
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 36(2), 2009, Pages 42–46
ISSN: 1223-6934

Combining Linear Feedback Shift Registers

Nicolae Constantinescu

Abstract. In cryptography, LFSRs are often used mainly because they are extremely fast
and easy to implement. LFSRs do not offer a high security, but there are some generators that
use a combination of several LFSRs outputs in order to obtain a more secure keystream[6]. In
this paper is presented such a generator which is based on the complexity of the LFSRs used.
This generator can be used with a cipher system which has a simetric key encryption. The
security of such a cipher will be much higher[8].

2000 Mathematics Subject Classification. Primary 94A55; Secondary 11T71, 68P25.
Key words and phrases. LFSR. Berlekamp Massey Cryptographyc Attack.

1. Introduction

The evaluation problem for a cipher system is finding the output data with the
minimal size from which we can find some information about the algorithm, the key
or the plaintext. On the other hand, cracking the system means finding the output
data with the maximum size from which we cand find the plaintext ([9] and [10]).

Almost all cyptographic systems use pseudorandom numbers. These numbers are
chosen with a pseudorandom number generator which uses a recursive aplication. A
RNG starts with an arbitrary state, using a seed state. The RNG should always
produce the same result if the same state is used. The maximum size of the sequence
before it begins to repeat is given by the size of the state. So, if the state of a RNG
has n bits, its period cannot be longer than 2n results.

The use of pseudorandom numbers is preffered because they are efficient to generate
and, unlike secure numbers, the pseudorandom numbers are independent of each
other. This means that if someone discovers one of the numbers, he cannot break
the other values using the discovered one. For cryptographic RNGs, this is not true
because the values are not independent. Another advantage of using the RNG is the
fact that the starting state may not be secret. The only important thing is that the
RNG’s output must be collision resistant.[4].

Definition 1.1. (Vaduva [7]). A RNG (pseudorandom number generator) is an al-
gorithm which generates a sequance of numbers that approximates the properties of
random numbers. It has the structure: G = (S, µ, f, U, g) where S is a finit lots of
states; µ is a distribution of probability on S named initialy distribution; f : S → S
is a transition function; U is lots of output symbols; g : S → U is an output function.

The use of a suitable RNG cannot be distinguish from the use of a random sequence.
The security of the cryptographic systems which use RNGs is based on this fact. The
simplest example of this are the stream ciphers. They use the addition modulo 2
between the plaintext and the RNG. The result is the ciphertext ([5] and [4]):

ci = mi ⊕ g(ki)

42



COMBINING LINEAR FEEDBACK SHIFT REGISTERS 43

where ci is the ciphertext, ki is the ith key derived from the base key k, g is the
RNG. We can write this using the encyrption function:

f(mi, ki) = mi ⊕ g(ki)
where the encryption scheme is called stream encryption.
If we know the encryption function f(.; .) we can find the message mi from ci:

mi = h(ci, ki)

2. LFSR and Linear Complexity

A LFSR (linear feedback shift register) is a machine with m registers R0, . . . Rm−1

and a XOR gate. Every register holds a single bit which can be or cannot be connected
to the XOR gate.

Definition 2.1. A LFSR has m registers and a feedback function. If a(t) is a new
element then:

a(t) = g(a(t− 1), . . . , a(t− n + 1))⊕ a(t− n)
where ⊕ is the addition modulo 2 and g is the output function of the generator.

A generator based on LFSRs is the Gegge Generator which combines three LFSRs.
The combination is non-liniar:

LFSR2 and LFSR3 give the input of the generator and LFSR1 is the selection
function. If a1, a2, a3 are the outputs of the three LFSRs used then the output of the
Geffe generator is given by [3]:

b = (a1 ∧ a2)⊕ (a1 ∧ a3)
The generator’s period is the least common multiple of the three LFSRs. The Geffe

generator can be extended to 2k + 1 LFSRs, but this will not encrease the security of
the generator.

As we know, the LFSRs do not offer a high security. To increase the lever of
security the LFSR must have a higher linear complexity. The linear complexity of the
sequance S is the size of the smallest LFSR which generates this sequance. If such a
LFSR does not exist then we have an infinite linear complexity. For example, if we
have a sequence {Si} of length n we know that there exists a LFSR with n registers
that generates this sequence, so its linear complexity is at most n. However, we will,
often, have another LFSR with fewer registers which will also generates the same
sequence. To compute the linear complexity we will present the Berlekamp Massey
algorithm.

2.1. Berlekamp Massey algorithm. Mathematical Backround. This algo-
rithm finds the shortest LFSR for a given p-ary sequance. In other words, its result is
the minimal polynomial of a lineary recurrent sequence. For p = 2 we have a binary
sequence. Our motivation for considering the linear complexity of binary sequences
is that if we use some complicated method for generating a binary sequence to use
as a keystream it would be somewhat disconcerting to discover that in fact the se-
quence could be generated by a single LFSR with comparatively few registers. Hence
we should be careful to use sequences with high linear complexity [2]. Next we will
describe the stepts of this algorithm:



44 N. CONSTANTINESCU

(1) s0s1 . . . sn is the given sequence;
(2) we have three arrays b0 . . . bn, c0 . . . cn and t0 . . . tn and b0 = 1, c0 = 1, L = 0,

N = 0, m = −1, p = 2 where m is the largest integer smaller than N such that
L(sm) < L(SN );

(3) compute d = (sN + c1sN−1 + c2sN−2 + . . . + cLsN−L) mod p;
(4) if d = 0 then c is already a polinomyal which annihilates the stream portion from

N − L to N and L(sN+1) = L;
(5) if d 6= 0 then:

(a) t is a copy of c;
(b) cN−m = cN−m ⊕ b0, cN−m+1 = cN−m+1 ⊕ b1. . . cn−1 = cn−1 ⊕ bn−N+m−1

where ⊕ is addition modulo 2.
(c) if L ≤ N

2 then L = N + 1− L m = L and b = t.

2.2. Berlekamp-Massey Implementation. The Berlekamp Massey Algorithm has
a running time O(n2) [2]. The implementation is described below:

Require: s0s1 . . . sn

Ensure: L(s)
1: Start
2: b0 ← 1
3: c0 ← 1
4: N ← 0
5: L ← 0
6: m ← −1
7: p ← 2
8: while N¡n do
9: d ← (sN + c1sN−1 + c2sN−2 + . . . + cLsN−L) mod p

10: end while
11: if d = 1 then
12: t ← c
13: for j = N −m to n− 1 do
14: cj ← cj ⊕ bi

15: i = i + 1
16: end for
17: if L ≤ N

2 then
18: L ← N + 1− L
19: m ← N
20: b ← t
21: end if
22: N = N + 1
23: end if
24: Stop

3. Algorithm

In this work it is proposed a new type of Gollman generators (based on many shift
waterfalling registers, like [15, 16, 17]). The algorithm is based on a LFSR with the
registers Ri. The algorithm takes the output of the registers and applies a boolean
function. All the registers, except the first (R0) which has a constant tact, are modi-
fied by the value of the tact cell of the previous register. These changes are also made



COMBINING LINEAR FEEDBACK SHIFT REGISTERS 45

applying the function Fi.

The parameters used in the algorithm are:
• n is the number of the removed registers;
• deg fi, 0 ≤ i ≤ n− 1 is the degree of the feedback polinom;
• k is the size of the cell;
• p is the maximum number of rotations (p is minimum 2).
• Fi is the tact function defined as:

Fi =
{

1 if MSB[tacti−1] = 0
2

• the last register has the tact given by:

Fi =
{

1 if MSB[tactn−2 ⊕MSB[Rn−1[deg − 1]]] = 0
2

• out0 is the cell of the first register’s output;

yn−1 = Rn−1[Rn−2[outn−1] + Rn−1[deg + 1] >> (k + log2(deg)) mod deg]

and Rn−1[deg − 1] >> (k − log2(deg)) are the first seven bits of the cell deg − 1
of the last register.

The randomize is described below:

• the tact cell for the next register Ri is tacti−1 ∈ {0, . . . , deg−1} for 0 ≤ i ≤ n−1
We will now describe the algorithm which generates k bits:

For rotating the first register R0 we have to replace the output of this register
y0 = R0[out0] with the value from the cell tact0 resulting R0[tact0].

Fi(tact0) ∈ {1, . . . , p}

1: Start
2: for i=0 to n-1 do
3: rotate Ri by Fi(tacti) times
4: yi = Ri[Ri−1[outi] mod deg]
5: compute the next tact Fi(tacti) ∈ {1, . . . , p}
6: end for
7: output y = f(y1 . . . yn)
8: Stop
In line 4 the output yi of the register Ri is taken from the adress:

Ri−1[outi−1] mod deg

The feedback relations of the parametric functions are computed in modulo 2k.
The function f(y1 . . . yn) has the value given by y1 ⊕ . . . yn.
The tact functions are given by the formula:

Fi =
{

1 if LSB[tacti−1] = 0∀i = 1, . . . , n
2



46 N. CONSTANTINESCU

4. Conclusions

The problem of the pseudorandom number generation is real important because
there is a close relashionship between encryption and randomness. As we know, the
security of the encryption algorithms usually depends on the random choice of keys
and bit sequence. Ciphers with perfect secrecy require randomly chosen key strings
that have the same length as the encrypted message [1]. The most popular generators
are the ones based on LFSRs mostly because they are efficient and easy to implement.
The most used method for testing the security is the attack based on the Berlekamp
Massey Algorithm (Maurer [11], Menicocci [10], Meyerm [13], Golic [14]).The future
research is based on the Berlekamp-Massey attack study, which conclude to optimize
the register length and initial values from them related to the attack complexity.

References

[1] Hans Delfs and Helmut Knebl,Introduction to Cryptography. Principles and Applications,
Springer 2007.

[2] JOHN TALBOT, Complexity and Cryptography An Introduction, Cambridge 2006.
[3] P. L Ecuyer, Random Numbers for Simulation, Comm ACM 33, 10(1990), 742-749, 774
[4] J. Viega, Practical Random Number Generation in Software, in Proc. 19th Annual Computer

Security Applications Conference, Dec. 2003,1-4.
[5] Michael Luby, Pseudorandomness and Cryptographic Applications, Princeton Univ Press, 1996.
[6] RICHARD A. MOLLIN, An INTRODUCTION to CRYPTOGRAPHY, CRC 2007.
[7] Ion Vaduva, Modele de simulare cu Calculatorul, Ed. Tehnica, 1977.
[8] K.C. Zeng, C.H. Yang, T.R.N. Rao, An improved linear syndrome algorithm in cryptanalysis

with application, Proceedings Crypto’89, Springer-Verlag Lecture Notes in Computer Science,
435, 1989.

[9] J.L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Information Theory, IT-
15, (1), 122-127.

[10] J.L. Massey, R.A. Rueppel, Linear ciphers and random sequence generators with multiple clocks,
Proceedings Eurocrypt’84, Springer-Verlag Lecture Notes in Computer Science, 209, 74-87,
1984.

[11] U. Maurer, Cascade Chipers:The importance of being first, J. of Cryptology, 6, 1993.
[12] R. Menicocci, A systematic Attack on clocked controlled cascades, Adv. in Cryptology-Eurocrypt,

1994.
[13] W. Meyerm, O. Staffelback, Fast corellation attacks on certain stream ciphers, Journal of Cryp-

tology, 1, 159-176, 1989.
[14] J. Golic, Cryptanalysis of the Alleged A5 Stream Cipher, Adv. in Cryptology-Eurocrypt, 1997.
[15] C. Jansen, D. Boekee, The shortest feedback shift register that can generate a given sequence,

Adv. in Cryptology -Crypto, 90-99, 1990.
[16] B. Arazi, On the synthesis of De Bruijn sequences, Information and Control, 49,(2), 81-90,

1981.
[17] A. Lempel, On a homomorphism of De Bruijn Graph and its application to the design of

Feedback shift registers, IEEE Transactions on Computers, C-19, (12), 1204-1209, 1970.

(Nicolae Constantinescu) Department of Computer Sciences, University of Craiova, Al.I.
Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. & Fax: 40-251412673
E-mail address: nikyc@central.ucv.ro


