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Schur convexity of a class of symmetric functions

Ionel Rovenţa

Abstract. In this paper we derive some general conditions in order to prove the Schur-
convexity of a class of symmetric functions. The log-convexity conditions which appear in this
paper will contradicts one of the results of K. Guan from [2]. Also, we prove that a special class
of rational maps are Schur-convex functions in Rn

+. As an application, Ky-Fan’s inequality is
generalized.
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1. Introduction

The Schur-convex functions were introduced by I. Schur in 1923 and have important
applications in analytic inequalities, elementary quantum mechanics and quantum
information theory. See [4].

The aim of our paper is to derive some general conditions under which the sym-
metric functions play the property of Schur-convexity. In order to state our results
we need some preparation.

Consider two vectors x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn.

Definition 1.1. We say that x is majorized by y, denote it by x ≺ y, if the rearrange-
ment of the components of x and y such that x[1] ≥ x[2] ≥ ... ≥ x[n], y[1] ≥ y[2] ≥ ... ≥
y[n] satisfy

∑k
i=1 x[i] ≤

∑k
i=1 y[i], (1 ≤ k ≤ n− 1) and

∑n
i=1 x[i] =

∑n
i=1 y[i].

Definition 1.2. The function f : A → R, where A ⊂ Rn, is called Schur-convex if
x ≺ y implies f(x) ≤ f(y).

Theorem 1.1. (see [12]) Let f(x) = f(x1, ..., xn) be a symmetric function with con-
tinuous partial derivative on In = I × I × ...× I, where I is an open interval. Then
f : In → R is Schur convex if and only if

(xi − xj)
(

∂f

∂xi
− ∂f

∂xj

)
≥ 0, (1)

on In. It is strictly convex if inequality 1 is strict for xi 6= xj , 1 ≤ i, j ≤ n.

An important source of Schur-convex functions is given in [6] by Merkle in the
following way:

Theorem 1.2. Let f be a differentiable function defined on an interval I. Define the
function F of two variables by

F (x, y) =
f(x)− f(y)

x− y
(x 6= y), F (x, x) = f ′(x),
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where (x, y) ∈ I2. If x ↪→ f ′′′(x) is continuous then following statements are equiva-
lent:

1) f ′ is convex on I,
2) F (x, y) ≤ f ′(x)+f ′(y)

2 , for all x, y ∈ I,
3) f ′(x+y

2 ) ≤ F (x, y), for all x, y ∈ I,
4) F is Schur-convex on I2.

Remark 1.1. If we consider f(x) = xn+1 in Theorem 1.2 we obtain that the elemen-
tary symmetric function

∑n
i=0 xiyn−i is Schur-convex. See also [7].

2. Proof of the main results

In this paper we investigate Schur-convexity of the following symmetric functions:

Fk
n =

∑

1≤i1<...<ik≤n

k∏

j=1

f(xij
), k = 1, 2, ..., n,

where f is a positive function which satisfies certain conditions.
For the case k = 1, if f is a convex function, Schur convexity is obvious. (See

Hardy-Littlewood-Polya inequality [11]).
In the following we say that a function f : Ω → R+ is log-convex if the function

log f is convex.

Remark 2.1. If f is a log-convex function then f is also a convex function. See [11].
Ostrowski in [7], seems to be the first who noticed the importance of log-convexity in
deriving the property of Schur convexity.

Theorem 2.1. Let Ω ⊂ R a convex set with nonempty interior. If f : Ω → R+ is a
differentiable function in the interior of Ω, continuous on Ω, positive and log-convex,
then F2

n(x) =
∑

1≤i<j≤n f(xi)f(xj), xi, xj ∈ Ω, is Schur strictly convex in Ωn.

Proof.

F2
n(x) = f(x1)f(x2) + (f(x1) + f(x2))

n∑

i=3

f(xi) + G(x3, ..., xn).

Thus, we have

(x1 − x2)
(∂F2

n(x)
∂x1

− ∂F2
n(x)

∂x2

)

= (x1 − x2)
(
f ′(x1)f(x2)− f ′(x2)f(x1) + (f ′(x1)− f ′(x2))

n∑

i=3

f(xi)
)
.

Since f is a log-convex function ( f ′

f is monotone), and also convex we have

(x1 − x2)(f ′(x1)f(x2)− f ′(x2)f(x1)) ≥ 0.

respectively,
(x1 − x2)(f ′)(x1)− f ′(x2) ≥ 0.

In conclusion,

(x1 − x2)
(∂F2

n(x)
∂x1

− ∂F2
n(x)

∂x2

)
≥ 0,

condition which assure the Schur-convexity. ¤
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Theorem 2.2. Let Ω ⊂ R a convex set with nonempty interior. If f : Ω → R+ is a
differentiable function in the interior of Ω, continuous on Ω, positive and log-convex
then Fn−1

n (x) =
∑

1≤i1,...<in−1≤n

∏n−1
j=1 f(xij

) is strictly Schur-convex in Ωn .

Proof.

Fn−1
n (x) =

n∏

i=3

f(xi)
(
f(x1) + f(x2) + f(x1)f(x2)

n∑

j=3

1
f(xj)

)
.

Hence,

(x1 − x2)
(

∂Fn−1
n (x)
∂x1

− ∂Fn−1
n (x)
∂x2

)

= (x1−x2)
n∏

i=3

f(xi)


f ′(x1)− f ′(x2) + ... +

n∑

j=3

1
f(xj)

(f ′(x1)f(x2)− f ′(x2)f(x1))


 ≥ 0,

by the same arguments as in the proof from above. ¤

In the same hypotheses it follows Schur-geometric-convexity of this family of func-
tions. See [13].

3. Applications

Proposition 3.1. Let f be a log-convex convex function defined on an interval I.
Then the Jensen inequality embedds into a string of inequalities

f

(
1
n

n∑

k=1

xk

)
≤

(
n∏

k=1

f(xk)

)1/n

≤

 1(

n
k

)
∑

1≤i1<···<ij≤n

f(xi1) · · · f(xij )




1/k

≤ 1
n

n∑

k=1

f(xk)

Proof. The first one is motivated by the log-convexity of f and the fact that we have
the following majorization ( 1

n

∑
i=1 xi, ...,

1
n

∑
i=1 xi) ≺ (x1, ..., xn). The others is

motivated by Newton’s inequalities. See [11], Appendix B, for a survey on Newton’s
inequalities. Also using the log-concavity if the function g(x) = x, xi → f(xi) should
be obtained the inequality between every middle term and right hand term. ¤

Remark 3.1. Among the many example of log-convex functions we recall here: x−2,
1

ex−1 and Γ (on (0,∞)), x+1
1−x (on (0, 1)) and x

sin x (on (0, π)). As well known, every
log-convex function is convex too. See [11], p. 66.

If the function f take any positive small values then the Schur-convexity of Fk
n is

equivalent with the log-convexity of the function f .
In [2], K. Guan consider the particular case f(x) = x

1−x on (0, 1), which is not
log-convex on (0, 1/2) and f(0) = 0. This contradicts our theory. Moreover, the error
in [2] is in the proof of Theorem 2.4 , see the case x1 = 1/2, x2 = 1/4, x3 = 1/10. If
we consider in [2] the function f(x) = 1+x

1−x all the results became true (f is log-convex
on (0, 1)).
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4. Further results and applications

In this section we prove that the function x ↪→ acr+1(x)+bcr(x)
αcr(x)+βcr−1(x) is Schur-convex,

where cr(x) =
∑

i1+...+in=r xi1
1 · · ·xin

n , i1, ..., in are nonnegative integers, r ∈ N and
a, b, α, β ∈ R+. We extend the inequalities from [3].

In order to prove some further results we present three lemmas.

Lemma 4.1. Suppose that xi > 0, i = 1, ..., n,
∑n

i=1 xi = s, c ≥ s, then

c− x

nc/s− 1
=

( c− x1

nc/s− 1
, ....,

c− xn

nc/s− 1

)
≺ (x1, ..., xn) = x. (2)

Lemma 4.2. Suppose that xi > 0, i = 1, ..., n,
∑n

i=1 xi = s, c ≥ s, then
c + x

s + nc
=

( c + x1

s + nc
, ....,

c + xn

s + nc

)
≺ (

x1

s
, ...,

xn

s
) =

x

s
. (3)

Lemma 4.3. Suppose that xi > 0, i = 1, ..., n,
∑n

i=1 xi = s, then

s

n
=

( s

n
, ....,

s

n

)
≺ (x1, ..., xn) = x. (4)

K. Guan [3] were proved also two lemmas:

Lemma 4.4. Suppose that xi > 0, i = 1, ..., n. Let

xi = (x1, ...xi−1, xi+1, ..., xn). (5)

Then we have
cr(x) = xicr−1(x) + cr(xi). (6)

Lemma 4.5. (See [3]) Suppose that a = (a1, ..., an), ai ≥ 0, i = 1, ..., n and r ∈ N∗.
Then we have

D2
r(a) ≤ Dr−1(a)Dr+1(a), (7)

where Dr(x) =
(

r+n−1

n−1

)−1

Cn
[r](x),

(
r+n−1

n−1

)
= (n+r−1)!

(n−1)!r! .

Theorem 4.1. The function f(x) = acr+1(x)+bcr(x)
αcr(x)+βcr−1(x) is a Schur-convex function in

Rn
+, where r ≥ 1 is a positive integer and a, b, α, β ∈ R+. Moreover, the function f(x)

is also increasing in xi, i = 1, ..., n.

Proof. It is obvious that the function f(x) is symmetric and have continuous partial
derivatives in Rn

+. Differentiating f with respect xi we have

∂f(x)
∂xi

=
aα

(∂cr+1(x)
∂xi

cr(x)− ∂cr(x)
∂xi

cr+1(x)
)

(cr(x) + cr+1(x))2
+

bβ
(∂cr(x)

∂xi
cr−1(x)− ∂cr−1(x)

∂xi
cr(x)

)

(cr(x) + cr+1(x))2
(8)

+
aβ(∂cr+1(x)

∂xi
cr−1(x)− ∂cr−1(x)

∂xi
cr+1(x))

(cr(x) + cr+1(x))2

We denote the first term from right hand side of 8 by A(xi), the second by B(xi)
and the third by C(xi).

From (6) it follows that

A(xi)−A(xj) =
aα

(∂cr(x)
∂xj

cr+1(xj)− ∂cr(x)
∂xi

cr+1(xi)
)

(cr(x) + cr+1(x))2
.
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Clearly,
∂cr+1(x)

∂xi
= cr(x) + xi

∂cr(x)
xi

= cr(x) + xi

(
cr−1(x) + xi

∂cr−1(x)
∂xi

)

= cr(x) + xicr−1(x) + x2
i

∂cr−1(x)
∂xi

= ...

= cr(x) + xicr−1(x) + x2
i cr−2(x) + · · ·+ xr−1

i c1(x) + xr
i .

Using (6), we obtain

A(xi) =
(
(cr(x)cr(x)− cr+1(x)cr−1(x)) + xi(cr(x)cr−1(x)− cr+1(x)cr−2(x))

+ · · ·+ xr−2
i (cr(x)c1(x)− cr+1(x)c0(x)) + cr(x)xr

i

) 1
(cr(x) + cr+1(x))2

.

Hence,

A(xi)−A(xj) =
1

(cr(x) + cr+1(x))2
[
(cr+1(x)−xjcr(x))(cr−1(x)+xjcr−2(x)+x2

jcr−3(x)+

· · ·+ xr−2
j c1(x) + xr−1

j )− (cr+1(x)− xicr(x))(cr−1(x) + xicr−2(x) + x2
i cr−3(x) + · · ·

+xr−2
i c1(x) + xr−1

i )
]

=
1

(cr(x) + cr+1(x))2
[
(cr(x)cr−1(x)− cr+1(x)cr−2(x))(xi − xj) + (cr(x)cr−2(x)

−cr+1(x)cr−3(x))(x2
i − x2

j ) + · · ·+ (cr(x)c1(x)− cr+1(x)c0(x))(xr−1
i − xr−1

j )

+cr(x)(xr
i − xr

j)
]
.

Menon in [5] has proved the following result:

cr(x)
cr+1(x)

>
cr−2(x)
cr−1(x)

,
cr(x)

cr+1(x)
>

cr−3(x)
cr−2(x)

, ...,
cr(x)

cr+1(x)
>

c0(x)
c1(x)

. (9)

Therefore
A(xi) ≥ 0.

Notice that
(xi − xj)(xk

i − xk
j ) ≥ 0, (1 ≤ k ≤ r). (10)

From (9) and (10) we get

(xi − xj)(A(xi)−A(xj)) ≥ 0.

In a similar way we can prove that B(xi) ≥ 0 and (xi − xj)(B(xi) − B(xj)) ≥ 0.
For C(xi) the proof is different. We rewrite C(xi) in the form

C(xi) =
1

(cr(x) + cr+1(x))2
(∂cr+1

∂xi
cr(x)− ∂cr

∂xi
cr+1(x)

+
∂cr

∂xi
cr+1(x)− ∂cr−1

∂xi
cr+1(x)

)
.

We study the sign of
∂cr(x)
∂xi

− ∂cr−1(x)
∂xi

= cr−1(x) + (xi − 1)
∂cr−1(x)

∂xi

=
(
(xi − 1)cr−1(x)

)′(xi) > 0.

The positivity of last term is fulfilled because the function xi ↪→ (xi − 1)cr−1(x) is
increasing.
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Clearly we have
(xi − xj)(C(xi)− C(xj)) ≥ 0.

By Theorem 1.1 f(x) is Schur-convex. ¤
Theorem 4.2. Suppose that xi > 0, i = 1, ..., n,

∑n
i=1 xi = s, c ≥ s. Then we have

acr+1(c− x) + (nc/s− 1)bcr(c− x)
acr+1(x) + bcr(x)

≤
(nc

s
− 1

)αcr(c− x) + (nc/s− 1)βcr−1(x)
αcr(x) + βcr−1(x)

.

Proof. Apply Theorem 4.1 and Lemma 4.1. ¤
Theorem 4.3. Suppose that xi > 0, i = 1, ..., n,

∑n
i=1 xi = s, c ≥ 0. Then we have

acr+1(c + x) + (nc/s + 1)bcr(c + x)
acr+1(x) + bcr(x)

≤
(nc

s
+ 1

)αcr(c + x) + (nc/s + 1)βcr−1(x)
αcr(x) + βcr−1(x)

.

Proof. Apply Theorem 4.1 and Lemma 4.2. ¤
Corollary 4.1. Suppose that xi > 0, i = 1, ..., n,

∑n
i=1 xi = s, c ≥ s. Then we have

acr+1(c− x) + (nc/s− 1)bcr(c− x)
acr+1(x) + bcr(x)

≤
(nc

s
− 1

)r

,

where a, b ∈ R+.

Remark 4.1. If we take c = 1 we obtain a new Ky-Fan type inequality of the form∑n
i=1 xi∑n

i=1(1− xi)
≤

(acr+1(1− x) + (nc/s− 1)bcr(1− x)
acr+1(x) + bcr(x)

) 1
r

.

More interesting results about other forms of Fan’s inequality and valuable appli-
cations in spaces with nonpositive curvature (NPC spaces) can be found in [9] and
[8].
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