
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 37(1), 2010, Pages 19–26
ISSN: 1223-6934

On pseudo-BCK algebras with pseudo-double negation

Lavinia Corina Ciungu

Abstract. A special class of pseudo-BCK algebras is that of the pseudo-BCK algebras with
pseudo-double negation which generalize some particular structures, such as pseudo-MV al-
gebras. The aim of this paper is to present some new properties of the pseudo-BCK algebras
with pseudo-double negation. As main results, we prove some conditions for a pseudo-BCK
lattice with pseudo-double negation to be distributive and we present equivalent definitions
for pseudo-BCK algebras with pseudo-double negation.
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1. Introduction

Pseudo-BCK algebras were introduced in [4] by G. Georgescu and A. Iorgulescu
as a generalization of BCK algebras in order to give a corresponding structure to
pseudo-MV algebras, since the bounded commutative BCK algebras correspond to
MV algebras. More properties of pseudo-BCK algebras and their connection with
other fuzzy structures were established by A. Iorgulescu in [7], [8], [9], [10]. A special
class of pseudo-BCK algebras is that of pseudo-BCK algebras with pseudo-double
negation which generalize some particular structures, such as pseudo-MV algebras.
For this reason, the investigation of properties of this class of pseudo-BCK algebras
seems to be interesting and useful as well. In this paper we present some new prop-
erties of the pseudo-BCK algebras with pseudo-double negation, we prove equivalent
definitions for these structures and we present some conditions for a pseudo-BCK
lattice with pseudo-double negation to be distributive. We also prove that every
bounded locally finite pseudo-hoop is a pseudo-BCK algebra with double-negation.

2. Preliminaries

Definition 2.1. ([4]) A pseudo-BCK algebra (more precisely, reversed left-pseudo-
BCK algebra) is a structure A = (A,≤,→, Ã, 1) where ≤ is a binary relation on A,
→ and Ã are binary operations on A and 1 is an element of A satisfying, for all
x, y, z ∈ A, the axioms:
(A1) x → y ≤ (y → z) Ã (x → z), x Ã y ≤ (y Ã z) → (x Ã z);
(A2) x ≤ (x → y) Ã y, x ≤ (x Ã y) → y;
(A3) x ≤ x;
(A4) x ≤ 1;
(A5) if x ≤ y and y ≤ x, then x = y;
(A6) x ≤ y iff x → y = 1 iff x Ã y = 1.
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A pseudo-BCK algebra A = (A,≤,→,Ã, 1) is commutative if → = Ã. Every
commutative pseudo-BCK algebra is a BCK algebra.

Example 2.1. ([3]) Let’s consider A = {o1, a1, b1, c1, o2, a2, b2, c2, 1} with o1 <
a1, b1 < c1 < 1 and a1, b1 incomparable, o2 < a2, b2 < c2 < 1 and a2, b2 incom-
parable. Let’s also assume that any element of the set {o1, a1, b1, c1} is incomparable
with any element of the set {o2, a2, b2, c2}. Consider the operations →, Ã given by
the following tables:

→ o1 a1 b1 c1 o2 a2 b2 c2 1

o1 1 1 1 1 o2 a2 b2 c2 1
a1 o1 1 b1 1 o2 a2 b2 c2 1
b1 a1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 o2 1 b2 1 1
b2 o1 a1 b1 c1 c2 c2 1 1 1
c2 o1 a1 b1 c1 o2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

Ã o1 a1 b1 c1 o2 a2 b2 c2 1

o1 1 1 1 1 o2 a2 b2 c2 1
a1 b1 1 b1 1 o2 a2 b2 c2 1
b1 o1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 b2 1 b2 1 1
b2 o1 a1 b1 c1 b2 c2 1 1 1
c2 o1 a1 b1 c1 b2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

.

Then, A = (A,≤,→, Ã, 1) is a pseudo-BCK algebra.

Proposition 2.1. ([9], [10]) In every pseudo-BCK algebra the following properties
hold:
(c1) x ≤ y implies y → z ≤ x → z and y Ã z ≤ x Ã z;
(c2) x ≤ y, y ≤ z implies x ≤ z;
(c3) x → (y Ã z) = y Ã (x → z) and x Ã (y → z) = y → (x Ã z);
(c4) z ≤ y → x iff y ≤ z Ã x;
(c5) z → x ≤ (y → z) → (y → x) z Ã x ≤ (y Ã z) Ã (y Ã x);
(c6) x ≤ y → x, x ≤ y Ã x;
(c7) 1 → x = x = 1 Ã x;
(c8) x ≤ y implies z → x ≤ z → y and z Ã x ≤ z Ã y;
(c9) [(y → x) Ã x] → x = y → x, [(y Ã x) → x] Ã x = y Ã x.

Proposition 2.2. ([11]) Let (A,→, Ã, 1) be a pseudo-BCK algebra. If
∨

i∈I xi exists,
then so does

∧
i∈I(xi → y) and

∧
i∈I(xi Ã y) and we have:

(c10) (
∨

i∈I xi) → y =
∧

i∈I(xi → y), (
∨

i∈I xi) Ã y =
∧

i∈I(xi Ã y).

Definition 2.2. ([7]) If there is an element 0 of a pseudo-BCK algebra A = (A,≤,→
,Ã, 1), such that 0 ≤ x (i.e. 0 → x = 0 Ã x = 1), for all x ∈ A, then 0 is called the
zero of A. A pseudo-BCK algebra with zero is called bounded pseudo-BCK algebra
and it is denoted by A = (A,≤,→, Ã, 0, 1).

Example 2.2. ([3]) Let’s consider A = {0, a, b, c, 1} with 0 < a, b < c < 1 and a, b
incomparable. Consider the operations →, Ã given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Ã 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

Then, A = (A,≤,→, Ã, 0, 1) is a bounded pseudo-BCK algebra.
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Definition 2.3. ([7]) A pseudo-BCK algebra with (pP) condition (i.e. with pseudo-
product condition) or a pseudo-BCK(pP) algebra for short, is a pseudo-BCK algebra
A = (A,≤,→, Ã, 1) satisfying (pP) condition:
(pP) there exists, for all x, y ∈ A, x¯y = min{z | x ≤ y → z} = min{z | y ≤ x Ã z}.
Remark 2.1. Any bounded linearly ordered pseudo-BCK algebra is with (pP) con-
dition (see [7]). If the pseudo-BCK algebra is not bounded this result is not always
valid, as we can see in the following example communicated by J. Kühr.
Let (Q, +, 0,≤) be the additive group of rationals with the usual linear order and
take A = {x ∈ Q : −√2 < x ≤ 0}. Then (A,→, 0) is a linear BCK algebra with
x → y = min{0, y − x}. We have {z ∈ A : (−1) ≤ (−1) → z = min{0, z + 1}} = A,
thus (−1)¯ (−1) = minA doesn’t exist in (A,→, 0).

Example 2.3. (1) If A = (A,≤,→, Ã, 0, 1) is the bounded pseudo-BCK lattice from
Example 2.2, then min{z | b ≤ a → z} = min{a, b, c, 1} and min{z | a ≤ b Ã z} =
min{a, b, c, 1} do not exist. Thus, b¯a does not exist, so A is not a pseudo-BCK(pP)
algebra. Moreover, since (A,≤) is a lattice, it follows that A is a pseudo-BCK lattice.
(2) If A = (A,≤,→,Ã, 0, 1) is a reduct of a residuated lattice, then it is obvious that
A is a bounded pseudo-BCK(pP) algebra.

Let (A,≤,→, Ã, 0, 1) is the bounded pseudo-BCK(pP) algebra. For any n ∈ N,
x ∈ A we put x0 = 1 and xn+1 = xn ¯ x = x ¯ xn. The order of x ∈ A, denoted
ord(x) is the smallest n ∈ N such that xn = 0. If there is no such n, then ord(x) = ∞.
A pseudo-BCK(pP) algebra A is locally finite if for any x ∈ A, x 6= 1 implies
ord(x) < ∞.

We recall the definition and some properties of pseudo-hoops which supply some
examples of structures studied in this paper. Pseudo-hoops were originally introduced
by Bosbach in [1] and [2] under the name of complementary semigroups and their
properties were recently studied in [5].

Definition 2.4. ([5]) A pseudo-hoop is an algebra (A,¯,→, Ã, 1) of the type (2, 2, 2, 0)
such that, for all x, y, z ∈ A:
(H1) x¯ 1 = 1¯ x = x;
(H2) x → x = x Ã x = 1;
(H3) (x¯ y) → z = x → (y → z);
(H4) (x¯ y) Ã z = y Ã (x Ã z);
(H5) (x → y)¯ x = (y → x)¯ y = x¯ (x Ã y) = y ¯ (y Ã x).

If the operation ¯ is commutative, or equivalently →= Ã, then the pseudo-hoop
is said to be hoop. On the pseudo-hoop A we define x ≤ y iff x → y = 1 (equivalent
to x Ã y = 1) and ≤ is a partial order on A. A pseudo-hoop A is bounded if there is
an element 0 ∈ A such that 0 ≤ x for all x ∈ A.

Proposition 2.3. ([5]) In every pseudo-hoop (A,¯,→, Ã, 1) the following hold:
(h1) (A,≤) is a meet-semillatice with x ∧ y = (x → y)¯ x = x¯ (x Ã y);
(h2) x¯ y ≤ z iff x ≤ y → z iff y ≤ x Ã z;
(h3) x → x = x Ã x = 1;
(h4) 1 → x = 1 Ã x = x;
(h5) x → 1 = x Ã 1 = 1;
(h6) x ≤ (x → y) Ã y;
(h7) x ≤ (x Ã y) → y;
(h8) x → y ≤ (y → z) Ã (x → z);
(h9) x Ã y ≤ (y Ã z) → (x Ã z).
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Proposition 2.4. Every pseudo-hoop is a pseudo-BCK(pP) algebra.

Proof. Suppose that (A,≤,→,Ã, 1) is a pseudo-hoop. We will prove that it is a
pseudo-BCK(pP) algebra.
(A1) follows from (h8) and (h9);
(A2) follows from (h6) and (h7);
(A3) follows from (h3);
(A4) follows from (h5);
(A5) and (A6) follow by the definition of ≤ and from the fact that ≤ is a partial order
on A.
The (pP ) condition is a consequence of (h2). Thus, (A,≤,→,Ã, 1) is a pseudo-
BCK(pP) algebra. ¤

Definition 2.5. ([7], [12]) (1) Let A = (A,≤,→,Ã, 1) be a pseudo-BCK algebra. If
the poset (A,≤) is a lattice, then we say that A is a pseudo-BCK lattice.
(2) An algebra (A,∨,→, Ã, 1) is called pseudo-BCK join-semilattice if (A,∨) is a
join-semilattice, (A,→, Ã, 1) is a pseudo-BCK algebra and x → y = 1 iff x ∨ y = y.
(3) An algebra (A,∧,→, Ã, 1) is a pseudo-BCK meet-semilattice if(A,∧) is a meet-
semilattice, (A,→, Ã, 1) is a pseudo-BCK algebra and x → y = 1 iff x ∧ y = x.

Example 2.4. (1) In the case of the pseudo-BCK algebra from Example 2.2, since
(A,≤) is a lattice, it follows that A is a pseudo-BCK lattice;
(2) One can easily check that the pseudo-BCK algebra from Example 2.1 is a pseudo-
BCK join-semilattice;
(3) Given a pseudo-hoop (A,¯,→,Ã, 1), applying the property (h1) it follows that
(A,∧,→, Ã, 1) is a pseudo-BCK meet-semilattice, where x∧ y = x¯ (x Ã y) = (x →
y)¯ x.

Proposition 2.5. ([10]) In a bounded pseudo-BCK algebra the following hold:
(c11) 1− = 0 = 1∼, 0− = 1 = 0∼;
(c12) x ≤ (x−)∼, x ≤ (x∼)−;
(c13) x → y ≤ y− Ã x−, x Ã y ≤ y∼ → x∼;
(c14) x ≤ y implies y− ≤ x− and y∼ ≤ x∼;
(c15) x → y∼ = y Ã x− and x Ã y− = y → x∼;
(c16) ((x−)∼)− = x−, ((x∼)−)∼ = x∼.

Proposition 2.6. In a bounded pseudo-BCK algebra the following hold:
(c17) x → y−∼ = y− Ã x− = x−∼ → y−∼ and x Ã y∼− = y∼ → x∼ = x∼− Ã
y∼−;
(c18) x → y∼ = y∼− Ã x− = x−∼ → y∼ and x Ã y− = y−∼ → x∼ = x∼− Ã y−;
(c19) (x → y∼−)∼− = x → y∼− and (x Ã y−∼)−

∼
= x Ã y−∼.

Proof. (c17): By (c15) we have : y Ã x− = x → y∼. Replacing y with y− we get
: y− Ã x− = x → y−∼. Replacing x with x−∼ in the last equality we get: y− Ã
x−∼− = x−∼ → y−∼. Hence, applying (c16) it follows that: y− Ã x− = x−∼ → y−∼.
Thus, x → y−∼ = y− Ã x− = x−∼ → y−∼.
Similarly, x Ã y∼− = y∼ → x∼ = x∼− Ã y∼−.
(c18): The assertions follow replacing in (c17) y with y∼ and respectively y with y−

and applying (c16).
(c19): Applying (c3) and (c18) we have:

1 = (x → y∼−) Ã (x → y∼−) = x → ((x → y∼−) Ã y∼−) =
x → ((x → y∼−)∼− Ã y∼−) = (x → y∼−)∼− Ã (x → y∼−).
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Hence, (x → y∼−)∼− ≤ x → y∼−. On the other hand, by (c12) we have x → y∼− ≤
(x → y∼−)∼−, so (x → y∼−)∼− = x → y∼−.
Similarly, (x Ã y−∼)−∼ = x Ã y−∼. ¤
Proposition 2.7. In every bounded pseudo-BCK lattice A we have:
(c20) (x ∨ y)− = x− ∧ y−, (x ∨ y)∼ = x∼ ∧ y∼.

Proof. According to (c10), for all x, y, z ∈ A we have:
(x ∨ y) → z = (x → z) ∧ (y → z) and (x ∨ y) Ã z = (x Ã z) ∧ (y Ã z).

Taking z = 0 we get (x ∨ y)− = x− ∧ y− and (x ∨ y)∼ = x∼ ∧ y∼. ¤

3. On pseudo-BCK algebras with pseudo-double negation

In this section we prove equivalent definitions for pseudo-BCK algebras with pseudo-
double negation and we present some conditions for a pseudo-BCK lattice with
pseudo-double negation to be distributive. For the case of a BCK algebra, some
of these results were established in [6]. We also prove that every bounded locally
finite pseudo-hoop satisfies the pseudo-double negation condition.

Definition 3.1. ([7]) A pseudo-BCK algebra with (pDN) condition (i.e. with pseudo-
double negation condition) or a pseudo-BCK(pDN) algebra for short is a bounded
pseudo-BCK algebra A = (A,≤,→, Ã, 0, 1) satisfying the condition:
(pDN) (x−)∼ = (x∼)− = x for all x ∈ A.

Example 3.1. ([8]) Let (G,∨,∧, +,−, 0) be a linearly ordered `-group and let u ∈ G,
u < 0. Define

x → y =
{

0, if x ≤ y
(u− x) ∨ y, if x > y

x Ã y =
{

0, if x ≤ y
(−x + u) ∨ y, if x > y.

Then, A = ([u, 0],→,Ã, 0 = u, 1 = 0) is a pseudo-BCK(pDN) algebra.

Proposition 3.1. ([7]) Let A be a pseudo-BCK algebra with (pDN) condition. Then,
for all x, y ∈ A the following hold:
(c21) x ≤ y iff y− ≤ x− iff y∼ ≤ x∼;
(c22) x → y = y− Ã x−, x Ã y = y∼ → x∼;
(c23) x∼ → y = y− Ã x;
(c24) (x → y−)∼ = (y Ã x∼)−.

Proposition 3.2. In every bounded pseudo-BCK(pDN) lattice A we have:
(c25) (x− ∨ y−)∼ = (x∼ ∨ y∼)− = x ∧ y.

Proof. By (c20) we have (x− ∨ y−)∼ = x−∼ ∧ y−∼ = x ∧ y.
Similarly, (x∼ ∨ y∼)− = x ∧ y. ¤

Let A be a pseudo-BCK algebra. For all x, y ∈ A, define (see [4], [10]):
x ∨ y = (x → y) Ã y, x ∪ y = (x Ã y) → y.

As a consequence of the property (c9), we can see that in every pseudo-BCK alge-
bra the following hold:

x ∨ y → y = x → y and x ∪ y Ã y = x Ã y
for all x, y ∈ A.
According to [4], a pseudo-BCK algebra A is said to be sup-commutative if:

x ∨ y = y ∨ x and x ∪ y = y ∪ x for all x, y ∈ A.



24 L.C. CIUNGU

It is easy to check that a sup-commutative pseudo-BCK algebra is a pseudo-BCK(pDN)
algebra. It was proved in [7] that the bounded sup-commutative pseudo-BCK alge-
bras are categorically isomorphic with pseudo-MV algebras. It also was proved in [7]
that a bounded sup-commutative pseudo-BCK algebra is an equivalent definition of
a pseudo-Wajsberg algebra. We also mention that the sup-commutative pseudo-BCK
algebras are called in [11]) commutative pseudo-BCK algebras.

Proposition 3.3. Let A be a bounded pseudo-BCK(pDN) algebra and x, y ∈ A. If
x ∧ y exists, then x− ∨ y−, x∼ ∨ y∼ exist and:
(c26) (x ∧ y)− = x− ∨ y−, (x ∧ y)∼ = x∼ ∨ y∼.

Proof. Since x ∧ y ≤ x, y, we get x−, y− ≤ (x ∧ y)−. It follows that (x ∧ y)− is an
upper bound of x− and y−. Let u be an arbitrary upper bound of x− and y−, that
is x−, y− ≤ u. Since A is with (pDN), we get u∼ ≤ x, y, so u∼ ≤ x ∧ y. Finally we
get (x ∧ y)− ≤ u, so (x ∧ y)− is the least upper bound of x− and y−. Thus, x− ∨ y−

exists and (x ∧ y)− = x− ∨ y−.
Similarly, x∼ ∨ y∼ exists and (x ∧ y)∼ = x∼ ∨ y∼. ¤
Corollary 3.1. In every bounded pseudo-BCK(pDN) lattice A we have:
(c27) (x− ∧ y−)∼ = (x∼ ∧ y∼)− = x ∨ y.

Theorem 3.1. Every bounded locally finite pseudo-hoop is with (pDN).

Proof. Let A be a bounded locally finite pseudo-hoop and x ∈ A. If x = 0, then
0−∼ = 0∼− = 0. Suppose x 6= 0 and we prove that x−∼ = x. By (c21) we have
x ≤ x−∼. Suppose that x−∼ � x, hence x−∼ → x 6= 1. Since A is locally finite, there
is n ∈ N, n ≥ 1 such that (x−∼ → x)n = 0. We have:

(x−∼ → x) → x− = (x−∼ → x) → x−∼− = (x−∼ → x) → (x−∼ → 0) =
(x−∼ → x)¯ x−∼ → 0 = (x ∧ x−∼) → 0 = x → 0 = x−.
(x−∼ → x)2 → x− = (x−∼ → x) → ((x−∼ → x) → x−) = (x−∼ → x) → x− =

x−.
By induction we get (x−∼ → x)n → x− = x−. Thus, 0 → x− = x−, so x− = 1.
Hence, x = 0, a contradiction. Therefore, x−∼ ≤ x, so x−∼ = x.
Similarly x∼− = x. ¤
Theorem 3.2. Let (A,→, Ã, 0, 1) a bounded pseudo-BCK algebra. The following are
equivalent:
(a) A is with (pDN) condition;
(b) x → y = y− Ã x− and x Ã y = y∼ → x∼;
(c) x∼ → y = y− Ã x and x− Ã y = y∼ → x;
(d) x− ≤ y implies y∼ ≤ x and x∼ ≤ y implies y− ≤ x.

Proof. (a) ⇒ (b): By (c15) we have:
x → y = x → y−∼ = y− Ã x− and x Ã y = x Ã y∼− = y∼ → x∼.

(b) ⇒ (c): By (c15) we have: x∼ → y−∼ = y− Ã x∼−.
Applying (b) we get: x∼ → y = y− Ã x∼− and y− Ã x = x∼ → y−∼.
Thus, x∼ → y = y− Ã x. Similarly, x− Ã y = y∼ → x.
(c) ⇒ (d): If x− ≤ y, then x− Ã y = 1. Applying (c) we get y∼ → x = 1, that is
y∼ ≤ x.
Similarly, x∼ ≤ y implies y− ≤ x.
(d) ⇒ (a): From x− ≤ x− and (d) we have x−∼ ≤ x. Taking into consideration (c12)
we get x−∼ = x.
Similarly, x∼− = x. Thus, A is with (pDN) condition. ¤
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Theorem 3.3. If (A,→, Ã, 0, 1) a bounded pseudo-BCK(pDN) algebra, then the fol-
lowing are equivalent:
(a) (A,≤) is a meet-semilattice;
(b) (A,≤) is a join-semilattice;
(c) (A,≤) is a lattice.

Proof. (a) ⇒ (b): Consider x, y ∈ A. Since A is a meet-semilattice, then x− ∧ y−

exists. Applying (c26), it follows that x−∼ ∨ y−∼ exists, that is x ∨ y exists.
Thus, A is a join-semilattice.
(b) ⇒ (c): Because A is a join-semilattice it follows that x−∨y− exists for all x, y ∈ A.
Hence, by (c25), x ∧ y = (x− ∨ y−)∼. Thus, x ∧ y exists, so A is a lattice.
(c) ⇒ (a): It is obvious, since A is a lattice. ¤

Proposition 3.4. In every bounded pseudo-BCK(pDN) lattice the following hold:
(1) y → (

∧
i∈I xi) =

∧
i∈I(y → xi);

(2) y Ã (
∧

i∈I xi) =
∧

i∈I(y Ã xi)

Proof. By Proposition 2.2 we have: (x− ∨ y−) Ã z− = (x− Ã z−) ∧ (y− Ã z−).
Applying (c15) we get: z → (x− ∨ y−)∼ = (z → x−∼) ∧ (z → y−∼).
By (c25) we have: (x− ∨ y−)∼ = x ∧ y. Hence, z → (x ∧ y) = (z → x) ∧ (z → y).
By induction we get assertion (1).
(2) Similarly as (1). ¤

Remark 3.1. If the pseudo-BCK lattice A is without (pDN), then the results of
Proposition 3.4 do not hold. Indeed, in the pseudo-BCK lattice A from Example 2.2
we have a → (a ∧ b) = a → 0 = 0, while (a → a) ∧ (a → b) = 1 ∧ b = b.
Thus, a → (a ∧ b) 6= (a → a) ∧ (a → b).

Proposition 3.5. In every pseudo-BCK(pDN) lattice the following conditions are
equivalent:
(C1) (x ∧ y) → z = (x → z) ∨ (y → z) and (x ∧ y) Ã z = (x Ã z) ∨ (y Ã z);
(C2) z → (x ∨ y) = (z → x) ∨ (z → y) and z Ã (x ∨ y) = (z Ã x) ∨ (z Ã y).

Proof. (C1) ⇒ (C2): By the second identity from (C1) we have:
(x− ∧ y−) Ã z− = (x− Ã z−) ∨ (y− Ã z−).

Applying (c15) we get: (x− ∧ y−) Ã z− = z → (x− ∧ y−)∼ = z → (x ∨ y).
By (c22) we have: (x− Ã z−) ∨ (y− Ã z−) = (z → x) ∨ (z → y).
Thus, z → (x ∨ y) = (z → x) ∨ (z → y).
Similarly, from the first identity of (C1) we get the second identity from (C2).
(C2) ⇒ (C1): By the second identity from (C2) we get:

z− Ã (x− ∨ y−) = (z− Ã x−) ∨ (z− Ã y−).
Applying (c23) we have:

(x− ∨ y−)∼ → z = (x → z) ∨ (y → z).
Thus, (x ∧ y) → z = (x → z) ∨ (y → z).
Similarly, from the first identity of (C2) we get the second identity from (C1). ¤

Remark 3.2. The class of pseudo-BCK(pDN) lattices satisfying the conditions (C1)
and (C2) is not empty. Indeed, one can see that every pseudo-MV algebra satisfies
these conditions.

Theorem 3.4. Let A be a pseudo-BCK lattice such that at least one of the following
identities holds:
(C1

1 ) (x ∧ y) → z = (x → z) ∨ (y → z),
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(C2
1 ) (x ∧ y) Ã z = (x Ã z) ∨ (y Ã z).

Then (A,≤) is distributive.

Proof. Let’s denote u = (x ∨ y) ∧ (x ∨ z). Obviously, x ≤ u and y ∧ z ≤ u.
It follows that u is an upper bound of x and y ∧ z.
Let’s consider v an arbitrary upper bound of x and y∧ z, that is x ≤ v and y∧ z ≤ v.
By Proposition 2.2 we get:

(x ∨ y) → v = (x → v) ∧ (y → v) = y → v and
(x ∨ z) → v = (x → v) ∧ (z → v) = z → v.

If the identity (C1
1 ) is satisfied, then we have:

[(x∨ y) → v]∨ [(x∨ z) → v] = (y → v)∨ (z → v) = (y∧ z) → v = 1 and
[(x ∨ y) ∧ (x ∨ z)] → v = [(x ∨ y) → v] ∨ [(x ∨ z) → v] = 1,

that is (x ∨ y) ∧ (x ∨ z) ≤ v, so u ≤ v.
Thus, u is the least upper bound of x and y ∧ z.
We conclude that x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), that is (A,≤) is distributive.
Similary, if (C2

1 ) is satisfied, we get the same conclusion. ¤
Corollary 3.2. If A is a pseudo-BCK(pDN) lattice satisfying (C1) or (C2), then
(A,≤) is distributive.
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