Schur convexity of a class of symmetric functions

Ionel Rovenţa

Abstract

In this paper we derive some general conditions in order to prove the Schurconvexity of a class of symmetric functions. The log-convexity conditions which appear in this paper will contradicts one of the results of K. Guan from [2]. Also, we prove that a special class of rational maps are Schur-convex functions in R_{+}^{n}. As an application, Ky-Fan's inequality is generalized.

2010 Mathematics Subject Classification. Primary 34K20, 34K25; Secondary 26C15, 26D15. Key words and phrases. Schur-convex function, Ky-Fan inequality.

1. Introduction

The Schur-convex functions were introduced by I. Schur in 1923 and have important applications in analytic inequalities, elementary quantum mechanics and quantum information theory. See [4].

The aim of our paper is to derive some general conditions under which the symmetric functions play the property of Schur-convexity. In order to state our results we need some preparation.

Consider two vectors $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
Definition 1.1. We say that x is majorized by y, denote it by $x \prec y$, if the rearrangement of the components of x and y such that $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}, y_{[1]} \geq y_{[2]} \geq \ldots \geq$ $y_{[n]}$ satisfy $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]},(1 \leq k \leq n-1)$ and $\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]}$.
Definition 1.2. The function $f: A \rightarrow \mathbb{R}$, where $A \subset \mathbb{R}^{n}$, is called Schur-convex if $x \prec y$ implies $f(x) \leq f(y)$.

Theorem 1.1. (see [12]) Let $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ be a symmetric function with continuous partial derivative on $I^{n}=I \times I \times \ldots \times I$, where I is an open interval. Then $f: I^{n} \rightarrow \mathbb{R}$ is Schur convex if and only if

$$
\begin{equation*}
\left(x_{i}-x_{j}\right)\left(\frac{\partial f}{\partial x_{i}}-\frac{\partial f}{\partial x_{j}}\right) \geq 0 \tag{1}
\end{equation*}
$$

on I^{n}. It is strictly convex if inequality 1 is strict for $x_{i} \neq x_{j}, 1 \leq i, j \leq n$.
An important source of Schur-convex functions is given in [6] by Merkle in the following way:
Theorem 1.2. Let f be a differentiable function defined on an interval I. Define the function F of two variables by

$$
F(x, y)=\frac{f(x)-f(y)}{x-y}(x \neq y), \quad F(x, x)=f^{\prime}(x)
$$

Received October 22, 2009. Revision received January 21, 2010.
where $(x, y) \in I^{2}$. If $x \hookrightarrow f^{\prime \prime \prime}(x)$ is continuous then following statements are equivalent:

1) f^{\prime} is convex on I,
2) $F(x, y) \leq \frac{f^{\prime}(x)+f^{\prime}(y)}{2}$, for all $x, y \in I$,
3) $f^{\prime}\left(\frac{x+y}{2}\right) \leq F(x, y)$, for all $x, y \in I$,
4) F is Schur-convex on I^{2}.

Remark 1.1. If we consider $f(x)=x^{n+1}$ in Theorem 1.2 we obtain that the elementary symmetric function $\sum_{i=0}^{n} x^{i} y^{n-i}$ is Schur-convex. See also [7].

2. Proof of the main results

In this paper we investigate Schur-convexity of the following symmetric functions:

$$
\mathcal{F}_{n}^{k}=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \prod_{j=1}^{k} f\left(x_{i_{j}}\right), k=1,2, \ldots, n
$$

where f is a positive function which satisfies certain conditions.
For the case $k=1$, if f is a convex function, Schur convexity is obvious. (See Hardy-Littlewood-Polya inequality [11]).

In the following we say that a function $f: \Omega \rightarrow \mathbb{R}_{+}$is log-convex if the function $\log f$ is convex.
Remark 2.1. If f is a log-convex function then f is also a convex function. See [11]. Ostrowski in [7], seems to be the first who noticed the importance of log-convexity in deriving the property of Schur convexity.

Theorem 2.1. Let $\Omega \subset \mathbb{R}$ a convex set with nonempty interior. If $f: \Omega \rightarrow \mathbb{R}_{+}$is a differentiable function in the interior of Ω, continuous on Ω, positive and log-convex, then $\mathcal{F}_{n}^{2}(x)=\sum_{1 \leq i<j \leq n} f\left(x_{i}\right) f\left(x_{j}\right), x_{i}, x_{j} \in \Omega$, is Schur strictly convex in Ω^{n}.
Proof.

$$
\mathcal{F}_{n}^{2}(x)=f\left(x_{1}\right) f\left(x_{2}\right)+\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right) \sum_{i=3}^{n} f\left(x_{i}\right)+G\left(x_{3}, \ldots, x_{n}\right)
$$

Thus, we have

$$
\begin{aligned}
& \left(x_{1}-x_{2}\right)\left(\frac{\partial \mathcal{F}_{n}^{2}(x)}{\partial x_{1}}-\frac{\partial \mathcal{F}_{n}^{2}(x)}{\partial x_{2}}\right) \\
& =\left(x_{1}-x_{2}\right)\left(f^{\prime}\left(x_{1}\right) f\left(x_{2}\right)-f^{\prime}\left(x_{2}\right) f\left(x_{1}\right)+\left(f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{2}\right)\right) \sum_{i=3}^{n} f\left(x_{i}\right)\right)
\end{aligned}
$$

Since f is a log-convex function ($\frac{f^{\prime}}{f}$ is monotone), and also convex we have

$$
\left(x_{1}-x_{2}\right)\left(f^{\prime}\left(x_{1}\right) f\left(x_{2}\right)-f^{\prime}\left(x_{2}\right) f\left(x_{1}\right)\right) \geq 0
$$

respectively,

$$
\left(x_{1}-x_{2}\right)\left(f^{\prime}\right)\left(x_{1}\right)-f^{\prime}\left(x_{2}\right) \geq 0
$$

In conclusion,

$$
\left(x_{1}-x_{2}\right)\left(\frac{\partial \mathcal{F}_{n}^{2}(x)}{\partial x_{1}}-\frac{\partial \mathcal{F}_{n}^{2}(x)}{\partial x_{2}}\right) \geq 0
$$

condition which assure the Schur-convexity.

Theorem 2.2. Let $\Omega \subset \mathbb{R}$ a convex set with nonempty interior. If $f: \Omega \rightarrow \mathbb{R}_{+}$is a differentiable function in the interior of Ω, continuous on Ω, positive and log-convex then $\mathcal{F}_{n}^{n-1}(x)=\sum_{1 \leq i_{1}, \ldots<i_{n-1} \leq n} \prod_{j=1}^{n-1} f\left(x_{i_{j}}\right)$ is strictly Schur-convex in Ω^{n}.
Proof.

$$
\mathcal{F}_{n}^{n-1}(x)=\prod_{i=3}^{n} f\left(x_{i}\right)\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{1}\right) f\left(x_{2}\right) \sum_{j=3}^{n} \frac{1}{f\left(x_{j}\right)}\right)
$$

Hence,

$$
\begin{gathered}
\left(x_{1}-x_{2}\right)\left(\frac{\partial \mathcal{F}_{n}^{n-1}(x)}{\partial x_{1}}-\frac{\partial \mathcal{F}_{n}^{n-1}(x)}{\partial x_{2}}\right) \\
=\left(x_{1}-x_{2}\right) \prod_{i=3}^{n} f\left(x_{i}\right)\left(f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{2}\right)+\ldots+\sum_{j=3}^{n} \frac{1}{f\left(x_{j}\right)}\left(f^{\prime}\left(x_{1}\right) f\left(x_{2}\right)-f^{\prime}\left(x_{2}\right) f\left(x_{1}\right)\right)\right) \geq 0
\end{gathered}
$$

by the same arguments as in the proof from above.
In the same hypotheses it follows Schur-geometric-convexity of this family of functions. See [13].

3. Applications

Proposition 3.1. Let f be a log-convex convex function defined on an interval I. Then the Jensen inequality embedds into a string of inequalities

$$
\begin{aligned}
f\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}\right) & \leq\left(\prod_{k=1}^{n} f\left(x_{k}\right)\right)^{1 / n} \\
& \leq\left(\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} f\left(x_{i_{1}}\right) \cdots f\left(x_{i_{j}}\right)\right)^{1 / k} \\
& \leq \frac{1}{n} \sum_{k=1}^{n} f\left(x_{k}\right)
\end{aligned}
$$

Proof. The first one is motivated by the log-convexity of f and the fact that we have the following majorization $\left(\frac{1}{n} \sum_{i=1} x_{i}, \ldots, \frac{1}{n} \sum_{i=1} x_{i}\right) \prec\left(x_{1}, \ldots, x_{n}\right)$. The others is motivated by Newton's inequalities. See [11], Appendix B, for a survey on Newton's inequalities. Also using the log-concavity if the function $g(x)=x, x_{i} \rightarrow f\left(x_{i}\right)$ should be obtained the inequality between every middle term and right hand term.

Remark 3.1. Among the many example of log-convex functions we recall here: x^{-2}, $\frac{1}{e^{x}-1}$ and $\Gamma($ on $(0, \infty)), \frac{x+1}{1-x}($ on $(0,1))$ and $\frac{x}{\sin x}($ on $(0, \pi))$. As well known, every log-convex function is convex too. See [11], p. 66.

If the function f take any positive small values then the Schur-convexity of \mathcal{F}_{n}^{k} is equivalent with the log-convexity of the function f.

In [2], K. Guan consider the particular case $f(x)=\frac{x}{1-x}$ on $(0,1)$, which is not log-convex on $(0,1 / 2)$ and $f(0)=0$. This contradicts our theory. Moreover, the error in [2] is in the proof of Theorem 2.4, see the case $x_{1}=1 / 2, x_{2}=1 / 4, x_{3}=1 / 10$. If we consider in [2] the function $f(x)=\frac{1+x}{1-x}$ all the results became true (f is log-convex on $(0,1))$.

4. Further results and applications

In this section we prove that the function $x \hookrightarrow \frac{a c_{r+1}(x)+b c_{r}(x)}{\alpha c_{r}(x)+\beta c_{r-1}(x)}$ is Schur-convex, where $c_{r}(x)=\sum_{i_{1}+\ldots+i_{n}=r} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}, i_{1}, \ldots, i_{n}$ are nonnegative integers, $r \in \mathbb{N}$ and $a, b, \alpha, \beta \in \mathbb{R}_{+}$. We extend the inequalities from [3].

In order to prove some further results we present three lemmas.
Lemma 4.1. Suppose that $x_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i}=s, c \geq s$, then

$$
\begin{equation*}
\frac{c-x}{n c / s-1}=\left(\frac{c-x_{1}}{n c / s-1}, \ldots ., \frac{c-x_{n}}{n c / s-1}\right) \prec\left(x_{1}, \ldots, x_{n}\right)=x \tag{2}
\end{equation*}
$$

Lemma 4.2. Suppose that $x_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i}=s, c \geq s$, then

$$
\begin{equation*}
\frac{c+x}{s+n c}=\left(\frac{c+x_{1}}{s+n c}, \ldots, \frac{c+x_{n}}{s+n c}\right) \prec\left(\frac{x_{1}}{s}, \ldots, \frac{x_{n}}{s}\right)=\frac{x}{s} \tag{3}
\end{equation*}
$$

Lemma 4.3. Suppose that $x_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i}=s$, then

$$
\begin{equation*}
\frac{s}{n}=\left(\frac{s}{n}, \ldots ., \frac{s}{n}\right) \prec\left(x_{1}, \ldots, x_{n}\right)=x . \tag{4}
\end{equation*}
$$

K. Guan [3] were proved also two lemmas:

Lemma 4.4. Suppose that $x_{i}>0, i=1, \ldots, n$. Let

$$
\begin{equation*}
\overline{x_{i}}=\left(x_{1}, \ldots x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \tag{5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
c_{r}(x)=x_{i} c_{r-1}(x)+c_{r}\left(\overline{x_{i}}\right) . \tag{6}
\end{equation*}
$$

Lemma 4.5. (See [3]) Suppose that $a=\left(a_{1}, \ldots, a_{n}\right), a_{i} \geq 0, i=1, \ldots, n$ and $r \in \mathbb{N}^{*}$. Then we have

$$
\begin{equation*}
D_{r}^{2}(a) \leq D_{r-1}(a) D_{r+1}(a) \tag{7}
\end{equation*}
$$

where $D_{r}(x)=\binom{r+n-1}{n-1}^{-1} C_{[r]}^{n}(x),\binom{r+n-1}{n-1}=\frac{(n+r-1)!}{(n-1)!r!}$.
Theorem 4.1. The function $f(x)=\frac{a c_{r+1}(x)+b c_{r}(x)}{\alpha c_{r}(x)+\beta c_{r}-1(x)}$ is a Schur-convex function in \mathbb{R}_{+}^{n}, where $r \geq 1$ is a positive integer and $a, b, \alpha, \beta \in \mathbb{R}_{+}$. Moreover, the function $f(x)$ is also increasing in $x_{i}, i=1, \ldots, n$.
Proof. It is obvious that the function $f(x)$ is symmetric and have continuous partial derivatives in \mathbb{R}_{+}^{n}. Differentiating f with respect x_{i} we have

$$
\begin{gather*}
\frac{\partial f(x)}{\partial x_{i}}=\frac{a \alpha\left(\frac{\partial c_{r+1}(x)}{\partial x_{i}} c_{r}(x)-\frac{\partial c_{r}(x)}{\partial x_{i}} c_{r+1}(x)\right)}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}}+\frac{b \beta\left(\frac{\partial c_{r}(x)}{\partial x_{i}} c_{r-1}(x)-\frac{\partial c_{r-1}(x)}{\partial x_{i}} c_{r}(x)\right)}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}} \\
+\frac{a \beta\left(\frac{\partial c_{r+1}(x)}{\partial x_{i}} c_{r-1}(x)-\frac{\partial c_{r-1}(x)}{\partial x_{i}} c_{r+1}(x)\right)}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}} \tag{8}
\end{gather*}
$$

We denote the first term from right hand side of 8 by $A\left(x_{i}\right)$, the second by $B\left(x_{i}\right)$ and the third by $C\left(x_{i}\right)$.

From (6) it follows that

$$
A\left(x_{i}\right)-A\left(x_{j}\right)=\frac{a \alpha\left(\frac{\partial c_{r}(x)}{\partial x_{j}} c_{r+1}\left(\overline{x_{j}}\right)-\frac{\partial c_{r}(x)}{\partial x_{i}} c_{r+1}\left(\overline{x_{i}}\right)\right)}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}}
$$

Clearly,

$$
\begin{gathered}
\frac{\partial c_{r+1}(x)}{\partial x_{i}}=c_{r}(x)+x_{i} \frac{\partial c_{r}(x)}{x_{i}}=c_{r}(x)+x_{i}\left(c_{r-1}(x)+x_{i} \frac{\partial c_{r-1}(x)}{\partial x_{i}}\right) \\
=c_{r}(x)+x_{i} c_{r-1}(x)+x_{i}^{2} \frac{\partial c_{r-1}(x)}{\partial x_{i}}=\ldots \\
=c_{r}(x)+x_{i} c_{r-1}(x)+x_{i}^{2} c_{r-2}(x)+\cdots+x_{i}^{r-1} c_{1}(x)+x_{i}^{r}
\end{gathered}
$$

Using (6), we obtain

$$
\begin{gathered}
A\left(x_{i}\right)=\left(\left(c_{r}(x) c_{r}(x)-c_{r+1}(x) c_{r-1}(x)\right)+x_{i}\left(c_{r}(x) c_{r-1}(x)-c_{r+1}(x) c_{r-2}(x)\right)\right. \\
\left.\quad+\cdots+x_{i}^{r-2}\left(c_{r}(x) c_{1}(x)-c_{r+1}(x) c_{0}(x)\right)+c_{r}(x) x_{i}^{r}\right) \frac{1}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}}
\end{gathered}
$$

Hence,

$$
\begin{gathered}
A\left(x_{i}\right)-A\left(x_{j}\right)=\frac{1}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}}\left[(c _ { r + 1 } (x) - x _ { j } c _ { r } (x)) \left(c_{r-1}(x)+x_{j} c_{r-2}(x)+x_{j}^{2} c_{r-3}(x)+\right.\right. \\
\left.\cdots+x_{j}^{r-2} c_{1}(x)+x_{j}^{r-1}\right)-\left(c_{r+1}(x)-x_{i} c_{r}(x)\right)\left(c_{r-1}(x)+x_{i} c_{r-2}(x)+x_{i}^{2} c_{r-3}(x)+\cdots\right. \\
\left.\left.=\frac{1}{r-2} c_{1}(x)+x_{i}^{r-1}\right)\right] \\
\left(c_{r}(x)+c_{r+1}(x)\right)^{2}
\end{gathered}\left(c_{r}(x) c_{r-1}(x)-c_{r+1}(x) c_{r-2}(x)\right)\left(x_{i}-x_{j}\right)+\left(c_{r}(x) c_{r-2}(x) \quad \begin{array}{c}
\left.-c_{r+1}(x) c_{r-3}(x)\right)\left(x_{i}^{2}-x_{j}^{2}\right)+\cdots+\left(c_{r}(x) c_{1}(x)-c_{r+1}(x) c_{0}(x)\right)\left(x_{i}^{r-1}-x_{j}^{r-1}\right) \\
\left.+c_{r}(x)\left(x_{i}^{r}-x_{j}^{r}\right)\right] .
\end{array}\right.
$$

Menon in [5] has proved the following result:

$$
\begin{equation*}
\frac{c_{r}(x)}{c_{r+1}(x)}>\frac{c_{r-2}(x)}{c_{r-1}(x)}, \frac{c_{r}(x)}{c_{r+1}(x)}>\frac{c_{r-3}(x)}{c_{r-2}(x)}, \ldots, \frac{c_{r}(x)}{c_{r+1}(x)}>\frac{c_{0}(x)}{c_{1}(x)} \tag{9}
\end{equation*}
$$

Therefore

$$
A\left(x_{i}\right) \geq 0
$$

Notice that

$$
\begin{equation*}
\left(x_{i}-x_{j}\right)\left(x_{i}^{k}-x_{j}^{k}\right) \geq 0,(1 \leq k \leq r) \tag{10}
\end{equation*}
$$

From (9) and (10) we get

$$
\left(x_{i}-x_{j}\right)\left(A\left(x_{i}\right)-A\left(x_{j}\right)\right) \geq 0
$$

In a similar way we can prove that $B\left(x_{i}\right) \geq 0$ and $\left(x_{i}-x_{j}\right)\left(B\left(x_{i}\right)-B\left(x_{j}\right)\right) \geq 0$. For $C\left(x_{i}\right)$ the proof is different. We rewrite $C\left(x_{i}\right)$ in the form

$$
\begin{gathered}
C\left(x_{i}\right)=\frac{1}{\left(c_{r}(x)+c_{r+1}(x)\right)^{2}}\left(\frac{\partial c_{r+1}}{\partial x_{i}} c_{r}(x)-\frac{\partial c_{r}}{\partial x_{i}} c_{r+1}(x)\right. \\
\left.+\frac{\partial c_{r}}{\partial x_{i}} c_{r+1}(x)-\frac{\partial c_{r-1}}{\partial x_{i}} c_{r+1}(x)\right)
\end{gathered}
$$

We study the sign of

$$
\begin{gathered}
\frac{\partial c_{r}(x)}{\partial x_{i}}-\frac{\partial c_{r-1}(x)}{\partial x_{i}}=c_{r-1}(x)+\left(x_{i}-1\right) \frac{\partial c_{r-1}(x)}{\partial x_{i}} \\
=\left(\left(x_{i}-1\right) c_{r-1}(x)\right)^{\prime}\left(x_{i}\right)>0
\end{gathered}
$$

The positivity of last term is fulfilled because the function $x_{i} \hookrightarrow\left(x_{i}-1\right) c_{r-1}(x)$ is increasing.

Clearly we have

$$
\left(x_{i}-x_{j}\right)\left(C\left(x_{i}\right)-C\left(x_{j}\right)\right) \geq 0
$$

By Theorem $1.1 f(x)$ is Schur-convex.
Theorem 4.2. Suppose that $x_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i}=s, c \geq s$. Then we have

$$
\frac{a c_{r+1}(c-x)+(n c / s-1) b c_{r}(c-x)}{a c_{r+1}(x)+b c_{r}(x)} \leq\left(\frac{n c}{s}-1\right) \frac{\alpha c_{r}(c-x)+(n c / s-1) \beta c_{r-1}(x)}{\alpha c_{r}(x)+\beta c_{r-1}(x)} .
$$

Proof. Apply Theorem 4.1 and Lemma 4.1.
Theorem 4.3. Suppose that $x_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i}=s, c \geq 0$. Then we have

$$
\frac{a c_{r+1}(c+x)+(n c / s+1) b c_{r}(c+x)}{a c_{r+1}(x)+b c_{r}(x)} \leq\left(\frac{n c}{s}+1\right) \frac{\alpha c_{r}(c+x)+(n c / s+1) \beta c_{r-1}(x)}{\alpha c_{r}(x)+\beta c_{r-1}(x)}
$$

Proof. Apply Theorem 4.1 and Lemma 4.2.
Corollary 4.1. Suppose that $x_{i}>0, i=1, \ldots, n, \sum_{i=1}^{n} x_{i}=s, c \geq s$. Then we have

$$
\frac{a c_{r+1}(c-x)+(n c / s-1) b c_{r}(c-x)}{a c_{r+1}(x)+b c_{r}(x)} \leq\left(\frac{n c}{s}-1\right)^{r}
$$

where $a, b \in \mathbb{R}_{+}$.
Remark 4.1. If we take $c=1$ we obtain a new Ky-Fan type inequality of the form

$$
\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n}\left(1-x_{i}\right)} \leq\left(\frac{a c_{r+1}(1-x)+(n c / s-1) b c_{r}(1-x)}{a c_{r+1}(x)+b c_{r}(x)}\right)^{\frac{1}{r}}
$$

More interesting results about other forms of Fan's inequality and valuable applications in spaces with nonpositive curvature (NPC spaces) can be found in [9] and [8].

Acknowledgement. This work has been partially supported by CNCSIS Grant $420 / 2008$. I would like to express my gratitude to professor C. P. Niculescu for his detailed and helpful comments.

References

[1] K. Guan, Some properties of a class of symmetric functions, J. Math. Anal. Appl. 336 (2007), 70-80.
[2] K. Guan, Schur-Convexity of complete elementary symmetric function, Journal of Inequalities and Applications (2006), Article ID 67624, 9 pp.
[3] K. Guan, Inequalities of generalized k-order symmetric mean, Journal of Chongqing Teachers (Natural Science Edition) 15 (1998), no. 3, 40-43.
[4] A. W. Marshal and I. Olkin, Inequalities: Theory of Majorization and Its Application, Mathematics and Science and Engineering 143 (1979).
[5] K. V. Menon, Inequalities for symmetric functions, Duke Mathematical Journal 35 (1968), 37-45.
[6] M. Merkle, Conditions for convexity of a derivative and applications to the Gamma and Digammma function, Facta Universitas (Nis), Ser. Math. Inform. 16 (2001), 13-20.
[7] A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math. Pures. Appl. 31 (1952), 253-292.
[8] C.P. Niculescu and I. Rovenţa, Fan's inequality in geodesic spaces, Appl. Math. Letters 22 (2009), 1529-1533.
[9] C.P. Niculescu and I. Rovenţa, Fan's inequality in the context of M_{p}-convexity, Applied Analysis and Differential Equations, Proc. ICAADE 2006 (2007), 267-274.
[10] C.P. Niculescu, Convexity according to mean, Math. Inequal. Appl. 2 (2000), 155-167.
[11] C.P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics 23, Springer-Verlag, New York, 2006.
[12] A. W. Roberts and D. E. Varberg, Convex Functions, Pure and Applied Mathematics 57 (1973).
[13] X. M. Zhang, Optimization of Schur-convex functions, Mathematical Inequalities and Applications 1 (1998), no. 3, 319-330.
(Ionel Rovenţa) Department of Mathematics, University of Craiova,
A. I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. \& Fax: 40-251412673

E-mail address: roventaionel@yahoo.com

