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A Particle Cellular Automata Model for Fluid Simulations

Costin-Radu Boldea

Abstract. A new cellular-automaton model for fluid dynamics is introduced in this paper,
that focus on discrete models based on point particles moving on a lattice in order to mimic a
fully molecular dynamics. The CA model uses an easily implementable, deterministic pair of
interaction rules. Therefore, we combine the advantage of the low computational cost of CA
and its ability to mimic the realistic fluid dynamics to develop a new animating framework
for computer graphics applications.
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1. Introduction

A majority of fluid animation methods in computer graphics use 2D/3D mesh
based approaches that are mathematically motivated by the Eulerian methods of
Finite Element (FE) and Finite Difference (FD), in conjunction with Navier-Stokes
equations of fluids [5]. These works are based on a top down viewpoint of the nature:
the fluid is considered as a continuous system subjected to Newton’s and conservation
Laws as well as state equations connecting the macroscopic variables of pressure P,
density ρ and temperature T .

In the past decades, a new paradigm of simulation imposed the use Cellular Au-
tomata: ultra-discrete models at the place of the complex equations ([2],[6]). A
cellular automaton is a large array of cells, like the squares of a checkerboard or the
hexagons of a honeycomb, which can be projected onto a computer screen. On this
lattice, dots hop from cell to cell, colliding and recoiling according to a few simple
rules programmed into the computer. These are discrete models based on point par-
ticles that move on a lattice, according to suitable and simple rules in order to mimic
a fully molecular dynamics. Particles can only move along the edges of the lattice and
their interactions are based on simple collision rules. There is an exclusion principle
that limits to one the number of particles that enter a given site (lattice node) in
a given direction of motion. Such framework needs low computational resources for
both the memory allocation and the computation itself.

In this paper we focus on fluid modeling through Lattice Gas Cellular Automata
(LGCA) for computer graphics applications. Specifically we take a special LCGA,
introduced by Frisch, Hasslacher and Pomeau, known as FHP model, and show its
capabilities for computer graphics applications. By Chapman-Enskog expansion, a
known multiscale technique in this area, it can be demonstrated that the Navier-
Stokes model can be reproduced by FHP technique. However, there is no need to
solve Partial Differential Equations (PDEs) to obtain a high level of description.
Therefore, we combine the advantage of the low computational cost of LGCA and its
ability to mimic the realistic fluid dynamics to develop a new animating framework
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for computer graphics applications. Up to our knowledge, there are no references
using FHP for fluid animation in Computer Graphics. In this work, we discuss the
theoretical elements of our proposal and present some experimental results.

The paper is organized as follows. Section 2 offer a review of CFD for fluid anima-
tion. Section 3 describes the FHP model its multiscale analysis. The experimental
results are presented on section 4. Conclusions are given on Section 5.

2. Navier-Stokes for Fluid Animation

The majority fluid models in computer graphics follow the Eulerian formulation of
fluid mechanics; that is, the fluid is considered as a continuous system subjected to
Newton’s and conservation Laws as well as state equations connecting the macroscopic
variables that define the thermodynamic state of the fluid: pressure P, density ρ and
temperature T .

So, the mass conservation, also called continuity equation, is given by [5]:

∂ρ

∂t
+∇ · (ρ~u) = 0 (1)

The linear momentum conservation equation, also called Navier-Stokes, can be
obtained by applying the third Newton’s Law to a volume element dV of fluid. It can
be written as [5].:

ρ

(
∂~u

∂t
+~u·∇~u

)
= −∇P + F + µ

(
∇2~u +

1
3
∇ (∇·~u)

)
(2)

where F is an external force field and µ is the viscosity of the fluid. Besides, the
equation ∇·~u = 0 must be added to model incompressible fluids. Thus, if we com-
bine this equations with expression (2) we obtain the Navier-Stokes equations for
incompressible fluids (water, for example):

ρ

(
∂~u

∂t
+ ~u·∇~u

)
= −∇P + F + µ∇2~u, (3)

∇·~u = 0. (4)
Also, we need an additional equation for the pressure field. This is a state equation

which ties together all of the conservation equations for continuum fluid dynamics and
must be chosen to model the appropriate fluid (i.e. compressible or incompressible).
In the case of liquids, the pressure P is temperature insensitive and can be approx-
imated by P = P (ρ). Muller proposed an expression that have been used for fluid
animation also [8]:

P = c2ρ (5)
where c is the speed of sound in this fluid.

Equations (3)-(5) need initial conditions (ρ (t = 0, x, y, z) , ~u (t = 0, x, y, z)). Be-
sides, in practice, fluid domain is a closed subset of the Euclidean space and thus
the behavior of the fluid in the domain boundary - boundary conditions - must be
explicitly given. For a fixed rigid surface S, one usual model is the no-sleep boundary
condition that can be written as:

~u|S = 0. (6)
Also, numerical methods should be used to perform the computational simulation of

the fluid because the fluid equations in general do not have analytical solution. Finite



CA MODEL FOR FLUIDS 37

Element (FE) and Finite Difference (FD) are known approaches in this field. Recently,
the Lagrangian Method of Characteristics and the meshfree methods of Smoothed
Particle Hydrodynamics (SPH) [8] and Moving-Particle Semi-Implicit (MPS) [9] have
been also applied.

If the fluid is temperature sensitive, then an energy conservation law should be
applied. The model comprises equations (3),(4),(6) as well as the following equation
for temperature change and the buoyant force, respectively:

∂T

∂t
= λ∇2T −∇ · (T~u) , (7)

F =− βg (T0 − T ) , (8)

where λ is the diffusion coefficient, T0 is a reference temperature and β is the coefficient
of thermal expansion. The numerical method used in [5] is Finite Difference. This
work can reproduce a hot gas behavior with some realism but has the limitation that
the integration time step is constrained to:

∆t <
h

‖~u‖ , (9)

where h is the mesh resolution. Besides, the restriction of equation (4) is not suitable
for a compressible system like a gas.

For Computer Graphics applications, such approach is explored in [7] for real-time
simulation and animation of phenomena involving convection, reaction-diffusion, and
boiling. An extension of cellular automata known as the coupled map lattice (CML)
is used for simulation. CML represents the state of a dynamic system as continuous
values on a discrete lattice. In [7] the lattice values are stored in a texture, and
pixel-level programming are used to implement simple next-state computations on
lattice nodes and their neighbors. However, Navier-Stokes models are not considered
and CML still uses continuous values for representations. That is also the case of
Lattice Boltzmann models [4]. In this paper we propose the application of an even
more simples model, the FHP one, for fluid simulation. It will be demonstrated how
Navier-Stoke models can be reproduced by this method. FHP is described in the next
section.

3. FHP and Navier-Stokes

The FHP was introduced by Frisch, Hasslacher and Pomeau [3] in 1986 and is a
model of a two-dimensional fluid. It can be seen as an abstraction, at a microscopic
scale, of a fluid. The FHP model describes the motion of particles traveling in a
discrete space and colliding with each other. The space is discretized in a hexagonal
lattice.

The microdynamics of FHP is given in terms of Boolean variables describing the
occupation numbers at each site of the lattice and at each time step (i.e. the presence
or the absence of a fluid particle). The FHP particles move in discrete time steps,
with a velocity of constant modulus, pointing along one of the six directions of the
lattice. The dynamics is such that no more than one particle enters the same site at
the same time with the same velocity. This restriction is the exclusion principle; it
ensures that six Boolean variables at each lattice site are always enough to represent
the microdynamics.
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In the absence of collisions, the particles would move in straight lines, along the
direction specified by their velocity vector. The velocity modulus is such that, in a
time step, each particle travels one lattice spacing and reaches a nearest-neighbor site.

In order to conserve the number of particles and the momentum during each in-
teraction, only a few configurations lead to a non-trivial collision (i.e. a collision in
which the directions of motion have changed). When exactly two particles enter the
same site with opposite velocities, both of them are deflected by 60 degrees so that
the output of the collision is still a zero momentum configuration with two particles.
When exactly three particles collide with an angle of 120 degrees between each other,
they bounce back to where they come from (so that the momentum after the collision
is zero, as it was before the collision). Both two- and three-body collisions are nec-
essary to avoid extra conservation laws. Several variants of the FHP model exist in
the literature [1], including some with rest particles like models FHP-II and FHP-III.
For all other configurations no collision occurs and the particles go through as if they
were transparent to each other.

The full microdynamics of the FHP model can be expressed by evolution equations
for the occupation numbers defined as the number, ni (~r, t), of particle entering site
~r at time t with a velocity pointing along direction ~ci, where i = 1, 2, . . . , 6 labels the
six lattice directions. The numbers ni can be 0 or 1.

We also define the time step as ∆t and the lattice spacing as ∆r. Thus, the six
possible velocities ~vi of the particles are related to their directions of motion by

~vi =
∆r

∆t
~ci. (10)

Without interactions between particles, the evolution equations for the ni would be
given by

ni (~r + ∆r~ci, t + ∆t) = ni (~r, t) (11)
which express that a particle entering site ~r with velocity along ~ci will continue in
a straight line so that, at next time step, it will enter site ~r + ∆r~ci with the same
direction of motion. However, due to collisions, a particle can be removed from its
original direction or another one can be deflected into direction ~ci.

For instance, if only ni and ni+3 are 1 at site ~r, a collision occurs and the particle
traveling with velocity ~vi will then move with either velocity ~vi−1 or ~vi+1, where
i = 1, 2, . . . , 6. The quantity

Di = nini+3 (1− ni+1) (1− ni+2) (1− ni+4) (1− ni+5) . (12)

indicates, when Di = 1 that such a collision will take place. Therefore ni − Di is
the number of particles left in direction ~ci due to a two-particle collision along this
direction.

Figura 1: The two-body collision in the FHP.

Now, when ni = 0, a new particle can appear in direction ~ci, as the result of a
collision between ni+1 and ni+4 or a collision between ni−1 e ni+2. It is convenient to
introduce a random Boolean variable q (~r, t), which decides whether the particles are



CA MODEL FOR FLUIDS 39

deflected to the right (q = 1) or to the left (q = 0), when a two-body collision takes
place. Therefore, the number of particle created in direction ~ci is

qDi−1 + (1− q)Di+1. (13)

Particles can also be deflected into (or removed from) direction ~ci because of a three-
body collision. The quantity which express the occurrence of a three-body collision
with particles ni, ni+2 and ni+4 is

Ti = nini+2ni+4 (1− ni+1) (1− ni+3) (1− ni+5) (14)

As before, the result of a three-body collision is to modify the number of particles in
direction ~ci as

ni − Ti + Ti+3, (15)

Thus, according to our collision rules, the microdynamics of a LGCA is written as

ni (~r + ∆r~ci, t + ∆t) = ni (~r, t) + Ωi (n (~r, t)) (16)

where Ωi is called the collision term.
For the FHP model, Ωi is defined so as to reproduce the collisions, that is

Ωi = −Di + qDi−1 + (1− q)Di+1 − Ti + Ti+3. (17)

Using the full expression for Di and Ti, given by the Equations (12)-(14), we obtain,

Ωi (18)

= −nini+2ni+4 (1− ni+1) (1− ni+3) (1− ni+5)

+ ni+1ni+3ni+5 (1− ni) (1− ni+2) (1− ni+4)

− nini+3 (1− ni+1) (1− ni+2) (1− ni+4) (1− ni+5)

+ (1− q)ni+1ni+4 (1− ni) (1− ni+2) (1− ni+3)

+ (1− q) (1− ni+5)

+ qni+2ni+5 (1− ni) (1− ni+1) (1− ni+3) (1− ni+4) .

These equations are easy to code in a computer and yield a fast and exact implemen-
tation of the model.

4. Experimental Results

In this section we describe some experiments with FHP for bidimensional fluid sim-
ulation. Firstly, we highlight the simplicity of creating new configurations. Figure 2-a
shows an initial configuration with zero density in the corners of the system. It is not
required any extra mathematical machinery to deal with such density discontinuity
because system rules do not undergo modifications. We get an interesting pattern for-
mation presented on Figure 2-b. These patterns evolve to the ”S” formations pictured
on Figure 3.
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Figure 2: (a) Initial configuration. (b) Trasient
pattern formation.

Figure 3: Evolution of the configuration pictured on Figure 2-a.
Besides, we can take advantage of the simplicity of the model for changing bound-

ary. For a LGCA, there is no need to re-build the lattice. It is just a matter of finding
the boundary cells of the lattice and apply the proper collision rules for particles
entering the corresponding sites.

5. Conclusions

In this paper we propose the FHP model for fluid modelling in computer graphics
applications. We discuss some experimental results using the implementation of this
model. Further works are the the discussion about the theoretical elements of this
proposal and the incorporation of external forces for visual effects generation.

References

[1] G. Doolen, Lattice Gas Method for Partial Differential Equations, Addison-Wesley, 1990.
[2] U. Frisch, D. D’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice

gas hudrodynamics in two and three dimension, Complex Systems, pages 649–707, 1987.
[3] U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the navier-stokes equation,

Phys. Rev., page 1505, 1986.
[4] J. Harting, J. Chin, M. Venturoli, and P. V. Coveney, Large-scale lattice boltzmann simulations

of complex fluids: advances through the advent of computational grids, http://www.ica1.uni-
stuttgart.de/ jens/pub/05/05-PhilTransReview.pdf, 2005.

[5] C. Hirsch, Numerical Computation of Internal and External Flows: Fundamentals of Numerical
Discretization, John Wiley and Sons, 1988.

[6] T. Inamuro, T. Ogata, and F. Ogino, Numerical simulation of bubble flows by the lattice
boltzmann method, FUTURE GENERATION COMPUTER SYSTEMS, 20(6):959–964, 2004.

[7] J. Mark, G. Harris, and all, Physically-based visual simulation on graphics hardware, Graphics
Hardware, pages 1–10, 2002.



CA MODEL FOR FLUIDS 41

[8] M. Müller, D. Charypar, and M. Gross, Particle-based fluid simulation for interactive applica-
tions, in Proceedings of ACM SIGGRAPH symposium on Computer animation, 2003.

[9] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. Whitaker, Particle-based simulation of
fluids, in EUROGRAPHICS, vol. 22, 2003.

[10] H. Bonsdorff, A comparison of the ordinary and a varying parameter exponential smoothing, J.
Appl. Prob., 26, 784-792 (1989).

[11] B.L. Bowerman, R.T. O’Connell, Forecasting and Time Series: An Applied Approach, Belmont,
CA, Duxbury Press, 1993.

(Costin Radu Boldea) Department of Computer Sciences, University of Craiova, Al.I.
Cuza Street, No. 13, Craiova RO-200585, Romania, & Fax: 40-251412673
E-mail address: cboldea@central.ucv.ro


