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Blow-up boundary solutions for a class of nonhomogeneous
logistic equations

Ionică Andrei

Abstract. In this paper we will be concerned with the equations Δp(x)u = g(x)f(u), where
Ω is a bounded domain, g is a non-negative continuous function on Ω which is allowed to be
unbounded on Ω and non-linearity f is a non-negative non-decreasing functions. We show that

the equation Δp(x)u = g(x)f(u) admits a non-negative local weak solution u ∈ W
1,p(x)
loc (Ω) ∩

C(Ω) such that u(x) → ∞ as x → ∂Ω if Δp(x)w = −g(x) in the weak sense for some

w ∈ W
1,p(x)
0 (Ω) and f satisfies a generalized Keller-Osserman condition.
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1. Introduction

Differential equations and variational problems with nonstandard p(x)-growth
conditions have been studied intensively in the recent years. The results this paper
have been obtained by Mohammed [24] in the case p > 1 is a real number.

In this paper, we will be concerned with local weak solutions to equations of the
form

Δp(x) = H(x, u), x ∈ Ω. (1)

where Ω ⊆ RN is a bounded domain and Δp(x)v := div(|∇v|p(x)−2∇v) is the p(x)-
Laplacian, a function defined on Rn with 1 < p(x) < ∞ and H : Ω × R → R is a
continuous function with H(x, t) = g(x)f(t).

By weak solution to (1) in the domain Ω we mean a function u ∈ W 1,p(x)(Ω) which
satisfies ∫

Ω

|∇u|p(x)−2∇u · ∇ϕdx = −
∫

Ω

H(x, u)ϕdx (2)

for all ϕ ∈ W
1,p(x)
0 (Ω).

By local weak solution to (1) in the domain Ω we mean a function u ∈W
1,p(x)
loc (Ω)

which is a weak solution of (1) on D for every sub-domain D with D ⊂ Ω.
By local weak solution u of (1) we mean a (local weak) blow-up solution u which

is continuous on Ω and

u(x) → ∞ as d(x, ∂Ω) → 0.

We study in this paper the solutions u ∈W
1,p(x)
loc (Ω) ∩ C(Ω) to the problem{ −div(|∇u|p(x)−2∇u) = g(x)f(u) in Ω,

u(x) → ∞ as d(x, ∂Ω) → 0.
(3)
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The function g is supposed that is non-negative, which satisfies the following condi-
tion:

for any x0 ∈ Ω satisfying g(x0) = 0, there exists a sub-domain

O with O ⊂ Ω containing x0 such that g(x) > 0 for all x ∈ ∂O. (4)

Suppose that the non-linearity f satisfies
(F1) f : [0,∞) → [0,∞) is a non-decreasing C1 function such that f(0) = 0,

and
(F2) f(s) > 0 for s > 0.

The growth condition on f at infinity,∫ ∞

1

1
(F (t))1/p(x)

dt <∞, where F (t) :=
∫ t

0

f(s)ds, (5)

first introduced by Keller [18] and Osserman [25] and is crucial in the investigation of
existence of blow-up solutions.

We will refer to the condition (5) as the generalized Keller-Osserman, or simply
the Keller-Osserman condition.

Keller [18] and Osserman [25] gave the condition (5) that a necessary and sufficient
for the equation Δu = f(u) to admit a blow-up solution on a bounded domain Ω
(with p > 1 a real number).

The Keller-Osserman type condition around the origin we have, also, in [26].
The important results clung of blow-up solutions have been obtained in the papers

[1, 2, 3, 5, 7, 8, 9, 12, 15, 20, 21, 23] and references therein. Cı̂rstea and Rădulescu
[6, 10, 11] prove the uniqueness and asymptotic behavior of solutions for problem

	u = g(x)f(u), x ∈ Ω, u(x) → ∞, as dist (x, ∂Ω) → ∞, (6)

when g ∈ C0,α(Ω) is a nonnegative function and f is regularly varying.
We recall some definitions and basic properties of the variable exponent Lebesgue–

Sobolev spaces Lp(x)(Ω) and W 1,p(x)
0 (Ω), where Ω is a bounded domain in RN .

Set C+(Ω) = {h ∈ C(Ω) : minx∈Ω h(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(x)(Ω) = {u : u is a measurable real–valued function such that∫
Ω

|u(x)|p(x) dx <∞},

endowed with the so–called Luxemburg norm

|u|p(x) = inf

{
μ > 0;

∫
Ω

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1

}
,

which is a separable and reflexive Banach space. For basic properties of the variable
exponent Lebesgue spaces we refer to [19]. If 0 < |Ω| <∞ and p1, p2 are variable ex-
ponents in C+(Ω) such that p1 ≤ p2 in Ω, then the embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω)
is continuous, [19, Theorem 2.8].

Let Lp′(x)(Ω) be the conjugate space of Lp(x)(Ω), obtained by conjugating the
exponent pointwise that is, 1/p(x) + 1/p′(x) = 1, [19, Corollary 2.7]. For any u ∈
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Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the following Hölder type inequality∣∣∣∣
∫

Ω

uv dx

∣∣∣∣ ≤
(

1
p−

+
1
p′−

)
|u|p(x)|v|p′(x) (7)

is valid.
An important role in manipulating the generalized Lebesgue–Sobolev spaces is

played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) →
R given by

ρp(x)(u) =
∫

Ω

|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) then the following relations hold

|u|p(x) < 1 (= 1; > 1) ⇔ ρp(x)(u) < 1 (= 1; > 1) (8)

|u|p(x) > 1 ⇒ |u|p−

p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x) (9)

|u|p(x) < 1 ⇒ |u|p+

p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x) (10)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0, (11)

since p+ <∞. For a proof of these facts see [19].
We will need the following comparison principle for weak solutions to equations.

Theorem 1.1. (Weak comparison principle). Let G : R → R be continuous and
further assume that it is non-increasing in the second variable. Let u, v ∈W 1,p(x)(Ω)
satisfy the inequalities ∫

Ω

|∇u|p(x)−2∇u · ∇ϕ ≤
∫

Ω

G(x, u)ϕ

and ∫
Ω

|∇v|p(x)−2∇v · ∇ϕ ≥
∫

Ω

G(x, v)ϕ

for all non-negative ϕ ∈ W
1,p(x)
0 (Ω). Then the inequality u ≤ v on ∂Ω implies u ≤ v

in Ω.

Proof. See Lemma 2.3 in [28].
The other result which using is the following interior regularity result for weak

solutions to equations. It is due to DiBenedetto [13] and Tolksdorf [27].

Theorem 1.2. (DiBenedetto-Tolksdorf C1,α interior regularity). Suppose h(x, t) is
measurable in x ∈ Ω and continuous in t ∈ R such that |h(x, t)| ≤ Γ on Ω × R. Let
u ∈ W 1,p(x) ∩ L∞(Ω) be a weak solution of Δp(x)u = h(x, u). Given a sub-domain D

with D ⊂ Ω, there is α > 0 and a positive constant C, depending on n, p, Γ, ||u||∞
and D such that

|∇u(x)| ≤ C and |∇u(x) −∇u(y)| ≤ C|x − y|α, x, y ∈ D. (12)

The paper is organized as follows. In Section 2 we present a sufficient condition on
the weight g for problem (3) to admit a local weak blow-up solution. In Section 3 we
investigated asymptotic boundary behavior of blow-up solutions.
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2. Existence of blow-up solutions

In this section we assume that H(x, t) satisfies the assumptions in Theorem 1.2.
We start with the following lemma that extends a result of Lair (see Theorem 1 of

[20], see also [24]) to the p(x)-Laplacian case.

Lemma 2.1. Let D ⊆ RN be a bounded domain. Suppose that g ∈ C(D) satisfied
(4) on D. Let f satisfy the Keller-Osserman condition. Then the problem{

div(|∇u|p(x)−2∇u) = g(x)f(u) in D,
u(x) → ∞ as d(x, ∂D) → 0,

(13)

admits a non-negative solution u ∈W
1,p(x)
loc (D) ∩ C1,α(D), 0 < α < 1.

Proof. We follow the method used by Mohammed [24]. Let uk ∈ W 1,p(x)(D) be a
weak solutions of {

div(|∇u|p(x)−2∇u) = g(x)f(u) x ∈ D,
u(x) = k x ∈ ∂D,

(14)

for each k = 1, 2, ..., (see [12, Theorem 4.2]). Using the fact that u ≡ 0 is a solution
of the above Dirichlet problem with k = 0, by the comparison principle we see that

0 ≤ uk(x) ≤ uk+1(x), x ∈ D,
for all k = 1, 2, .... By proceeding as in [20] we find that {uk} is uniformly bounded
on sub-domains that are compactly contained in D. Let us consider U with U ⊂ D a
sub-domain and take x0 ∈ U . We have the following alternative: either g(x0) > 0 or
g(x0) = 0. Suppose that g(x0) > 0. Then there is a ball B containing x0 such that
g > 0 on 2B. Let w be a blow-up solution of Δp(x)u = mf(u), u = ∞ on ∂(2B),
where m > 0 is the minimum of g on 2B. The existence of such a blow-up solutions
follows from [14, 22, 23]. Using again the comparison principle we deduce that uk ≤ w
on 2B. But w is locally bounded. Therefore uk ≤ C on B for all k = 1, 2, ..., and
some C > 0. Now, suppose that g(x0) = 0. Since condition (4) it follows that there
exists a sub-domain O with O ⊂ D such that g(x) > 0 for all x ∈ ∂O. Now, arguing
as in [20] we deduce that uk ≤ C on ∂O for some C and all k = 1, 2, .... Using again
the comparison principle we see that uk ≤ C on O for all k = 1, 2,.... Therefore in any
case we have that given x0 ∈ U there is a ball B ⊂ U containing x0 and a positive
constant CB such that 0 ≤ uk ≤ CB on B for all k = 1, 2, .... By covering U by such
balls we obtain that {uk} is indeed uniformly bounded on U .

From the Theorem 1.2 we see that sequences {uk} and {∇uk} are equicontinuous in
subdomains compactly contained in Ω, and thus we can find a subsequence, which we
still denote by {uk}, such that uk → u and ∇uk → v uniformly on compact subsets of
D for some u ∈ C(D) and v ∈ (C(D))n. We immediately see that v = ∇u on D, and
it follows from the interior C1,α estimate (12) that ∇u ∈ Cα(D) for some 0 < α < 1.
Therefore u ∈ W

1,p(x)
loc (D) ∩C1,α(D). Let U with U ⊂ D and ϕ ∈W

1,p(x)
0 (U). Using

again (12) we easily get that |∇uk|p(x)−1|∇ϕ| ≤ C|∇ϕ| on U and since the function
ξ → |ξ|p(x)−2ξ is continuous on Rn, we deduce that

|∇uk(x)|p(x)−2∇uk(x) · ∇ϕ(x) → |∇u(x)|p(x)−2∇u(x) · ∇ϕ(x) for x ∈ U.

Then by the dominated convergence theorem we obtain that∫
U

|∇uk(x)|p(x)−2∇uk(x) · ∇ϕ(x) →
∫

U

|∇u(x)|p(x)−2∇u(x) · ∇ϕ(x).
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Taking into account that 0 ≤ f(uk) ≤ f(uk+1) and f(uk(x)) → f(u(x)) for each
x ∈ U , with the monotone convergence theorem we get∫

U

gf(uk)ϕ→
∫

U

gf(u)ϕ.

Thus it follows that∫
U

|∇u|p(x)−2∇u · ∇ϕ = −
∫

U

gf(u)ϕ, ϕ ∈W
1,p(x)
0 (U),

and we see that u is a local weak solution of Δp(x)u = gf(u) on D. Using the fact
that uk = k on ∂D we obtain that u(x) → ∞ as x→ ∂D. �

Now, we assume that f satisfies the Keller Osserman condition (5). Then it follows
that (see Lemma 2.1 of [17])

lim
t→∞

(F (t))(p(x)−1)/p(x)

f(t)
= 0 (15)

We obtain that for t > 0, ∫ ∞

t

1
f(s)1/(p(x)−1)

ds <∞.

Next, we define γ : (0,∞) → (0, γ(0+)) given by

γ(t) :=
∫ ∞

t

1
f(s)1/(p(x)−1)

ds,

which is a decreasing function.
Next, we assume the following condition on g ∈ C(Ω) (introduced in [24]), which

we will tell off to as the G-condition.
There exist a sequence {Dk} of domains such that

(1) Dk ⊆ Dk+1; k = 1, 2, ....
(2) Ω =

⋃∞
k=1Dk.

(3) g satisfied condition (4) on each Dk.
We consider the following Dirichlet problem:{

div(|∇w|p(x)−2∇u) = −g(x), x ∈ Ω,
w(x) = 0 x ∈ ∂Ω).

(16)

Next, we prove the following result

Theorem 2.1. Let f be a function satisfying the Keller-Osserman condition, and
suppose that g ∈ C(Ω) satisfy the G-condition. Then (3) admits a non-negative blow-
up solution, if the Dirichlet problem (16) has a weak solution.

Proof. We follow the method used by Mohammed [24]. Using the G-condition it
follows that there exist domains Dj with Dj ⊆ Dj+1 ⊆ Ω such that

⋃∞
j=1Dj = Ω,

and g satisfying the condition (4) on eachDj. Since g ∈ C(Dj) and g verifies condition
(4) on Dj , by the Lemma 2.1 obtain that for each j there exists uj a local weak blow-
up solution of (3) with Dj replacing Ω. Using the comparison principle we get that
uj+1 ≤ uj on Dj .

Now let ε > 0 be fixed, and we denote vj(x) := γ(uj(x) + ε), x ∈ Dj. Then, it
follows that

|∇vj |p+−2∇vj = |γ′(uj + ε)|p+−2γ′(uj + ε)|∇uj |p+−2∇uj .
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and

∇
(
|γ′(uj + ε)|p+−2

γ′(uj + ε)
)

= (p+ − 1) |γ′(uj + ε)|p+−2
γ′′(uj + ε)∇uj .

We also have that∫
Dj

|∇vj |p(x)−2∇vj · ∇ϕ ≤
∫

Dj

|∇vj |p+−2∇vj · ∇ϕ

=
∫

Dj

|∇uj |p+−2∇uj · ∇
(
|γ′(uj + ε)|p+−2

γ′(uj + ε)ϕ
)

−
∫

Dj

|∇uj|p+−2∇uj · ∇
(
|γ′(uj + ε)|p+−2

γ′(uj + ε)
)
ϕ

= −
∫

Dj

gf(uj) |γ′(uj + ε)|p+−2
γ′(uj + ε)ϕ

−(p+ − 1)
∫

Dj

|∇uj |p+ |γ′(uj) + ε|p+−2γ′′(uj + ε)ϕ.

where ϕ ∈ C∞
0 (Dj) is a non-negative test function.

If we denote that

|γ′(t)|p+−2
γ′(t) = − 1

f(t)
and γ′′(t) =

1
p+ − 1

f ′(t)
f(t)p+/(p+−1)

,

then we have the equation∫
Dj

|∇vj |p+−2∇vj · ∇ϕ =
∫

Dj

g
f(uj)

f(uj + ε)
ϕ−

∫
Dj

|∇uj |p+ f ′(uj + ε)
f2(uj + ε)

ϕ.

Therefore, we obtain that∫
Dj

|∇vj |p(x)−2∇vj · ∇ϕ ≤
∫

Dj

gϕ, 0 ≤ ϕ ∈ C∞
0 (Dj).

Using the density argument we get that the above inequality is still valid for all
0 ≤ ϕ ∈ W

1,p(x)
0 (Dj).

Using again the comparison principle, we obtain that

vj(x) ≤ w(x) for all x ∈ Dj, (17)

where w is a local weak solution to the Dirichlet problem (16). Let D a domain in
Ω with D ⊂ Ω. We choose m such that D ⊆ Dm. We observe that the sequence
{uj(x)}∞j=m+1, with x ∈ Dm, is a monotone non-increasing sequence bounded below
by γ−1(w). Using the regularity theorem we also obtain that {∇uj}∞j=k is equicon-
tinuous on Dk. Hence by diagonal extraction we find a subsequence {uj} such that
uj(x) → u(x) and ∇uj(x) → ∇u(x) for x ∈ D. We observe that for all k ≥ m+ 1 the
following inequalities holds:

|∇uk|p(x)−1|∇ϕ| ≤ Cm|∇ϕ|, f(uk) ≤ f(um+1) on D,

where ϕ ∈ C∞
0 (D).

Taking into account these inequalities and the pointwise convergence we obtain

|∇uk(x)|p(x)−2∇uk · ∇ϕ→ |∇u|p(x)−2∇u · ∇ϕ, f(uk) → f(u) on D.

By the Lebesgue convergence theorem, we see that∫
D

|∇uk(x)|p(x)−2∇uk(x) · ∇ϕ(x) →
∫

D

|∇u(x)|p(x)−2 ∇u(x) · ∇ϕ(x)
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and ∫
D

gf(uk)ϕ→
∫

D

gf(u)ϕ.

Thus, we have that∫
D

|∇u|p(x)−2∇u · ∇ϕ = −
∫

D

gf(u)ϕ, ϕ ∈ C∞
0 (D).

Using the usual density argument, we obtain that the above equation continues to hold
for any ϕ ∈ W

1,p(x)
0 (D), and it follows that u is a local weak solution of 	p(x)u = gf(u)

on Ω. But, by (17) we observe, since ε > 0 is arbitrary, that γ(u) ≤ w on Ω. Taking
U ⊆ Ω a neighborhood of the boundary ∂Ω such that 0 ≤ w ≤ γ(0+) it follows that
u(x) ≥ γ−1(w(x)) on U and so u(x) → ∞ as x→ ∂Ω. �

Corollary 2.1. We assume that g ∈ C(Ω) for which the Dirichlet problem (16)
admits a weak solution w and let f be a function which satisfies the Keller-Osserman
condition. Then we have

u(x) ≥ γ−1(w(x))

for any non-negative blow-up solution u of (3) and for x near ∂Ω.

Proof. Since the proof of the above theorem we observe that the function

v(x) = γ(u+ ε), ε > 0,

where u is a non-negative blow-up solution of (3), which satisfies the inequality∫
Ω

|∇v|p(x)−2∇v · ∇ϕ ≤
∫

Ω

gϕ, 0 ≤ ϕ ∈ W
1,p(x)
0 (Ω).

Using again the comparison principle we get

γ(u+ ε)(x) ≤ w(x), x ∈ Ω.

Thus, we have
u(x) + ε ≥ γ−1(w(x)) for x near ∂Ω.

Using the fact that ε > 0 is arbitrary, we conclude that u(x) ≥ γ−1(w(x)). �

3. Asymptotic boundary behavior of blow-up solutions

In this section we investigated asymptotic boundary behavior of blow-up solutions
of (3) near the boundary ∂Ω. We denote by d(x) the distance of x ∈ Ω to the boundary
∂Ω and with d(x, ∂D) the distance of x ∈ D to ∂D for other domains D. For the next
result we assume that Ω is a bounded domain with C2 boundary ∂Ω. We know that
(see [16]) these exists a positive number μ = μ(Ω), depending only on Ω, such that
the distance function d(x), x ∈ Ω is in C2(Γμ), where Ω is a bounded domain in Rn

with boundary ∂Ω of class C2 and

Γμ : {x ∈ Ω : d(x) < μ}.
Moreover, we have that

|∇d(x)| = 1, x ∈ Γμ.

Next, we prove the following result.
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Theorem 3.1. Let ∂Ω be of class C2, let f a function which satisfies the Keller-
Osserman condition, let g ∈ C(Ω) be such that the Dirichlet problem (16) has a
solution. If supΩ g(x)d(x)

(1−β)(p(x)−1)+1 ≤ N <∞ for some 0 < β < 1, then there is
a neighborhood O of the boundary ∂Ω and a positive constant α, depending only on
Ω and the weight g, such that for any non-negative blow-up solution u of (3),

u(x) ≥ γ−1(αd(x)β), x ∈ O.

Proof. We follow the method used by Mohamed [24]. Let β be a real number such
that 0 < β < 1, and let v(x) = αd(x)β with α > 0 to be determined later. Using the
fact that v ∈ C2(Γμ), and that |∇d(x)| = 1 on Γμ we get

∇v = αβd(x)β−1∇d(x)
and

|∇v|p(x)−2∇v = (αβ)p(x)−1d(x)(p(x)−1)(β−1)∇d(x).
Set M := max{|	d(x)| : x ∈ Γμ}.
On Γη = {x ∈ Ω : d(x) < η}, where 0 < η ≤ μ, we have:

−div(|∇v|p(x)−2∇v) − g(x)

= d(x)(p(x)−1)(β−1)−1{−(αβ)p(x)−1[ln(αβ) · ∇(p(x) − 1)∇d(x) · d(x)
+d(x) · (β − 1) · ∇(p(x) − 1) · d(x)lnd(x) + 1 + d(x) · 	d(x)]

−g(x)d(x)(p(x)−1)(1−β)+1}
≥ d(x)(p(x)−1)(β−1)−1{−(αβ)p(x)−1[ln(αβ) · ∇(p(x) − 1)∇d(x) · d(x)

+d(x) · (β − 1) · ∇(p(x) − 1) · d(x)lnd(x) + 1 + d(x) ·M ] −N}
We now choose η > 0 small enough and α > 0 big enough such that

−div(|∇v|p(x)−2∇v) − g(x) ≥ 0.

Taking into account this choices of α and η it follows that the function v satisfies

−div(|∇v|p(x)−2∇v) − g(x) ≥ 0 on Γη.

Now, since w is the solution to the Dirichlet problem (16) it follows from Corrollary
2.1 that for any blow-up solution u of (3), we have u(x) ≥ γ−1(w(x)) in some neigh-
borhood U of ∂Ω. We choose η > 0 such that Γη ⊆ U and α large enough such that
αηβ ≥ w on the set {x ∈ Ω : d(x) = η} so that v ≥ w on the boundary ∂Γη. Using the
weak comparison principle we get that w ≤ v on Γη. Hence we see that u ≥ γ−1(v)
on Γη. With this the proof is complete. �

We assume that f satisfies the Keller-Osserman condition and we consider the
function

ψ(t) =
∫ ∞

t

1
q(s)F (s)1/p(s)

ds, t > 0. (18)

where 1/(q(s)) + 1/(p(s)) = 1
The function ψ is decreasing and let φ be the inverse of the function ψ. Next,

we use the following condition, introduced in [3]. At this condition we will as the
Bandle-Marcus condition on f . Suppose that the function ψ defined in (18) satisfy

lim
t→∞ inf

ψ(βt)
ψ(t)

> 1 for any 0 < β < 1. (19)

We recall a result from [3](see also [24])
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Lemma 3.1. Assume that ψ ∈ C[t0,∞) is strictly monotone decreasing and satisfies
(19) and let φ := ψ−1. If is given a positive number γ there exist positive numbers
ηγ, ργ with the following property:

If γ > 1, then φ ((1 − η)ρ) ≤ γφ(ρ) for all η ∈ [0, ηγ ], ρ ∈ [0, ργ ]; (20)

If γ < 1, then φ ((1 + η)ρ) ≥ γφ(ρ) for all η ∈ [0, ηγ ], ρ ∈ [0, ργ ]. (21)

Given a bounded domain D with C2 boundary ∂D and a function f with satisfies
the Keller-Osserman condition, we note that if u ∈ W

1,p(x)
loc (D) ∩ C(D) is a solution

of
	p(x)u = f(u), u(x) → ∞, x→ ∂D,

then by [23] it is known that

lim
d(x,∂D)

u(x)
φ(d(x, ∂D))

= 1. (22)

A similar result for weak blow-up solutions of (3) when g ∈ C(Ω) we prove in the
next theorem.

Let Ω be a bounded domain in Rn. We say that Ω satisfies a uniform inte-
rior(exterior) sphere condition if there is R > 0 such that for any y ∈ ∂Ω and any
0 < r < R there is a ball B := Br(x) contained in Ω (contained in the complement
Ωc) such that ∂B ∩ ∂Ω = {y}. (see [24])

Theorem 3.2. We assume that Ω is a bounded domain that satisfies both the uniform
interior and exterior sphere conditions. Let f be a function which satisfies both the
Keller-Osserman and the Bandle-Marcus conditions. If g ∈ C(Ω) such that g > 0 on
the boundary ∂Ω then for any non-negative solution u of (3) we have

lim
d(x)→0

u(x)
φ(g(x)1/p+d(x))

= 1. (23)

Proof. We follow the method introduced by Bandle and Marcus in [3] (see also [23],
[24]). Let z ∈ ∂Ω. First we prove that

lim
x→z

sup
u(x)

φ(g1/p+(x)d(x))
≤ 1.

Let ε > 0. Taking γ = 1 + ε in Lemma 3.1 we find ηε < 1 and ρε > 0 such that
(20) holds for all η ∈ [0, ηε], ρ ∈ [0, ρε]. We choose η > 0 such that 2η − η2 < ηε.
We observe that g1/p+

(x)d(x) → 0 as x → z and we see that g1/p+
is continuous

on Ω. Hence there is r1 = r1(z, η) such that |g1/p+
(x) − g1/p+

(z)| < g1/p+
(z)η and

g1/p+
(x)d(x, ∂B) < ρε when |x− z| < r1, x ∈ Ω.

We observe that g1/p+
(z) > g1/p+

(x)(1− η) for any x ∈ Ω, |x− z| < r1. Hence, for
such x we see that

α1/p+
> g1/p+

(z)(1 − η) > g1/p+
(x)(1 − η)2.

Taking into account the fact that φ is decreasing and the above inequality, we have
that

φ
(
α1/p+d(x)

)
≤ φ

(
g1/p+

(x)d(x)
) (

1 − (2η − η2)
)
, x ∈ Ω, |x− z| < r1.

It follows from (20) of Lemma 3.1 and the above inequality that

φ
(
α1/p+

d(x)
)
≤ (1 + ε)φ

(
g1/p+

(x)d(x)
)
, x ∈ Ω, |x− z| < r1. (24)
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Using the fact that Ω satisfies the interior sphere condition we choose a ball B :=
B(x0, r) ⊆ Ω such that ∂B ∩ ∂Ω = {z}. We assume that the radius r is small enough
such that r < r1/2 and g > 0 on B.

Set α = inf{g(x) : x ∈ B} > 0 and let w ∈ W
1,p(x)
loc (B) ∩ C(B) be a blow-up

solution of
	p(x)w = αf(w).

It follows from the comparison principle that

u(x) ≤ w(x), x ∈ B (25)

Letting αf instead of f in (18) and taking φα for the corresponding inverse, we observe
that

φα(s) = φ(α1/p+
s).

It follows from (22) that

lim
d(x,∂B)→0

w(x)
φ(α1/p+d(x, ∂B))

= 1.

Also for the each ε > 0 given there exists a ρ > 0 such that

w(x) ≤ (1 + ε)φ
(
α1/p+

d(x, ∂B)
)
, with x ∈ B and d(x, ∂B) < ρ. (26)

Next, we choose x ∈ B on segment x0z such that d(x, ∂B) = d(x). We observe that
for this x we have from (24) and (26) that

φ
(
α1/p+

d(x, ∂B)
)
≤ (1 + ε)2φ

(
g1/p+

(x)d(x)
)
.

From the above inequality and (25) we obtain that

u(x) ≤ (1 + ε)2φ
(
g1/p+

(x)d(x)
)

for x ∈ B which lies on the segment x0z. Hence

lim
d(x)→0

sup
u(x)

φ(g1/p+(x)d(x))
≤ 1. (27)

Taking into account the fact that Ω satisfies the exterior sphere condition and using
a similar argument as in the above we can show that

lim
d(x)→0

inf
u(x)

φ(g1/p+(x)d(x))
≥ 1.

Let z ∈ ∂Ω and let B = B(x0, r) ⊆ Ωc such that ∂B ∩ ∂Ω = {z}. We denote
D(r) = B(x0, 2r) \ B(x0, r) and set β := sup{g(x) : x ∈ Ω ∩D(r)}. From [23] it
follows that there exists w ∈ W

1,p(x)
loc (D(r)) a solution of

	p(x)w = βf(w), w(x) → ∞ on ∂B(x0, r) and w(x) = 0 on ∂B(x0, 2r).

Using the comparison principle we obtain that

w(x) ≤ u(x), x ∈ Ω ∩D(r). (28)

By [23] we see that w satisfies

lim
D(r)�x→∂B(x0,r)

w(x)
φ(β1/p+d(x, ∂B(x0, r)))

≥ 1.

In a similar manner it follows from (21) of Lemma 3.1 that

lim
x→∂Ω

inf
u(x)

φ(g(x)1/p+d(x, ∂Ω))
≥ 1. (29)
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Using (27) and (29) it follows that the proof is complete. �

Note that, in general, a solutions u of (3) does not satisfy the limit in (23). From
[4] we see that the limit superior in (3.10) could be zero, while the limit inferior in
(29) could be infinity.

Therefore we assume that

inf
Γη

g(x) > 0 for some η > 0,

g(x)1/p+
d(x, ∂Ω) → 0 as d(x) → 0. (30)

Theorem 3.3. We assume that g ∈ C(Ω) satisfy (30) and let f be a function which
satisfies both the Keller-Osserman and the Bandle-Marcus conditions. If u is a blow-
up solution of (3) then we have

lim
d(x)→0

sup
u(x)

φ(g1/p+(x)d(x))
≤ 1.

Proof. We follow the method used by Mohamed [24]. We prove arguing by contradic-
tion. We assume that there is a sequence of points xi ∈ Ω with d(xi) → 0 as i → ∞
such that

u(xi)
φ(g1/p+(xi)d(xi))

> 1 + α

for all i = 1, 2, ... and for some α > 0. It follows from continuity that for each
i = 1, 2, ..., there is a ball Bi(xi) ⊆ Ω centered at xi such that

u(x) ≥ (1 + α)φ
(
g1/p+

(x)d(x)
)
, x ∈ Bi(xi). (31)

For γ := 1 + α/2 we find ηα and ρα such that inequality (20) of Lemma 3.1 holds for
all η ∈ [0, ηα] and all ρ ∈ [0, ρα]. We denote

Ωi := {x ∈ Ω : d(x) > d(xi)}.
We choose ν > 0 such that for all x ∈ Ω with d(x) < ν we have

g1/p+
(x)d(x) ∈ [0, ρα],

d(x, ∂Ω) − d(x, ∂Ωi)
d(x, ∂Ω)

∈ [0, ηα],

for all i sufficiently large.
We observe that

φ
(
g(x)1/p+

d(x, ∂Ωi)
)

= φ

(
g(x)1/p+

d(x, ∂Ω)
(

1 − d(x, ∂Ω) − d(x, ∂Ωi)
d(x, ∂Ω)

))

≤ (1 + α/2)φ
(
g(x)1/p+

d(x, ∂Ω)
)
. (32)

Using the comparison principle, we obtain that

wi(x) ≥ u(x), x ∈ Ωi,

where wi is a blow-up solution of (3) on the set Ωi.
By this and (31) it follows that

wi(x) ≥ (1 + α/(α+ 2))φ
(
g(x)1/p+

d(x, ∂Ωi)
)
, x ∈ Bi(xi) ∩ (Ωi \ Ων),

which is in contradiction with the fact that

lim
d(x,∂Ωi)→0

sup
wi(x)

φ(g1/p+(x)d(x, ∂Ωi))
≤ 1,

and thus the proof is complete. �
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[7] F. Ĉırstea and V. Rădulescu, Asymptotics for the blow-up boundary solution of the logistic
equation with absorption, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 231-236.
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