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Schur convexity of a class of symmetric functions

IONEL ROVENTA

ABSTRACT. In this paper we derive some general conditions in order to prove the Schur-
convexity of a class of symmetric functions. The log-convexity conditions which appear in this
paper will contradicts one of the results of K. Guan from [2]. Also, we prove that a special class
of rational maps are Schur-convex functions in R'}. As an application, Ky-Fan’s inequality is
generalized.
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1. Introduction

The Schur-convex functions were introduced by I. Schur in 1923 and have important
applications in analytic inequalities, elementary quantum mechanics and quantum
information theory. See [4].

The aim of our paper is to derive some general conditions under which the sym-
metric functions play the property of Schur-convexity. In order to state our results
we need some preparation.

Consider two vectors = (21, ..., Tpn), ¥ = (Y1, .-, Yn) € R™.

Definition 1.1. We say that x is majorized by y, denote it by x < vy, if the rearrange-

ment of the components of x and y such that x;;) > xg) = ... 2 T[], Y = Yp2) = - =
. k k m

Y] satisfy 3y w < i vy (1< k <n—1) and 35w = 300 Y-

Definition 1.2. The function f : A — R, where A C R"™, is called Schur-convex if

x <y implies f(x) < f(y).

Theorem 1.1. (see [12]) Let f(z) = f(x1,...,zn) be a symmetric function with con-

tinuous partial derivative on I™ = 1 x I x ... x I, where I is an open interval. Then
f:I™ — R is Schur convex if and only if

af af
uixngmw)zm W

on I™. It is strictly convex if inequality 1 is strict for x; # x5, 1 < 1,5 < n.

An important source of Schur-convex functions is given in [6] by Merkle in the
following way:

Theorem 1.2. Let f be a differentiable function defined on an interval I. Define the
function F of two variables by

Fla,y) = f(@) = fy)

L= (@ #y). Fle.r) = f(z),
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where (x,y) € I2. If v < f"'(x) is continuous then following statements are equiva-
lent:

1) f' is convex on I,

2) F(xz,y) < w, forallx,y e,

3) f’(%) < F(x,y), for all z,y € I,

4) F is Schur-convex on I2.

Remark 1.1. If we consider f(z) = "1 in Theorem 1.2 we obtain that the elemen-
tary symmetric function Y ., x’ is Schur-convez. See also [7].

1, Nn—1

2. Proof of the main results

In this paper we investigate Schur-convexity of the following symmetric functions:

k
Fk = > I @), k=1,2,..n,
1<i1 <...<ip<n j=1
where f is a positive function which satisfies certain conditions.
For the case k = 1, if f is a convex function, Schur convexity is obvious. (See
Hardy-Littlewood-Polya inequality [11]).
In the following we say that a function f : Q2 — R, is log-convex if the function
log f is convex.

Remark 2.1. If f is a log-convex function then f is also a convex function. See [11].
Ostrowski in [7], seems to be the first who noticed the importance of log-convexity in
deriving the property of Schur convexity.

Theorem 2.1. Let  C R a convex set with nonempty interior. If f : Q@ — R, is a
differentiable function in the interior of 2, continuous on €1, positive and log-conver,
then F2(z) = Di<icien [(@i) (), T3, x5 € Q, is Schur strictly convex in Q™.

Proof.

n

Fo(x) = f(@1) f(z2) + (f(21) + f(22)) Zf(fcz) +G(23,s Tn).
Thus, we have

-2

= (o = 22) (@) () = [ (e2)f (@) + (' (02) = ['@2) Y T(@).

!
Since f is a log-convex function (fT is monotone), and also convex we have

(1 = 22)(f'(x1) f(22) — f'(@2) f(21)) = 0.
respectively,
(x1 = @2)(f)(@1) — f'(z2) > 0.

In conclusion,

>0

- )

0F2(x)  OF%(x)
(1 = xQ)( 0x1 B 0xo )
condition which assure the Schur-convexity. O
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Theorem 2.2. Let Q C R a convex set with nonempty interior. If f : QQ - R, is a
differentiable function in the interior of ), continuous on Q, positive and log-convex

yees

Proof.

n

F ) =TT (S + flaa) + F@)f ) Y 5o ).

i=3 =3 f(x5)

Hence,

@1 — 2) < 8.7:72331(:17) aff;x:(x))

n

= (xl_‘rZ)Hf(xl) f/(il'l) —fl(x2)++2ﬁ(f/(wl)f($2) _f/(‘TQ)f(xl)) > Oa
j=3 7"

=3

by the same arguments as in the proof from above. O

In the same hypotheses it follows Schur-geometric-convexity of this family of func-
tions. See [13].

3. Applications

Proposition 3.1. Let f be a log-convex convex function defined on an interval I.
Then the Jensen inequality embedds into a string of inequalities

n n 1/n
/ (izxk> < (Hf(m))
k=1 k=1

1/k
< 1) S flan)-flay)
k/ 1<ij<-<ij<n
S%Zf(ﬂ%)

Proof. The first one is motivated by the log-convexity of f and the fact that we have
the following majorization (3. @i, ..., 23, %) < (z1,..,2,). The others is
motivated by Newton’s inequalities. See [11], Appendix B, for a survey on Newton’s
inequalities. Also using the log-concavity if the function g(x) = z,z; — f(x;) should
be obtained the inequality between every middle term and right hand term. (I

Remark 3.1. Among the many example of log-conver functions we recall here: =2,

Lo and T (on (0,00)), £ (on (0,1)) and 5= (on (0,7)). As well known, every

er—1 sinx
log-convez: function is convex too. See [11], p. 66.

If the function f take any positive small values then the Schur-convexity of FF¥ is
equivalent with the log-convexity of the function f.

In [2], K. Guan consider the particular case f(z) = %= on (0,1), which is not
log-convex on (0,1/2) and f(0) = 0. This contradicts our theory. Moreover, the error
in [2] is in the proof of Theorem 2.4 , see the case 1 = 1/2, 9 = 1/4, x3 = 1/10. If
we consider in [2] the function f(z) = T2 all the results became true (f is log-convex
on (0,1)).
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4. Further results and applications

acy(z)+Ber—1(x)

where ¢, (z) = >, | 4 . :z:i1 -o-xln iy, ..., 0, are nonnegative integers, r € N and
a,b,a, B € Ry. We extend the inequalities from [3].
In order to prove some further results we present three lemmas.

In this section we prove that the function x — is Schur-convex,

Lemma 4.1. Suppose that x; >0,i=1,....n, Z?:l r; =8, c> s, then

c—x _( c—x c— Ty
ne/s—1 \nc/s—1""nc/s—1

Lemma 4.2. Suppose that z; >0,i=1,..,n, Y i x; =5, ¢ > s, then

) < (21, 0y Tp) = T (2)

c+x c+x c+x x x x
:( Lo ) DY (3)
s+ nc s+ nc s+ nc S S S

Lemma 4.3. Suppose that x; >0,i=1,....n, Z?Zl r; = 8, then

s s s
— ==, =) < iy Tp) = . 4
n (na 77’1) (‘Tlv ) L ) € ( )
K. Guan [3] were proved also two lemmas:

Lemma 4.4. Suppose that x; > 0,1 =1,....n. Let

Ti: (1‘1,...xi_1,$i+1,...,In). (5)
Then we have
cr(w) = zicr—1(v) + ¢ (T7). (6)
Lemma 4.5. (See [3]) Suppose that a = (a1, ...,an), a; > 0,9 =1,....,n and r € N*.
Then we have
D(a) < Dy 1(a)Dy41(a), 7)
-1
r+n— r+n— n+r—1)!
wtere 0.10) = ("071) e, (117) = -
Theorem 4.1. The function f(z) = % is a Schur-convez function in

R™, where r > 1 is a positive integer and a,b, o, 3 € Ry. Moreover, the function f(x)
is also increasing in x;, 1 =1,...,n.

Proof. Tt is obvious that the function f(z) is symmetric and have continuous partial
derivatives in R . Differentiating f with respect z; we have

0f() _ a0 (5 a) - 2 ern(@) | (%5 e (@) - *5 e (@)

T

83;1. = (CT(J?) +CT+1($))2 + (Cr(-r) +Cr+l(x))2 (8)
af(25e, 1 (@) - 25200 (@)

(er(z) + crya(2))?
We denote the first term from right hand side of 8 by A(z;), the second by B(x;)
and the third by C(x;).
From (6) it follows that

aa (258, 41 (75) — 258 e, 41 (7))

(er(@) + crpa (2))?

A(zi) = A(zj) =
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Clearly,
ey (x)

Ocri1(x) A B ‘ ‘
e cr(T) + x4 o er(T) + 24 (cr,l(x) + %57»%)

Ocr—1(x)
- ‘ 20cr1(2) _
=c(x) + wicr_1 () + a7 oz,
= cp(z) + wicr_1(z) + 2l _o(z) + -+ 2l te(2) + 2l

Using (6), we obtain
Alwi) = ((Cr(x)cr(w) = erp1(@)er1(2)) + miler(@)er 1 (2) = Crpa () er2())

1
(er (@) + crpa(2))*

IS xz_Q(cr(x)cl(x) — ¢rr1(x)eo(x)) + Cy(@“”f)
Hence,

1
Axi)—A(zj) = (er(z) + crp1())

o af e (@) + 2 ) = (e () — mice (@) (e (2) + icr o (@) + 2Fe,3(x) + -

5 (e (@)= @) e (@) 6 o) oo a(e)+

+a] %ei(2) + ;)]

- ! [(er@)er1(2) = eran(@)era(@)) (s — 23) + (er(@)er(2)

(er(z) + crpa(2))?

—cry1(z)er—s(2)) (2 ;

_ xj) 4+t (cr(x)cl(l‘) — CT+1($)CO(x))(x:_1 - x;_l)
o) — ).

Menon in [5] has proved the following result:

cr(x) cr—a2(x)  cr(x) cr—3(x) cr(x) co(x)
@) e1(@) anl@) | ea(@) T e ale) ©)
Therefore
Notice that
(z; — ) (xF — x;“) >0, (1<k<r). (10)

From (9) and (10) we get
(2 — ;) (A(2:) = Ala;)) = 0.
In a similar way we can prove that B(z;) > 0 and (z; — z;)(B(x;) — B(z;)) > 0.
For C(xz;) the proof is different. We rewrite C(xz;) in the form
1 8CT+1 de,.
(Cr(x) + Cr-‘,—l(l’))Q ( axz CT('T) - axl Cr+1($)
de, Ay
+87xicr+1(x) - aT_lcr+1(I)>.

K2

C(.’El) =

We study the sign of
der(z)  Oer—a ()
8.%‘1' 6331

= (i — Dero1(2)) () > 0.
The positivity of last term is fulfilled because the function z; — (z; — 1)c,.—1(z) is
increasing.

Ocr_1(x)
81‘1'

=) + (2 — 1)
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Clearly we have
(2 — ;) (C(zi) — Clz;)) =2 0.
By Theorem 1.1 f(z) is Schur-convex. O
Theorem 4.2. Suppose that x; >0,1=1,...,n, Z?:l r; =8, c>s. Then we have
acry1(c —x) + (ne/s — 1)be. (¢ — x) < (E 3 1) acy(c —x) + (nefs — 1)ﬁc,~_1(1‘).
acr41(x) + bep(x) “\s acy () + Per—1(x)
Proof. Apply Theorem 4.1 and Lemma 4.1. O

Theorem 4.3. Suppose that z; >0,i=1,...,n, > . x; = s, ¢ > 0. Then we have
acry1(c+x) + (ne/s+ 1)be.(c + x) ne ac.(c+x) + (ne/s + 1)Ber—1(x)
< (%+1) .
acr11 () + bep(x) acy () + Per—1(x)
Proof. Apply Theorem 4.1 and Lemma 4.2. O

Corollary 4.1. Suppose that x; > 0,1 =1,...,n, Z:‘L=1 x; =8, c>s. Then we have
acry1(c —x) + (nc/s — 1)ber(c — ) < (nc 1>r
acr41(z) + bep(x) ~\s ’

where a,b € R,.

Remark 4.1. If we take ¢ = 1 we obtain a new Ky-Fan type inequality of the form

S < (acrﬂ(l —z) 4 (ne/s — 1)beq(1 —x))%
Yo (=) acr4+1(x) + bep(x) '
More interesting results about other forms of Fan’s inequality and valuable appli-

cations in spaces with nonpositive curvature (NPC spaces) can be found in [9] and
8]
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