
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 36(1), 2009, Pages 63–68
ISSN: 1223-6934

Partial simulation of (CQ) algorithm

Cristina Pop̂ırlan

Abstract. This paper presents a partial simulation of (CQ) algorithm of Nakajo and Taka-
hashi. The algorithm implementation permits us to analyze the sets C, Q and C

⋂
Q. This

way we can see the importance of the weight factor in determination of the next iteration. The
application represents one step of the (CQ) algorithm, but if we can calculate the projection
of the initial point on the set C

⋂
Q, then we can generate the entire algorithm.

2000 Mathematics Subject Classification. Primary 65F10; Secondary 65Y10.

Key words and phrases. (CQ) algorithm, iterative methods, Mann iteration.

1. Introduction

The (CQ) algorithm was introduced in 2003 by Nakajo and Takahashi and it is
presented in the following formulas.

x0 = x ∈ Q,
yn = (1− tn)xn + tnTxn,
Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x0,

where PMx is the projection of x on the set M.
The main results of [1] is:

Theorem 1.1. [1]
Let C ⊂ H be a closed convex set from a Hilbert space H and T : C → C a

nonexpansiv operator with Fix(T) 6= ∅. Suppose that the weight sentence {tn}n≥0

satisfies the condition tn ∈ (0, 1].
Then the sequence {xn}n≥0 generated by the (CQ) algorithm converges strongly to

PFix(T)x0.

The (CQ) algorithm is also strong convergent if the operator is k-demicontractiv
[2] and the following condition is satisfied: the operator I-T is demiclosed at zero.

The algorithm was intensely studied in order to analyze his convergence and for
this reason a lot of generalizations of the (CQ) algorithm were given. For example, in
a recent paper, Takahashi, Takevchi and Kubota [3] introduced a new hybrid method
for a family of nonexpansive operators. When the family is reducing to a single
operator, with a given initial iteration, x0 ∈ C, and taken C1 = C and u1 = PC1x0,
then the algorithm is defined by the following formulas:

yn = tnun + (1− tn)Tun,
Cn+1 = {z ∈ Cn : ||yn − z|| ≤ ||un − z||},
un+1 = PCn+1x0,

where the weight sentence {tn}n≥0 satisfies the condition 0 ≤ tn ≤ t < 1.

63

64 C. POPÎRLAN

Remark 1.1. The concrete application of the (CQ) algorithm implies the evaluation
of the sets Cn and Qn and then the explicit calculation of the projection of x0 on the
intersection Cn

⋂
Qn, or to solve a conditioned optimization problem, at ever step of

the iteration. The papers which contains data about the (CQ) algorithm implementa-
tion are limited.

It can be shown that the sets Cn and Qn are closed and convex, so the set Cn

⋂
Qn

is also closed and convex, and we can say that the sequence xn+1 is well defined.
We also observe that Fix(T) ⊂ Cn

⋂
Qn and so the construction of the sets Cn

and Qn is natural; if z ∈ Fix(T), then, if T is demicontractiv, then the relation that
defines Cn is satisfied, and if z ∈ Fix(T) and xn is the projection of x0 on Qn, then
the relation that defines Qn is also satisfied. So it is natural to take xn+1 as close to
the intersection and so we take

xn+1 = PCn
⋂

Qn
x0.

2. The (CQ) algorithm - application

The main idea of the algorithm is to project each Mann iteration on an intersection
of sets that are built at every step Cn and Qn.

The application simulate a step from the algorithm and represents the sets Cn

and Qn. For different input parameters, the weight factor t and the network that is
analyzed, we study how the network is organized between the sets C, Q and C

⋂
Q.

The program analyses the repartition of the points from a square which has the 2a
dimensions, the square has the center in axes origin, where a > 2 is given by the user
of the application. In the square is built a n2 points network, where n is also given
by the user. For every point from the network it is study if the points belongs to one,
two or none of the sets C and Q. This sets are different colored for each case in part:
(1) blue for the points in C that are not in Q;
(2) green for the points that are not in C but are in Q;
(3) red for the points in C and Q;
(4) yellow for the points that are not in C or in Q.

The application starts by establishing the dimension of the square where the net-
work is defined. After that, the user gives the dimension of the network, more exactly
he decide how big the network is, n2 points in the network.

Next is given some very important parameters an that are the weight factor and the
initial points (the starting points and the current iteration). The application allows
the user to change the weight factor and to analyze the distribution of the points from
the network for the same initial values.

We consider the following four inequations (that simulate a square of dimension
1 with the center in axes origin) on which we will make the projections from the
algorithm:

d1(x1, x2) = x1 + 1 >= 0
d2(x1, x2) = −x1 + 1 >= 0
d3(x1, x2) = x2 + 1 >= 0
d4(x1, x2) = −x2 + 1 >= 0

If we consider x = (x1, x2) ∈ R2, we check for each one of the inequations if
di(x) < 0, i = 1, 4, and we take k so that

dk(x) = max
i=1,4,di(x)<0

|di(x)|.

PARTIAL SIMULATION OF (CQ) ALGORITHM 65

Figure 1. Simulation of (CQ) algorithm

We consider the operator T from the (CQ) algorithm to be the projection of x on
dk.
int k=calcDrProiectie();
Dreapta D=DH1.getDreapta(k);
Punct P=DH1.getX1();
double x=P.x-D.geta()*((D.geta()*P.x+D.getb()*P.y+D.getc())/

(Math.pow(D.geta(), 2)+Math.pow(D.getb(),2)))*DH1.gett();
double y=P.y-D.getb()*((D.geta()*P.x+D.getb()*P.y+D.getc())/

(Math.pow(D.geta(), 2)+Math.pow(D.getb(),2)))*DH1.gett();
DH1.setY(x, y);

The application is built around the following idea: there are given two points one
x0 that represents the initial point and one that represents the current iteration. It
is obvious that we do not exactly execute the (CQ) iteration, but we make a step
from the iteration with a point given by the user. If at the next step we take, by
approximation, the projection of the current iteration on to the set C

⋂
Q then we

can simulate the (CQ) algorithm. So if we consider the possibility of recalculating
and reiterating but using the same x0 and taking another x then we can simulate the
(CQ) algorithm. The application can be improved by considering the next x in the
position of the projection of x0 on the sets intersection.

x0 and x are given by the user, and y is calculated by the following formula y = (1−
t)x+ tT (x), where T is the projection constructed before. z is the point that browses
the entire network. The application browses the points network and represents those
three sets. In consequence, we can see the visual representation of the sets C, Q and
C

⋂
Q.

try {

66 C. POPÎRLAN

int n=DH1.getn();
int k=-1;
for (int i=0;i<=n;i++)
for (int j=0;j<=n;j++)
{

k++;
TestZ(k);
DH1.setDrawPoz(k);
jPD.repaint();
jTP.setText(jTP.getText()+"Z"+k+":

z1="+DH1.getPunctZ(k).x+" ,
z2="+DH1.getPunctZ(k).y+"\n");

Thread.sleep(sleepValue);
}

} catch (InterruptedException ex) {
Logger.getLogger(Executor.class.getName()).

log(Level.SEVERE, null, ex);
}

Running the application we observe four categories of points:
(1) points that belong only to C;
(2) points that belong only to Q;
(3) points that belong to C and Q;
(4) points that does not belong to C or to Q.

Next we analyze the organization of this points in sets considering different initial
point and current iteration:
(1) if the two given points (x0 and the current iteration) are in the same dial, but

they are not in the square, then the points from the network are colored only in
red and blue no matter what the value of the weight factor is;

(2) if the two given points (x0 and the current iteration) are in the same dial, but
they are in the square, then the points from the network are colored in red, blue
and no matter what the value of the weight factor is;

(3) if the two given points (x0 and the current iteration) are in the same dial, but
the firs is inside the square and the second is outside the square then the points
from the network are colored in yellow and blue no matter what the value of
the weight factor is, with the observation that for certain values of the points
it appears and a number of points that turn red but their number is relatively
small compared to the total number points in the network;

(4) if the two given points (x0 and the current iteration) are in the same dial, but
the firs is outside the square and the second is inside the square then the points
from the network are colored in red, green and blue no matter what the value of
the weight factor is. The exception is represented by the points from the third
dial (the points x = (x1, x2), with x1 < 0 and x2 < 0) for which the network is
colored only in red and blue, with the observation that for certain values of the
points it appears and a number of points that turn green but their number is
relatively small compared to the total number points in the network;

(5) for all the other cases the network is colored in all four colors. The distribution
of those four colors depends on the weight factor.

PARTIAL SIMULATION OF (CQ) ALGORITHM 67

Figure 2. The influence of the weight factor over the distribution network

We can thus draw the conclusion that control factor largely influences the distri-
bution of network points in the two sets C and Q, and also the entries of user position
puts her mark on how these points in the network are colored.

Below is how they influence factor control of network distribution points.

Example 2.1. We consider the following situation:
• a = 4;
• n big enough;
• x0 = (1.608, 0.565);
• x = (−0.355,−1.469).
The analysis of this example is made in Figure 2.

Example 2.2. We consider the following situation:
• a = 4;
• n big enough;
• x0 = (0.397,−1.356);
• x = (−1.482, 0.339).
The analysis of this example is made in Figure 3.

Remark 2.1. Note that for t = 0.1 the number of color points red is much larger
than the color points green, and as the T increases this difference begins to decrease,
so that for t = 2 is the situation reverse, the number of points colored in red is much
smaller than the points colored in green.

From the examples presented it can be concluded that the weight factor largely
influences distribution points in the network.

We noticed that there are some cases where blue predominates points (this means
that the points of the network is in the crowd C and not in crowds Q), if the user
selected points are like (negative, positive).

An interesting observation was that whatever the factor of control and whatever
the initial values of user data have colored dots colored in blue and red dots, so in
any situation there are only points in C and there are points is in both sets C and Q.

3. Conclusions and future work

This work included the following aspects:

68 C. POPÎRLAN

Figure 3. The influence of t over the distribution network

• presentation of the mathematical (CQ) algorithm;
• the description of the application that simulates the (CQ) algorithm;
• an analysis of the influence of the weight factor on the network distribution.
As a future work we propose to extend the simulation in order to do a real imple-

mentation of the (CQ) algorithm.

References

[1] K. Nakajo, W. Takahashi :Strong convergence theorems for nonexpansive mappings and non-
expansive semigroups, Journal of Mathematical Analysis and Applications, 279:372379, 2003

[2] G. Marino, H.K. Xu :Weak and strong convergence theorems for strictly pseudocontraction in
Hilbert spaces, Journal of Mathematical Analysis and Applications, 329:336349, 2007

[3] W. Takahashi, Y. Takeuchi, R. Kubota: Strong convergence theorems by hybrid methods for
families of nonexpansive mappings in Hilbert spaces, Journal of Mathematical Analysis and
Applications, 341:276286, 2008

(Cristina Pop̂ırlan) University of Craiova, Alexandru Ioan Cuza 13, 200585 Craiova,
Romania
E-mail address: cristina popirlan@yahoo.com

