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Abstract. Present paper introduces a new evolutionary technique for multimodal real-valued
optimization which uses a clustering method for separating the individuals within a population
into species that are each connected to different optima from the search space. It is applied
for a set of benchmark functions both for uni- and multimodal optimization and it proves to
be very efficient as regards both the accuracy of the obtained results and the costs regarding
the fitness evaluation calls that are spent.
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1. Introduction

Trying to find multiple solutions that lie within a continuous landscape is not a
straightforward task for an evolutionary heuristic. A canonical evolutionary algorithm
(EA) is very fit for finding the global optimum within a landscape that does not ex-
hibit other local peaks. When there is only one optimum within the search space,
the population of candidate solutions converges fast towards that peak (genetic drift).
This fast convergence of the entire population of individuals turns against the algo-
rithm when the landscape of the search space contains multiple hills, as the entire
population once more tends to agglomerate towards one hill that is not necessarily
the best one of them; when this happens, it is said that the search is blocked into a
local optimum.

In order to tackle multimodal landscapes, the genetic drift has to be avoided or at
least to be postponed as long as possible. In other words, the task of the evolutionary
methods that deal with this type of problems is to maintain the diversity within the
population as long as possible but, at the same time, head towards the ”hottest” spots
of the landscape. The main idea that lies behind most multimodal optimization tech-
niques is to divide the population into sets of individuals that resemble one another,
usually by gathering in the same subpopulation the individuals that are closer than
a given radius with respect to a specific metric.

In this paper, a new method for multimodal optimization is introduced that does
not use a radius for separating the subpopulations (or species), but it employs a
clustering method instead. In order to verify the separation provided by the cluster-
ing technique, an additional helping mechanism is used for determining whether the
various species are connected to different hills in the landscape or not.

The paper continues with a brief survey of other evolutionary methods that were
tailored for problems that have multiple solutions which is then followed by the pre-
sentation of the proposed technique. The next section comprises the experimental
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analysis on the application of the proposed technique for the optimization of a set of
benchmark functions and the paper encloses with the concluding ideas.

2. Previous Approaches for Multimodal Optimization

The main goal of an EA that deals with a multimodal optimization problem is to
avoid the premature convergence, i.e. blocking into a local optimum. This task is
achieved by maintaining diversity within the population for a longer period of time
and in this way a better exploration of the search space is performed.

Numerous techniques have been proposed for improving performance when dealing
with multimodal problems. One of the most used evolutionary heuristics for mul-
timodal optimization is represented by niching [5]. The preservation of diversity is
conducted through the separation of the population according to niches; these are
formed by joining individuals that lie closer than a given radius to one another. The
main drawback of this method is represented by the existence of the threshold whose
value very much depends on the problem to be solved. In this respect, Deb and
Goldberg proposed a manner of computing the value for the radius that leads to the
formation of subpopulations [2]; it is regularly embraced in most experimental designs
for such EA methodologies. It uses the radius of the smallest hypersphere containing
feasible space, which is given by (1).
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In (1), D represents the number of dimensions of the problem at hand and xu
i

and xl
i are the upper and the lower bounds of the i-th dimension. Knowing the

number of optima NG and being aware that each niche is enclosed by a D-dimensional
hypersphere of radius r, the niche radius σshare can be estimated as (2).
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Note, however, that the employment of equation (2) for computing the value of the
radius presumes that one must know in advance how many optima there exist within
the fitness landscape.

Other methods like the island or diffusion models [4] that restrict the way individ-
uals interact have been imagined for the same purpose of keeping diversity more and
better within the population. Although they do not have a radius threshold, these do
not focus on the particularities of the landscape, but rather on the restrictions upon
individuals when recombination is applied.

The crowding technique [3] was also developed as a method of maintaining di-
versity: New obtained individuals replace only similar individuals in the population.
However, there are some issues that have arisen around this methodology, as it suits
only a limited set of multimodal problems and the value for the population size pa-
rameter very much depends on the considered problem and the number of attraction
basins that exist.

The method that is currently introduced separates the population into species and
it does not employ a radius parameter for that, instead, more efficiently, it connects
each species to a different optimum by taking advantage of the fitness landscape and
vicinity.
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3. Nearest-Better Algorithm for Multimodal Optimization

Proposed Nearest Better Separation Evolutionary Algorithm (NBSEA) begins with
a random population of candidate solutions in the definition interval of the function to
be optimized. The recently created Nearest-Better Clustering (NBC) algorithm [7] is
applied to this set of points in order to separate them into subsets of solutions within
which all follow the same peak. In order to correct the separation in such a manner
that there are no two or more species that target the same optimum, a mechanism
that verifies whether two points are in the basin of the same peak or not is used: It
checks if any best individual from a species lies within the same attraction basin as
another dominating individual from a different subpopulation. If so, the two species
are unified into a single one. Usual genetic operators are then applied to the entire
population and then the dominating individuals from each species are reinserted into
the population in case they disappeared because of the variation. In order to clarify
each step, the following subsections will present every separate tool and finally the
entire NBSEA is assembled in subsection 3.3.

3.1. Nearest-Better Clustering. The clustering mechanism is based on a ”nearest
neighbor” principle, but also uses topological information in addition to location of
points. For each point, it searches for the closest neighbor that is better in terms of
fitness. The basic idea behind NBC is that the best individuals in different basins
of attraction are more distant from each other as compared to the mean distance
of all individuals to their nearest better neighbors. Every individual connects to its
nearest better neighbor, in terms of (Euclidean) distance. The longest edges – those
higher than φ·mean(lengths of all edges) – are removed and the prototypes for each
cluster are represented by those individuals that do not connect to others. Clusters
are thus formed around these (dominating) individuals, which subsequently represent
the species masters for NBSEA.

The NBC technique is thoroughly described in Algorithm 1. The approach has
only one additional parameter to be tuned, with 2 being a good default value [7].

3.2. Detect Multimodal Mechanism. A mechanism to verify if two points lie
within the same attraction basin or not has been introduced within the Multinational
Algorithm in [8]. It takes a number of interior points (this being the only parameter
of the mechanism) between the two points it is applied for and, if there exists any
interior point with the fitness smaller than the worst of the two initial points, it is
concluded that they follow different peaks, while otherwise they are said to be situated
on the same hill. The method is described in detail in Algorithm 2. In a nutshell, the
algorithm returns true if the two points follow different optima and false if they lie
within the same attraction basins.

3.3. Nearest-Better Separation Evolutionary Algorithm. The steps that are
followed by the currently proposed algorithm are presented in Algorithm 3. After the
initialization of the population, the evolution progress within a repetitive process: the
NBC method (described in Algorithm 1) is applied in order to separate the population
into subpopulations. The selection operator is then applied to the entire population
and it is afterwards followed by the variation operators, recombination and mutation.
If two individuals from the same species recombine, the offspring is considered to
belong to the same group. In other recombination cases and in the situation when an
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Algorithm 1 The Nearest-Better Clustering Algorithm

Require: A population of individuals x.
Ensure: Clusters of individuals: number, grouping, prototypes.

for i = 1 to pop size do
compute distances from x[i] to all individuals

end for
for i = 1 to pop size do

find nearest individual that is fitter than x[i], i.e. x[j];
if found then

edge[i] = j;
else

edge[i] = 0;
end if

end for
m = avgpop size

i=1 (distance(x[i], x[edge[i]]));
for i = 1 to pop size do

if edge[i] 6= 0 and distance(x[i], x[edge[i]]) > φ·m then
edge[i] = 0;

end if
end for
return the prototypes – x[i], where edge[i] = 0 – and membership to clus-
ters – x[i] ∈ cluster[j], where edgen[i] = prototype[j], i = 1, 2, ..., pop size,
j = 1, 2, ..., noOfClusters;

Algorithm 2 The Detect Multimodal mechanism for two individuals x and y

Require: Two individuals x and y.
Ensure: TRUE if x and y track different optima and FALSE otherwise.

i = 1;
found = FALSE;
while i < number of gradations and not found do

for j = 1 to number of dimensions do
interiorj = xj + (yj − xj) · gradationi;

end for
if f(interior) < min(f(x), f(y)) then

found = TRUE;
end if

end while
return found;

individual is obtained via mutation, the offspring are considered free, meaning that
they are not attached to any subpopulation.

As the selection and variation operators may omit and/or alter the master indi-
viduals of some species, a process of integration of the seeds that were previously
detected occurs at this stage. Before inserting an individual, it is checked whether it
already exists in the population, as it is introduced only in the case when there is no
other copy of it. When such a seed is reinserted, it replaces the worst individual in the
species of the current seed or, in case its subpopulation was eliminated, it substitutes
the worst member of the population that is not a master individual.
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Algorithm 3 Structure of the Nearest Better Algorithm

Require: A search/optimization problem
Ensure: The set of seeds
1: begin
2: Initialize population;
3: t = 0;
4: while stop condition is not met do
5: Identify species seeds using Algorithm 1;
6: if t > 0 then
7: Reconsider old seeds;
8: end if
9: Apply mating selection;

10: Apply recombination;
11: Apply mutation;
12: Integrate the seeds into resulting population;
13: Assimilate the free individuals to the species;
14: t = t + 1;
15: end while
16: return the set of seeds
17: end

The free individuals are then integrated to the existing species; the seeds are taken
ascending accordingly to the (Euclidean) distance to each free individual and it is
tried, using the detect−multimodal mechanism, to see if they follow the same peak
or not. If the affirmative case, a free individuals is assigned to the seed’s species that
targets the same optimum as they do. When a free individual does not follow the
same peak as any of the existing seeds, it is set as a new master individual and it
creates its new own species.

When the first generation passes, immediately after seeds determination, the mas-
ters from the previous generation are checked against the newly found ones, once
again in ascendent order according to the distance, as the ones that are closer to each
other are more likely to follow the same optimum. If there are seeds from the previous
generation that follow different peaks (detect−multimodal = true), they are added
to the current population and further set as seeds.

The algorithm may stop after a fixed number of fitness evaluations is consumed
(this is the case used in the experiments of the current paper), or after a fixed number
of generations, or when the peaks are found with a desired accuracy.

4. Experimental Results

Experiments are driven on a set of functions that includes one with only one global
optimum in order to test if the method can still cope with such problems, three
trap functions (two uni-dimensional and one bi-dimensional) and a bi-dimensional
one that exhibits 10 optima disposed on an irregular landscape. The aim of the tests
is to observe how the proposed approach behaves under a very low budget of fitness
evaluations and how the results improve when the investment rises. The results regard
the peaks accuracies, the number of found peaks and the number of basins that are
detected within the given landscape.
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Table 1. Considered Benchmark Functions

Function Optima
F1(x, y) = x2 + y2,−5.12 ≤ x, y ≤ 5.12 1

F2(x) =
{

160
15 (15− x) for 0 ≤ x < 15
200
5 (x− 15) for 15 ≤ x ≤ 20 2

F3(x) =





160
10 x for 0 ≤ x < 10

160
5 (15− x) for 10 ≤ x < 15

200
5 (x− 15) for 15 ≤ x ≤ 20

2

F4(x) =





80(2.5− x) for 0 ≤ x < 2.5
64(x− 2.5) for 2.5 ≤ x < 5
64(7.5− x) for 5 ≤ x < 7.5
28(x− 7.5) for 7.5 ≤ x < 12

28(17.5− x) for 12.5 ≤ x < 17.5
32(x− 17.5) for 17.5 ≤ x < 22.5
32(27.5− x) for 22.5 ≤ x < 27.5
80(x− 27.5) for 27.5 ≤ x ≤ 30

5

F5(x) = sin6(5πx), 0 ≤ x ≤ 1 5
F6(x, y) = (0.3x)3 − (y2 − 4.5y2)xy − 4.7cos(3x− y2(2 + x))sin(2.5Πx)) 10

−0.9 ≤ x ≤ 1.2,−1.2 ≤ y ≤ 1.2

4.1. Test Functions. Table 1 presents the list of the functions that are considered
for the experiments. Sphere function (F1) is taken for two variables and it has only
one optimum. Two-Peak Trap Function (F2) has one global optimum and a local one,
the latter situated just at the border of the interval; Central Two-Peak Trap Function
(F3) also has two optima, one global and one local, but the latter is located toward
the middle of the interval. Five-Uneven-Peak Trap Function (F4) has two global
optima near the interval border and they are separated by three local ones. Deb’s
Function (F5) has five global optima to be found and, finally, Waves function (F6)
is the most complex of the entire list as it is asymmetric and some peaks are difficult
to find as they lie on the border or on flat hills. The functions are also considered for
testing in papers like [6] or [8].

4.2. Task. Apply NBSEA on the functions in Table 1 and observe how it behaves
for a very limited number of fitness evaluations (103) up to 104, under 30 different
parameter settings from which the most prolific is outlined.

4.3. Experimental Setup. There are three measures considered for each function
in the test suite and each is computed as the average value over 30 repeated runs :
(1) Peak ratio gives the ratio between the number of found peaks and the actual

number of existing peaks. A peak is considered to be found if there is at least
one candidate solution that gets closer than ε = 10−1 to the actual peak.

(2) Peak accuracy refers to the summed difference in module between the fitness
values of the desired optima and of the individuals that are closest to them.

(3) Found basins refers to the number of attraction basins of the desired optima that
have at least one individual inside.

For each involved parameter, 30 Latin Hypercube Samples (LHS) [1] are considered
for generating equally distant values within reasonable intervals: Population size is
taken between 10 and 200, mutation and recombination probabilities in [0, 1], the
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number of interior points between 1 and 10, while the mutation strength is dependant
on the domains of definition, i.e. between [0, 1] for F5 and F6 and [0, 4] for the rest.

Concerning the used operators, tournament selection, intermediate recombination
and mutation with normal perturbation are employed. The stop condition is consid-
ered for 103 fitness evaluation calls, 2 · 103, 5 · 103, 7 · 103 and 104, in turn.

4.4. Results and Visualization. Obtained results for the first three functions in
the best parameter configuration are illustrated in Figure 1. The detection of the
correct number of basins is perfect for all three cases, even for the lowest number of
fitness evaluations. For F1, the peak is detected with the desired accuracy even for
the lowest budget, while for F2 and F3 they improve together with the increase in
the number of fitness evaluations. Third column measures how close the candidate
solutions get in accuracy to the desired peaks: When dealing with a unimodal prob-
lem (F1), NBSEA behaves very well as even for 103 evaluation calls the optimum is
detected with an accuracy of 1e-04.

Figure 2 reports the results of the NBSEA applied for the other three functions.
For F4 and F5 the number of detected basins is perfect for all considered budgets.
The figure from the left center demonstrates that for F5 all 5 peaks are detected with
the desired accuracy even for 103 fitness evaluations. F4 has sharper peaks than the
sinusoidal F5, therefore it is harder to get closer to them, as it can be seen from the
top left graphic of the figure.

Waves function F6 is no doubt the most complex case of the considered test suite.
Nevertheless, the number of found basins gets close to the actual solution even for
the cheapest considered stop criterion that finds in average a bit above 9 solutions.
Some optima have very narrow attractions basins, while others are large, so it would be
impossible for a typical evolutionary technique for multimodal optimization that relies
on fixed radius size to distinguish the subpopulation correctly, i.e. to have each one
connected to a different optimum. However, as the last line of Figure 2 demonstrates,
NBSEA behaves very well even for a small number of evaluation calls and without a
radius threshold that is additionally hard to be tuned. As a corresponding parameter,
NBSEA has the number of interior points that is a positive integer number taken
between 1 and 10 in the undertaken experiments; in the best parameter configurations
of F6, it was chosen 1 for 103 evaluations, 3 for 104, while for the other stop criteria it
was taken 2. As it can be observed, when there are more fitness evaluation calls, the
number of interior points can be taken higher; the highest it is, the more accurate the
separation between subpopulation is, but at the same time more fitness evaluation
calls are consumed as more interior points are evaluated.

Naturally, if more than 104 evaluation calls are considered, the quality of results
increases. However, NBSEA is meant to be an economical technique that is suitable
for real-world optimization problems. In average, the runtime of NBSEA takes 0.04
seconds for 103 fitness evaluation calls on a computer with an Intel Core 2 Extreme,
2 x 2.80 GHz processor and a RAM memory of 4 GB.

5. Conclusions and Future Directions

A new evolutionary technique for multimodal optimization, Nearest Better Algo-
rithm, that employs a topological clustering method for separating the population
into species is herein proposed.

The NBSEA gives very promising results, especially for very economic investments
regarding the number of fitness evaluation calls. Indeed, it can be observed that when
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Figure 1. Average results over 30 repeats of the best LHS con-
figuration, obtained by NBSEA for F1, F2 and F3. First column
contains the peak ratio (best value is 1), the second illustrates the
number of found basins (best values are 1 for F1 and 2 for F2 and
F3), while the third reports the obtained peak accuracy (best value
is 0). Each graph outlines the results obtained from 103 up to 104

fitness evaluation calls.
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Figure 2. Average results over 30 repeats of the best LHS configu-
ration, obtained by NBSEA for F4, F5 and F6. For the number of
found basins, i.e. second column, best values are 5, 5 and 10, respec-
tively.
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more evaluations are used, the results improve accordingly, especially as regards the
peak ratio and the peak accuracy. It has to be noticed that the algorithm gives very
accurate results as concerns the number of attraction basins (and optima, accordingly)
that a function exhibits, even at very low budgets of fitness evaluations.

It would be however interesting to further investigate next how the φ parameter
within NBC influences the results and also extend the list of test functions by adding
even more complex cases, i.e. functions that possess a large number of spiny, local
optima and problems with a higher number of dimensions, and to compare the results
with other state-of-the-art evolutionary techniques, all under the same constraints.
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