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A two stage decision model for breast cancer detection

Smaranda Belciug

Abstract. The use of computer technology supporting medical decision is now widespread
and pervasive across a broad range of medical areas. Accordingly, computer-aided diagnosis
has become an increasingly important area for intelligent computational systems. The aim
of this paper is to present a two stage model containing several different neural networks:
multi-layer neural perceptron (MLP), radial basis function (RBF) and Probabilistic Neural
Networks (PNN), and the effectiveness of this system on a real breast cancer database, to
support the medical decision process.
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1. Introduction

Breast cancer is the second most common type of cancer, after lung cancer, (10.4%
of all cancer incidences, both sexes counted (World Health Organization International
Agency of Research on Cancer, June 2003)). Regarding cancer deaths, breast cancer
situates on the fifth place. The statistics show that almost 1% of all deaths and 7%
of cancer deaths were caused by breast cancer (World Health Organization, February
2006). The chance of a woman having invasive breast cancer some time during her
life is a little less 1 in 8, and the chance of dying from breast cancer is about 1 in 35.
Due to earlier detection and better and improved treatment the death rates caused
by this disease have been going down.
Breast cancer detection is achieved using non-invasive procedures: conventional imag-
ing, nuclear imaging, such as magnetic resonance imagining, positron emission tomog-
raphy or invasive procedures: tissue biopsy. The average accuracy of using such mod-
ern medical imaging methods for detecting breast cancer or recurrent events ranges
from 80% to 90% (Gilbert et al.,[4], Lee et al., [14], Vranjesevic et al., [20]). In breast
cancer detection, neural networks (NN) are used widespread, because providing a spe-
cific algorithm on how to identify the disease is not necessary. Hsiao et al. ([11]) (2009)
trained a MLP classifier using the vascularity indices (harmonic and non-harmonic
(3D) power Doppler imaging) for determining whether the breast tumors are benign
or malign. Revett et al. ([17]) and Gorunescu et al. ([6]) designed a medical decision
support system for breast cancer based on a hybrid model containing rough sets and
probabilistic neural networks. Fogel et al. ([5]) (1997) trained a NN using evolution-
ary programming for the detection of breast cancer using radiographic features and
patient age. Different types of NNs algorithms, such as MLP, RBF, PNN, combined
neural network (CNN), recurrent neural network (RNN), and support vector machine
(SVM), have been considered to statistically evaluate their potential contribution to
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predict recurrent events in breast cancer (Gorunescu et al., [7], [8], [9], Ibeyli, [12]).
For the selection of the best predictors of breast malignant lesions among the normal-
ized features NNs and logistic regression analysis were compared (McLaren, [15]). In
a survival analysis problem, NN’s results on two different breast cancer datasets (both
of which using nuclear morphometric features) are compared, showing that NNs can
successfully predict recurrence probability and separate patients with good and bad
prognoses (Chi et al., [3]).
The aim of this paper is to provide a diagnosing procedure by managing a two stage
decision model, a competitive one, and a collaborative one, containg several different
NN, for providing a better diagnosis than each NN could accomplish alone. Even if this
technique consisting in using both competition and collaboration between methods
is not new, in this paper the novelty consists in the way the competitors collaborate.
Concretely, a weighted voting system was chosen to provide the final decision. The
first phase is represented by the competitive part which establishes the hierarchy of
the NN, depending on their diagnosis accuracy. Thus only the best competitors will
be considered to make the final decision. The second phase is based on a weighted
voting system (WVS) applied on the selected NNs.
The remaining paper is organized as follows: Section 2 gives an overview of the in-
telligent system, detailing each phase competitive/collaborative. Section 3 gives a
description of the breast cancer database on which the system has been applied on.
Section 4 presents the results obtained, and a simulation on the system. The paper
ends with Section 5 providing the conclusions of the study.

2. Two stage decision model

2.1. Competitive phase. In the competitive phase, each NN is applied on a breast
cancer database. The following NNs are applied:
(a) Multi-layer perceptron (MLP);
(b) Radial basis function (RBF);
(c) Probabilistic neural networks (PNN).
Next, we shortly describe the three algorithms subsequently used.

2.1.1. Multi-layer perceptron (MLP). The artificial neural network is a collection
of units, neurons or nodes, which are simple processors whose computing ability is
restricted to a rule for combining input to calculate an output signal. Output signals
may be sent to other units along connections known as weights. The net input of

weighted signals received by a unit j is given by the formula: netj = w0 +
n∑

i=1

wij ·xi,

where w0 is the biasing signal, wij the weight on the input connection ij, xi the
magnitude of signal on input connection ij and n is the number of input connections
to unit j. The multi-layer perceptron (MLP) is the most popular neural network in
use today.

Once the number of layers and number of units in each layer have been selected,
the network’s weights and thresholds must be set so as to minimize the prediction
error made by the network. The cases belonging to the training dataset are used
to automatically adjust the weights and thresholds in order to minimize this error;
this process is equivalent to fitting the model represented by the network to the
training data available. Thus, the error of a particular configuration of the network
can be determined by running all the training cases through the network, comparing
the actual output generated with the desired or target outputs. The differences are
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combined together by an error function to give the network error. The most common
error functions are the sum-squared error, where the individual errors of output units
on each case are squared and summed together; this neatly summarizes the error over
the entire training set and set of output units. Under these circumstances, the error
surface is needed in order to find out its minimum. Concretely, each of the n weights
and thresholds of the network (i.e. the free parameters of the model) is taken to
be a dimension in space and the (n + 1)th dimension is the network error. For any
possible configuration of weights the error can be plotted in the (n + 1)th dimension,
forming an error surface. The objective of network training is thus to find the lowest
point in this many-dimensional surface. Since the neural network error surfaces are
complex being characterized by a number of unhelpful features (e.g. local minima,
flat-spots and plateaus, saddle-points, and long narrow ravines, etc.), it is not possible
to analytically determine where the global minimum of the error surface is, and so
neural network training is essentially an exploration of the error surface. From an
initially random configuration of weights and thresholds (i.e. a random point on the
error surface), the training algorithms incrementally seek for the global minimum.
Typically, the gradient (slope) of the error surface is calculated at the current point,
and used to make a downhill move. Eventually, the algorithm stops in a low point,
which may be a local minimum (but hopefully is the global minimum).
Among the learning algorithms used in the training process the most common one is
the back-propagation algorithm, consisting of the following steps:
Step 1.The gradient descent. We iteratively update the weight vector such that, at
step r we move a short distance in the direction of the greatest rate of decrease of
the error, i.e. in the direction of the negative gradient. Denoting the weight vector
increment ∆wij , we use the formula: ∆wij = − ∂E

∂wij
= − ∂E

∂neti
· ∂neti

∂wij
, where E is

the sum of squares error function. The first factor is the error signal for unit i:
δi = − ∂E

∂neti
and the second is ∂neti

∂wij
= ∂

∂wij

∑
k∈Ai

wik · xk = xj , where Ai = {j : ∃wij}
is the set of nodes anterior to unit i. Putting the two together, we get ∆wij = δixj .
To compute this gradient, we thus need to know the value of δi for each hidden and
output unit in the network.
Step 2.Forward activation. The activity of the input units is determined by the
network’s external input x. For all other units, the activity is propagated forward:
yi = fi(

∑
j∈Ai

wij · xj). Note that before the activity of unit i can be calculated, the

activity of all its anterior nodes must be known. Since feedforward networks do not
contain cycles, there is an ordering of nodes from input to output that respects this
condition.
Step 3.Calculating output error. Assuming that we are using the sum-squared loss
E = 1

2

∑
o

(to − yo)2, the error for output unit o is simply δo = to − yo.

Step 4.Error backpropagation. For hidden units, we must propagate the error back
from the output nodes (hence the name of the algorithm).
Using the chain rule, we can expand the error of hidden unit in terms of its posterior
nodes, δj = − ∑

i∈Pi

∂E
∂neti

· ∂neti

∂yj
· ∂yj

∂netj
, where Pj = {i : ∃wij} is the set of nodes posterior

to unit j. The first factor inside the sum is just the error of node i, the second is
∂neti

∂yj
= ∂

∂yj

∑
k∈Ai

wik · yk = wij , while the third is the derivative of node j’s activation

function: ∂yj

∂netj
= ∂fj(netj)

∂netj
= f ′j(netj). For hidden units u that use the activation

function, we can make use of the special identity (tanh(u))′ = 1− tanh(u)2, giving us
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f ′h(neth) = 1− y2
h. Putting all the pieces together, we get δj = f ′j(netj)

∑
i∈Pi

δiwij [2].

Step 5.Learning updates. The synaptic weights are updated using the results of the
forward and backward passes.

2.1.2. Radial-basis function (RBF). This intuitive NN consists of a hidden layer of
radial units, each one of them modelling a Gaussian response surface. RBF offers an
alternative approach to the MLP’s use of hyperplanes to divide up the problem space,
dividing the space using hyperspheres (quadrics with certain linear constrains on the
coefficients), characterized by radii and centres. The activation of a hidden neuron is
determined by the distance between the input vector and a prototype vector. This
provides a smooth interpolation function in which the number of basis functions is
determined by the complexity of the mapping to be represented rather than by the
size of the data set. The modifications which are required are as follows:
1. The number M of the basis functions need not equal the number N of data points,
and is typically much less than N.
2. The centres of the basis functions are no longer constrained to be given by input
data vectors. Instead, the determination of suitable centres become part of the train-
ing process.
3. Instead of having a common width parameter σ, each basis function is given its
own σj whose value is also determined during training.
4. Bias parameters are included in the linear sum. They compensate for the difference
between the average value over the data set of the basis function activation and the
corresponding average value of the targets.
Basically, considering a number M of basis functions φj(x)= exp(− ||x−µj ||2

2·σ2
j

), where
x is the input vector, µj is the vector determining the center of the basis function φj

and σj is the width parameter, the RBF mapping is given by yk(x) =
M∑

j=1

wkjφj(x).

The training of a RBF is a two-step learning procedure. In the first step we determine
the parameters of the basis function φj (i.e. µj and σj), and in the second step the
weights wkj are found. More details and techniques for optimization are to be found
in [2] and [10].

2.1.3. Probabilistic neural networks. Different from the above two NNs, a probabilis-
tic neural network (PNN) uses both the näıve Bayes decision methodology and the
probability density functions associated with each decision class.

A. Bayes decision methodology.
Bayesian decision theory is a fundamental statistical approach to the problem of pat-
tern classification. Minimizing the probability of error, or the expected risk, represents
the traditional goal for decision strategies. The Bayes decision rule can be summarized
as follows: (a) Let Dk be the decision rule related to the state of nature Bk; (b) Given
measurement x, the error related to Bk is defined by P (error|x) = 1−P (Bk|x); Min-
imize the probability error; Bayes decision rule: ”Choose Dk if P (Bk|x) > P (Bj |x),
∀j 6= k” or, equivalently, ”Choose Dk if P (x|Bk)P (Bk) > P (x|Bj)P (Bj),∀j 6= k”.
The Bayes decision rule is applied to PNN as follows. Consider the general case of
the q-category classification problem, in which the states of nature are denoted by
Ω1, Ω2, ..., Ωq. The goal is to determine the class membership of a multivariate sample
data represented by a p-dimensional random vector x into one of the q possible groups
Ω1, Ω2, ..., Ωq, that is to make the decision D(x) = Ωi, i = 1, 2, ..., q, where x repre-
sents a sample. If the multivariate probability density functions f1(x), f2(x), ..., fq(x),
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the a priori probabilities hi = P (Ωi) of occurrence of patterns from categories Ωi and
the loss parameters li associated with all incorrect decisions given Ω = Ωi, then, ac-
cording to the Bayes decision rule, x is classified into the category Ωi if the following
inequality holds true: lihifi(x) > ljhjfj(x), i 6= j.
The accuracy of the decision depends straight on the accuracy of estimating the cor-
responding p.d.f.’s.
The way to using the Bayes decision rule to PNNs is represented by the technique
chosen to estimate the p.d.f’s fi(x) corresponding to each decision class Ωi, based
upon the training patterns set. The classical approach uses a sum of small multi-
variate Gaussian distributions, centered at each training sample, that is: fi(x) =

1
(2π)n/2σn · 1

mi
·

mi∑
j=1

exp(−d(x,xj)
2

2σ2 ), i = 1, 2, ..., q, where mi is the total number of train-

ing patterns in Ωi, p is the input space dimension and σ is the adjustable ”smoothing”
parameter using the training procedure. The smoothing or scaling parameter σ defines
the width of the area of influence and should decrease as the sample size increases.
The key factor in PNNs is therefore the way to determine the value of σ, since this
parameter need to be estimated to cause reasonable amount of overlap. Commonly,
the smoothing factor is chosen heuristically. For more details, see [20].
B. PNN algorithm
Step 1. For each class Ωi compute the (Euclidian) distance between any pair of
vectors and denote these distances by d1, d2, ..., dri , where ri = C2

mi
= mi!

2!(mi−2)! . For
each class Ωi compute the corresponding average distances and standard deviations

Di =

ri∑
j=1

dj

ri
, SDi =

√
ri∑

j=1
(dj−Di)2

ri
. For each class Ωi compute the corresponding con-

fidence intervals IΩi = (Di − 3SDi, Di + 3SDi) for the average distances.
Step 2. For each decision class Ωi consider the decision functions fi(x) = 1

(2π)n/2σn ·
1

mi
·

mi∑
j=1

exp(−d(x,xj)
2

2σ2 ). Assign (σ,Di), i = 1, 2, ..., q.

Step 3. In each decision class Ωi (randomly) choose a certain vector x0
i , fix it and

compute all distances DΩi,j = d(x0
i , xj), j = 1, 2, ..., mi.

Compute fi(x0
i ) = 1

(2π)n/2Dn
i
· 1

mi
·

mi∑
j=1

exp(−D2
Ωij

2D2
i

).

Step 4. (Bayes decision rule) Compare fi(x0
i ) and fj(x0

i ), for all i 6= j, following the
algorithm: ”IF lihifi > ljhjfj (for all i 6= j) THEN x0

i ∈ Ωi ELSE IF lihifi ≤ ljhjfj

(for some i 6= j)THEN x0
i /∈ Ωi”. For each (fixed) decision class Ωi consider the 3-

valued logic: TRUE - if lihifi > ljhjfj (for all j 6= i) UNKNOWN - if lihifi = ljhjfj

(for some j 6= i)and FALSE - otherwise. li, hi are the model parameters (costs and
prior probabilities).
Step 5. Repeat step 3 for another choice for x0

i in Ωi until all of them are chosen.
Repeat step 3 for all vectors x0

j in Ωj for all j 6= i. Obtain the classification accuracy
in percentage.
Step 6. (Estimating optimal smoothing parameter) Divide each confidence interval
IΩi by N dividing knots into (N +1) equal sectors with length ∆i = 6SDi/N . Repeat
step 3 by assigning σ = D + k∆i and σ = D − k∆i, k = 1, 2, ..., N . If the current
value of σ exceeds IΩi , then STOP. Obtain the corresponding classification accuracy.
Compute the maximum value MAX of the variable corresponding to TRUE out of
the N cases.
Step 7. The smoothing parameters σ, of each class, corresponding to MAX represent
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the optimal values of the smoothing parameters σ ’s for each decision category Ωi,
i = 1, 2, ..., q.
The results, diagnosing accuracies, obtained after the above NNs were applied were
statistically evaluated in order to arrange them in a hierarchical order.

2.2. Collaborative phase. It is common practice in the application of neural net-
works to train many different candidate networks and then to select the best, on the
basis of performance on an independent validation set for instance, and to keep only
this network and to discard the rest. There are two disadvantages with such an ap-
proach. First, all of the effort involved in training the remaining networks is wasted.
Second, the generalization performance on the validation set has a random component
due to the noise on the data, and so the network which had the best performance on
the validation set might not be the one with the best performance on new test data.
These drawbacks can be overcome by combining the networks together to form a
committee ([16], [17]). The importance of such an approach is that it can lead to
significant improvements in the predictions on new data, while involving additional
computational effort. In fact, the performance of a committee can be better than the
performance of the best single network used in isolation, [2].
Taking into account the above comments we considered the notion of competitive/
collaborative system as a committee.
After the competitive phase is finished, and the hierarchy established, we retain only
the best classifiers. In general terms, when using an initial number of n competi-
tors, only a certain number k (best) competitors will be retained for the collaborative
step. The number k is chosen by the user, depending on the result of the competitive
phase, and on the concrete problem to solve etc. In this paper, since only three NN
techniques have been used, we have kept all of them.
In the WVS applied in this study, the values of the weights are directly proportional
with the testing performances. Finally, after applying the WVS, the overall automatic
diagnosis can be established for a new patient. ([11])

3. Breast cancer database

The model has been tested on the Wisconsin Prognostic Breast Cancer - WPBC,
consisting of 683 cases with two decision classes: benign 444 (65%) and malign 239
(35%) instances. The database contains nine ordinal (categorical) attributes (for
details concerning this database, see http://archive.ics.uci.edu/ml/machine-learning-
databases/breast-cancer-wisconsin/).
Below, two samples from the database, one from each class, are presented, in order
to visualize the two typical situations:
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Table 1. Example of benign/malign samples
Attributes Patient 1 Patient 2
Diagnosis benign malign
Clump Thickness 5 8
Uniformity of Cell Size 1 10
Uniformity of Cell Shape 1 10
Marginal Adhesion 1 8
Single Epithelial Cell Size 2 7
Bare Nuclei 1 10
Bland Chromatin 3 9
Normal Nucleoli 1 7
Mitoses 1 1

4. Results

For MLP we have used a three layered network, the first hidden layer contained
8 neurons, the second hidden layer contained 4 neurons. The initial weights were
randomly chosen from the interval [0, 0.1]. For RBF we have used one hidden layer
which contained 49 neurons. Since the first phase of the system must compare the
diagnosing performances of the three machine learning (ML) techniques, an a priori
statistical power analysis (two-tailed type of null hypothesis) has been performed
because the appropriate sample size needed to be determined in order to achieve the
adequate power. A sample of 100 different computer runs is considered for each ML
technique, providing a statistical power equaling 99% with type I error α ∈ 0.05 for
the comparison test subsequently used.
For the evaluation of the classification efficiency, two metrics have been computed:
the training performance (i.e. the proportion of cases that are correctly classified in
the training phase) and the testing performance (i.e. the proportion of cases that
are correctly classified in the testing phase. As a verification method, the 10-fold
cross-validation is used ([13]). Thus, the classification accuracy (both training and
testing) is computed 10 times, each time leaving out one of the sub-samples from the
computation and using it as a test sample for cross-validation, so that each sub-sample
is used 9 times as training sample and just once as testing sample (complete cross-
validation cycle). The NN correct classification rates, computed for each of the 10 runs
of the NN model, are then averaged to give the 10-fold estimate of the classification
accuracy. Basically, each NN model is run 100 times in a complete cross-validation
cycle, and the correct classification of both training and testing classification rates are
recorded. Finally, six samples, two for each NN model (training/testing) with size =
100, were selected for subsequent statistical analysis.
The results of the diagnosing performances of the three NN models, in terms of
average and standard deviation (SD), averaged over 100 computer runs of a complete
cross-validation cycle, are displayed in Table 2.

Table 2. NN average training/testing performances over 100 runs
NN type Training perf. avg./SD(%) Testing perf. avg./SD(%)
MLP 97.66 / 3.06 95.88 / 3.57
RBF 96.79 / 3.30 95.29 / 3.81
PNN 87.05 / 5.18 82.51 / 5.52
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From the table above we can see that:

• The training/testing performances depend on the NN type, the poorer perfor-
mance being obtained by PNN and the higher by MLP. Obviously, this result and
corresponding NNs hierarchy is decisively determined by this particular database.

• There is no statistical significant difference (two-sided t-test for difference be-
tween two means, with p-value > 0.05) between the training and the testing
performances, regardless of the NN model, denoting the fact that all the system
cross-validate well.

• The diagnosis accuracy of all the models is in accordance to the reported modern
medical imaging experience, ranging from 80% to 95%.

Thus, approximately the same performance has been obtained using there intelligent
systems fed with categorical data, unlike the modern and very expensive medical
imaging techniques.
For the performance statistical comparison between the three NNs models we have
considered the testing performance only, since it illustrates the accuracy of each model
in real-world situations (generalization feature), that is for new, previously unknown
patients. The t-test for independent samples, based on Student’s t distribution, is
the most commonly used method to evaluate the differences in means between two
independent groups of observations.With independent groups of observations, we are
interested in the mean difference between the two groups, focusing also on the vari-
ability between observations. Theoretically, the t-test for independent samples can
be used as long as the variables are normally distributed within each group and the
variances of the two groups are not significantly different. The Kolmogorov-Smirnov
& Lilliefors test (since the mean and the standard deviation are computed from the
actual data) has been used to test the normality of data, and the homogeneity of
variances was tested with the Levene’s test. Thus, the testing performances were not
normally distributed (p-level < 0.05), regardless of the NN model. However, due to
the Central Limit Theorem, since the sample size is fairly large (100), the deviation
from normality observed in the data does not matter much. Note that in practice,
unequal variances of two independent samples are less problematic when the samples
have the same size ([1]).
Remark. In case of small sample size, the Mann-Whitney U test is a nonparametric
alternative to the t-test for independent samples. This nonparametric test requires
all observations to be ranked as if they were from a single sample. The interpretation
of the test is essentially identical to the interpretation of the result of a t-test for
independent samples. To avoid the use of this alternative, we have considered from
the beginning a number of 100 computer runs, so the hypotheses of the t-test for
independent samples are fulfilled. The table below illustrates the results of the use of
the t-test for independent sample:
Table 3. t-test for comparing difference in means

NN type p-level
MLP vs. RBF 0.12
MLP vs. PNN 0.04
RBF vs. PNN 0.01

Using the difference between two proportions test (z-value/two-sided) to compare
the average testing performances, we obtained the following results, illustrated in the
table below Table 4.
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Table 4. Comparing average testing performances (two-sided z-test)
NN type Testing performance (p-level)
MLP vs. RBF 0.840
MLP vs. PNN 0.002
RBF vs. PNN 0.006

From the above table we can see that:

• There is no statistical significant difference (p-level > 0.05) between the aver-
age proportions of correctly classified cases for MLP and RBF (p-level > 0.05),
showing that the two NN models perform similarly.

• There is statistically significant difference (p-level < 0.05) between the average
proportions of correctly classified cases for PNN and both MLP and RBF. This
means that in this particular case, PNN has a lower performance than MLP and
RBF.

As an overall conclusion of the above statistical comparison of testing performances,
the experiment shows that in this situation -breast cancer detection- MLP and RBF
models performs similarly, having performances in accordance with sophisticated med-
ical imaging techniques, which are more expensive and time consuming.

The steps of the collaborative stage concern:
• The distribution of the number of votes (weights) among the 3 NN models. By

default, the number of votes is directly proportional to the testing performance;
• The choice of the quota between 50% and 100% of the total number of votes

(’legitimate’ WVS);
• Choice of voters power;
• Computation of the voting process output to establish the overall computing

system diagnosis;

In this way, we use in a collaborative way the decision power of each member of the
team, previously chosen in the competitive phase. Thus, the weighted combination
of each vote optimizes the final decision, leading to a more trustworthy diagnosis,
surpassing individual verdict.
Technically, the collaborative phase will use a system of weights wi, i = 1, 2, 3, directly
proportional to the diagnosis accuracy of the three NN models, that is w1 = 0.345 for
the MLP, w2 = 0.343 for the RBF and w3 = 0.297 for the PNN. Next, applying the
WVS with the above parameters, the overall automatic diagnosis can be established
for a new patient. A simulation consisting in three different cases is displayed in the
table below:

Table 4. Simulation of the competitive/collaborative diagnosing system
MLP RBF PNN WVS Diagnosis
0 1 0 0 · 0.345 + 1 · 0.343 + 0 · 0.297 = 0.343 0
0 1 1 0 · 0.345 + 1 · 0.343 + 1 · 0.297 = 0.64 1
1 0 1 1 · 0.345 + 0 · 0.343 + 1 · 0.297 = 0.642 1
0 0 1 0 · 0.345 + 0 · 0.343 + 1 · 0.297 = 0.297 0

While, in the first case, MLP and PNN provided the correct diagnosis, RBF, as
the second best failed. In the second case, the best competitor (the winner) failed to
establish the correct result, but the overall collaboration has remedied the situation.



36 S. BELCIUG

The third case is similar to the first one, and, in the last case, the collaboration be-
tween the first two best competitors lead to the correct diagnosis. To conclude, this
example illustrates the effectiveness of a competitive/collaborative diagnosis system
in comparison to separate standalone networks.

5. Conclusions

Automatic medical diagnosis, as a collaborative paradigm involving both medical
knowledge and Artificial Intelligence methods, has become a very important interdis-
ciplinary technology in health care, yielding non-invasive accurate diagnoses with low
costs and high speed.
In this context, the aim of this paper was to demonstrate the suitability of the ma-
chine learning methodology, used in a both competitive and collaborative way for
the diagnosis of breast cancer. The classification results were consistent with some
of the highest results obtained by using sophisticated and expensive imaging medical
techniques.
Future work would use more machine learning techniques in order to asses the poten-
tial of this Artificial Intelligence domain in computer-aided diagnosis.
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