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Approximate reasoning using Yager implication

Ion Iancu

Abstract. Using Generalized Modus Ponens reasoning we examine the values of the inferred
conclusion working with the Yager implication in order to interpret a fuzzy if-then rule with
a single input single output and with the t-norm t (x, y) = max ((1 + λ) (x + y − 1)− λxy, 0),
λ ≥ −1 for composition operation. In this way we complete some of our previous results.
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1. Introduction

The database of a rule-based system may contains imprecisions which are inherent
in the description of the rules by the expert. A difficulty appears in the utilization
of these rules when the observed facts do not match the condition expressed in the
premise of the rule, but are not too different from them. Another difficulty is given by
representation of knowledge expressed, in most cases, by means of natural language
statements. These problems led Zadeh to outline the theory of approximate reasoning
[24], that is the deduction of imprecise conclusion from a set of imprecise premises
based on fuzzy logic.

Starting from Modus Ponens rule, Zadeh [25] obtains the Generalized Modus Po-
nens (GMP) reasoning. Stated in the form of a syllogism the Generalized Modus
Ponens looks like

if X is A then Y is B
X is A′

—————————————-
Y is B′

where A,B, A′ and B′ are modeled by fuzzy sets.
An investigation of inference processes in the fuzzy if-then rules is a subject of

many papers in literature [1-25].

2. Knowledge representation

In an expert system an elementary piece of information can be represented in
canonical form ”X is A”, where X is a variable representing the attribute of the
entity and A is its value.
The proposition

X is A

can be understood as

the quantity X satisfies the predicate A
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or
the variable X takes its values in the set A.

As pointed out Zadeh [22, 23], the semantic content of the proposition

X is A

can be represented by
πX = µA,

where πX is the possibility distribution restricting the possible value of X and µA is
the membership function of the set A.

Because the majority of practical applications work with trapezoidal or triangular
distributions and these representations are still a subject of various recent papers ([21],
for instance) we will work with membership functions represented by trapezoidal fuzzy
numbers. Such a number N = (a, b, α, β) is defined as

µN (x) =





0 for x < a− α
x− a + α

α for x ∈ [a− α, a]
1 for x ∈ [a, b]
b + β − x

β
for x ∈ [b, b + β]

0 for x > b + β

In order to represent a rule, the notion of fuzzy implication is used. We recall an
axiomatic approach (formulated by Fodor in [7]) for the definition of fuzzy implication.

Definition 2.1. An implication is a function I : [0, 1]2 → [0, 1] satisfying the follow-
ing conditions:

I1: If x ≤ z then I(x, y) ≥ I(z, y) for all x, y, z ∈ [0, 1]

I2: If y ≤ z then I(x, y) ≤ I(x, z) for all x, y, z ∈ [0, 1]

I3: I(0, y) = 1 (falsity implies anything) for all y ∈ [0, 1]

I4: I(x, 1) = 1 (anything implies tautology) for all x ∈ [0, 1]

I5: I(1, 0) = 0 (Booleanity)

Another basic notion very important in Generalized Modus Ponens reasoning is
given by the next definition.

Definition 2.2. A function T : [0, 1]2 → [0, 1] is a t-norm iff it is commutative,
associative, non-decreasing and T (x, 1) = x ∀x ∈ [0, 1].

Let X and Y be two variables whose domains are U and V , respectively. A causal
link from X to Y is represented as a conditional possibility distribution [24, 25] πY/X

which restricts the possible values of Y for a given value of X. For the rule

if X is A then Y is B

we have
∀ u ∈ U, ∀ v ∈ V, πY/X(v, u) = µA(u) → µB(v)

where → is an implication operator and µA and µB are the possibility distributions
of the propositions ”X is A” and ”Y is B”, respectively.
If µA′ is the possibility distribution of the proposition

X is A′



APPROXIMATE REASONING USING YAGER IMPLICATION 15

then from the rule
if X is A then Y is B

and the fact
X is A′

Generalized Modus Ponens rule computes the possibility distribution µB′ of the con-
clusion

Y is B′

as
µB′ (v) = sup

u∈U
T

(
µA′ (u) , πY/X (v, u)

)
,

where T is a t-norm.

3. Main results

In some of our papers [10, 11, 12, 13] we analyzed the Generalized Modus Ponens
reasoning with t-norm

t (x, y) = max ((1 + λ) (x + y − 1)− λxy, 0) , λ ≥ −1

and various implication operators: Reichenbach, Willmott, Rescher-Gaines, Kleene-
Dienes, Brouwer-Gödel, Goguen, Lukasiewicz, Fodor. In this paper we will continue
the researches above mentioned using the same t-norm and Yager implication:

IY (x, y) =
{

1 if x = 0
y if x > 0

Theorem 3.1. From the rule ”if X is A then Y is B” and the fact ”X is A′” the
Generalized Modus Ponens rule with Yager implication gives the following results:

1. B′ = B if A′ ⊂ A or A′ = A

2. B′ ⊇ B if A′ ⊃ A

3. if A and A′ have a partial overlapping then

3.1. B′ = V if core(A′) * support(A)

3.2. B′ ⊇ B if core(A′) ⊆ support(A)

Proof. 1.a. The premise contains the observation, i. e. µA′(u) ≤ µA(u) ∀u ∈ U

µB′(v) = supu∈Umax((1 + λ)(µA′(u) + IY (µA(u), µB(v))− 1)

−λµA′(u)IY (µA(u), µB(v)), 0)

• value on the set U1 = {u ∈ U/µA(u) = 0}
µB′(v) = supu∈U1max(µA′(u), 0) = 0

• value on the set U2 = {u ∈ U/µA(u) > 0}
µB′(v) = supu∈U2max((1 + λ)(µA′(u) + µB(v)− 1)− λµA′(u)µB(v), 0)

= supu∈U2max(µA′(u)(1 + λ− λµB(v))− (1 + λ)(1− µB(v)), 0)

= µB(v)

and this value is obtained for u0 ∈ U2 such that

µA′(u0) = µA(u0) = 1.
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1.b. The premise and the observation coincide, i. e. µA(u) = µA′(u) ∀u ∈ U

In this case one repeat the proof from the previous case taking account the equality

µA(u) = µA′(u) ∀u ∈ U ;

it results

µB′(v) = µB(v).

2. The observation contains the premise, i. e. µA(u) ≤ µA′(u) ∀u ∈ U

• value on the set U1 = {u ∈ U/µA(u) = 0}
µB′(v) = supu∈U1max(µA′(u), 0)

= µB(v) on the set U2 = {u ∈ U1/µA′(u) ≤ µB(v)}
> µB(v) on the set U3 = {u ∈ U1/µA′(u) > µB(v)}

• value on the set U4 = {u ∈ U/µA(u) > 0}
µB′(v) = supu∈U4max((1 + λ)(µA′(u) + µB(v)− 1)− λµA′(u)µB(v), 0)

= supu∈U4max(µA′(u)(1+λ−λµB(v))+(1+λ)(µB(v)−1), 0) = µB(v)

and this value is obtained for µA′(u0) = 1.

Finally, it results µB′(v) ≥ µB(v).

3. There is a partial overlapping between the sets A and A′

• the case core(A′) * support(A)

On the set U1 = {u ∈ U/µA(u) = 0} it results

µB′(v) = supu∈U1µA′(u) = 1.

• the case core(A′) ⊆ support(A)

Let u0 ∈ U such that µA′(u0) = 1. It results

µB′(v) ≥ T (µA′(u0), IY (µA(u0), µB(v))) = IY (µA(u0), µB(v)) = µB(v).

The final result is

µB′(v) = 1 if core(A′) * support(A)

µB′(v) ≥ µB(v) if core(A′) ⊆ support(A).
¤

Theorem 3.2. If the premise and the observation are contradictory (i. e. µA′(u) =
1− µA(u) ∀u ∈ U) then µB′(v) = 1 ∀v ∈ V .

Proof. We have

µB′(v) = supu∈Umax((1 + λ)(1− µA(u) + IY (µA(u), µB(v))− 1)

−λ(1− µA(u))IY (µA(u), µB(v))).

For µA(u) = 0 it results

µB′(v) = 1
and for µA(u) > 0 we obtain

µB′(v) = supu∈Umax(µB(v)− µA(u)(1 + λ− λµB(v)), 0) ∈ [0, µB(v)). ¤
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4. Comments about the results

If the observation is more precise than the premise of the rule then it gives more
information than the premise. However, it does not seem reasonable to think that
the Generalized Modus Ponens allows to obtain a conclusion more precise than that
of the rule. The result of the inference is valid if µB′(v) = µB(v), ∀v ∈ V . The
result from the Theorem 3.1 satisfies this request that represents the subset property
of GMP reasoning.

When the observation and the premise of the rule coincide the convenient behavior
of the fuzzy deduction is to obtain an identical conclusion. Our result satisfies this
request that is the basic property of GMP inference.

The other results from Theorem 3.1 show that the GMP inference with Yager im-
plication and t-norm t (x, y) = max ((1 + λ) (x + y − 1)− λxy, 0) , λ ≥ −1 satisfies
the superset property.

The result obtained in the case when the observation contains the premise is very
general and it does not offer enough information about the conclusion inferred. The
result of inference depends on compatibility between the observation and the premise.

To express this compatibility, the following quantities [18, 4] are frequently used:

(a) D.I = sup{u∈U/µA(u)=0}µA′(u), named uniform degree of non-determination;
it appears when the support of the premise does not contain the support of the
observation;

(b) I = sup{u∈U/µA′ (u)≥µA(u)}(µA′(u)− µA(u)).

The uncertainty propagated is expressed with the help of D.I and I and it corre-
sponds to value µB′ on the set {v ∈ V/µB(v) = 0}.
Theorem 4.1. If µA′(u) ≥ µA(u) ∀u ∈ U then the uncertainty propagated during the
inference with Yager implication is

µB′(v) = D.I.

Proof. The result is obtained from the expression of µB′(v) for µB(v) = 0; we have

µB′(v) = sup{u∈U,µA(u)>0}max((1 + λ)(µA′(u)− 1), 0) = 0

and
µB′(v) = sup{u∈U,µA(u)=0}max(µA′(u), 0) = sup{u∈U,µA(u)=0}µA′(u) = D.I. ¤

5. Conclusion

The results explained in the previous sections show that the Generalized Modus
Ponens rule works with the parametric t-norm t(x, y) = max((1+λ)(x+y−1)−λxy, 0),
λ ≥ −1 and the Yager implication. The results given by theorems 3.1 and 3.2 prove
that this type of reasoning satisfies some rational properties (see [8], pp. 54-55) of
GMP inference.
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