg,r) and w(zx) = 0 on dB(xg,2r).
Using the comparison principle we obtain that
w(x) <wu(z), ze€QnD(r). (28)
By [23] we see that w satisfies
lim w(@) >

D(r)3z—8B(zo,r) $(BY/P"d(x, 0B(z0,7)))

In a similar manner it follows from (21) of Lemma 3.1 that

o u(z)
Ao Sl (e, 00)) 7 (2)
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Using (27) and (29) it follows that the proof is complete. [ | O

Note that, in general, a solutions u of (3) does not satisfy the limit in (23). From
[4] we see that the limit superior in (3.10) could be zero, while the limit inferior in
(29) could be infinity.

Therefore we assume that
inf g(x) > 0 for some n > 0,

n

9(2)"/?" d(z,09) — 0 as d(z) — 0. (30)

Theorem 3.3. We assume that g € C(Q) satisfy (30) and let f be a function which
satisfies both the Keller-Osserman and the Bandle-Marcus conditions. If u is a blow-
up solution of (3) then we have

lim sup L <1
d@)—0 " P(g"/P" (x)d(z)) ~
Proof. We follow the method used by Mohamed [24]. We prove arguing by contradic-
tion. We assume that there is a sequence of points z; € Q with d(z;) — 0 as i — o
such that

u(:) >1+a
G(gH/P" () d(w;))
for all 7+ = 1,2,... and for some a > 0. It follows from continuity that for each
1 =1,2,..., there is a ball B;(z;) C Q centered at x; such that
u(@) = (1+a)o (977" (2)d(x)) , @ € Bilw). (31)

For v := 1+ «/2 we find n, and p, such that inequality (20) of Lemma 3.1 holds for
all n € [0,71,] and all p € [0, po]. We denote

Q ={reQ:d(z)>d(z;)}.

We choose v > 0 such that for all 2 € Q with d(x) < v we have

d(z,000) — d(x,09;)
d(x,00)

g?" (2)d(z) € [0, pal, € [0, 4],

for all 7 sufficiently large.
We observe that

¢ (9(x)1/”+d(m, aﬂi)) =9 <g(m)1/p+d(x, Q) <1 -

d(z,000) — d(x,09;)
d(x,00)
<(1+0/2)¢ (g(x)l/p*d(x, am) . (32)
Using the comparison principle, we obtain that
w;i(z) > u(zx), x €y,

where w; is a blow-up solution of (3) on the set ;.
By this and (31) it follows that

wiw) = (1+a/(a+2) ¢ (9@)7 d(z,00)), @ € Bi(w:) N(2\ Q).
which is in contradiction with the fact that

lim  sup wi(z)
d(x,082;)—0 d(gr/P" (x)d(x,09Q;))
and thus the proof is complete. [ | O

S]-a
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