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Elliptic Curve Cryptosystems and Scalar Multiplication

Nicolae Constantinescu

Abstract. One of the most used cryptosystems in the world is the RSA system. Its popu-
larity is due to its high security level. In the last decades, the studies have shown that the
cryptosystems based on elliptic curves have the same security level as the RSA system. Besides
that, the elliptic curve cryptosystems have a higher efficiency and they use shorter keys. In
this paper we describe basics of the elliptic curve cryptosystems. We, also, present methods
(based on the Lee et al. methods) of the scalar multiplications of the elliptic curves. In the
end, we propose an efficient method for simultaneous multiple point multiplication.
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1. Introduction

The elliptic curves are an area of mathematics and have been discovered for almost
a century. Neal Koblitz [21] and Victor Miller [20] have, independently, proposed, for
the first time, the use of the elliptic curves in cyptography. This was almost three
decades ago, in 1985. Since then, they are widely studied and the cryptographic
systems based on elliptic curves become more and more popular.

Definition 1.1. An elliptic curve over a field K is given by:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ K. The above equation is named the Waierstrass equation.

Definition 1.2. The discriminant of an elliptic curve given in the Waierstrass form
is:

∆ = d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

where:

d2 = a1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

and ∆ 6= 0.

For two extension fields of K the points of the curve are:

E(L) = {(x, y) ∈ L× L|E = 0} ∪O

where O is the infinity point.
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If K = Fp where p > 3 is a prime the Waierstrass equation can be simplified to:

E : y2 = x3 + ax + b

The discriminant of this curve is ∆ = −16(4a3 + 27b2). If we have the point
P (x, y) then the inverse will be −P (x,−y). If we have P (x1, y1) and Q(x2, y2) then
P + Q = R(x3, y3) is given by:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where λ = y1−y2
x1−x2

. For doubling a point 2P (x3, y3) we use the formulas:

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

where λ = 3x2
1+a

2y1
.

If x is replaced with x/z and y with y/z, where z 6= 0 we obtain the equation:

y2z = x3 + axz2 + bz3

The infinity point is O(0, 1, 0) and the inverse of P (x, y, z) is −P (x,−y, z).
The elliptic curves over a binary field are given by:

E : y2 = x3 + ax + b

The discriminant is ∆ = b, and for a point P (x, y) the inverse is −P (x, x + y).
Addition and doubling are computed in the same way as on the prime curves. The
projective coordinates are, also, used in the same way as on the prime curves. The
only difference is that for a point P (x, y, z) the inverse is P (x, x + y, z). The reader
can learn more about arithmetic of elliptic curves in [15, 17, 16].

The elliptic curve cryptosystems are very efficient and they, also, have a high
security level. The efficiency depends the most on the scalar multiplication. This
operation has a high time-consuming. The computational speed of such an operation
is influenced by:
• finite field operations;
• curve point operations;
• representation of the scalar k [1, 2].
The scalar multiplication kP , is in fact the adding of the point P to itself k times.

That means:

kP = P + P + P + . . . + P︸ ︷︷ ︸
k times

and −kP = k(−P ).

2. State of Art

Multiplication for general elliptic curves can be done with various methods [14, 13]:
binary method [8], the addition-substraction method [8], the k-ary method [9, 10], the
Montgomery method [18]. From these general methods the Montgomery methods is
considered to be the fastest [19]. If an elliptic curve admits an efficient endomorphism,
its use can speed up scalar multiplication. For special elliptic curves, the multiplier
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k can be represented with the Frobenius map. Some of the methods which use the
Frobenius map were proposed by Neal Koblitz [11] and Volker Muller [12].

Lee et al. presented two methods for computing scalar multiplications. The two
algorithms accelerate the computation of kP , where P is a point of the elliptic curve
over GF (2mn)[5]. In this paper, we discuss only the popular one. Its popularity is
due to the fact that the storages are reduced. In both their methods Lee et al. used
the Frobenius map.

Definition 2.1. Frobenius map
Let E be an elliptic curve over Fq with q elements. The q-th power Frobenius map

φq on E(Fq) is given by:
φq : (x, y) 7→ (xq, yq)

Then we have:

#E(Fq) = q + 1− t

where t is named the trace of φq. The above equation is equivalent with [3]:

φ2
q − tφq + q = 0 in the ring of the endomorphisms of E

Theorem 2.1. Let E be a non-supersingular elliptic curve over Fq. We denote Em

a curve regarded over the extension field Fqm , where m ≥ 2. Then, the multiplication
of an integer k on Em is given by:

k =
m+2∑

i=0

ciφ
i

where ci ∈ {j ∈ Z| − q/2 < j ≤ q/2}.
Definition 2.2. Frobenius expansion

If E from the above theorem is defined over GF (q), where q = 2 or q = 3, to
obtain a Frobenius expansion of k we consider E to be defined over GF (q2). Then
the Frobenius expansion is:

k =
dm

2 e∑

i=0

ciφ
i
q2

where ci ∈ {j ∈ Z| − q2 < j ≤ q2/2}
An algorithm for Frobenius expansion is described in [18]. The following theorem

has be proven in [4].

Theorem 2.2. For an integer k > 0 the Frobenius extension is k =
∑t−1

i=0 ciφ
i
q(−q/2 <

ci ≤ q/2, q ≥ 64). The extension is unique and has the length t ≤ m + 3.

Besides Frobenius map, Lee et al., also, applied Joint sparse form (JSF). The JSF
was invented by Jerry Solinas of the NSA [7]. The form is applied to obtain more
double zero positions for a pair of binary integers. For example, if we want to compute
13x + 15y, in binary we have:

13 = 1011
15 = 1111

We observe that every column has at least one 1. If we compute the operation as
(17− 4)x + (16− 1)y we have:
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17 = 10001
4 = 00100

16 = 10000
1 = 00001

An algorithm for implementing JSF is presented in [6].
Lee et. al. idea was, also, based on Muller’s method described bellow:
Muller’s method is used for computing jP where 1 ≤ j ≤ q/2. Thus, the scalar

multiplication is given by:

kP =




l1−1∑

j=0

cjφ
j


 (P )

kP = φ(. . . φ(φ(cl1−1P ) + cl1−2P ) . . . + c1P ) + c0P

This is applicable only to a small sized m.
Lee et al. method has the following steps:

(1) Compute the Frobenius extension of k =
∑m−1

i=0 ciφ
i(0 ≤ ci < q);

(2) The coefficients ci are represented as a binary strig (ci,n−1, ci,n−2, . . . , ci,1, ci,0);
(3) Compute kP =

∑m−1
i=0 ciφ

i(P ) =
∑m−1

i=0

∑n−1
j=0 ci,j2jφi(P );

To simplify the last computation we take a = aw−1, aw−2, . . . , a1, a0, a bit string,
and Sa = aw−1φ

w−1(P ) + aw−2φ
w−2(P ) + . . . + aiφ(P ) + a0P . Then, the last step

can be computed as:

kP =
n−1∑

j=0

2j
m−1∑

i=0

ci,jφ
i(P ) =

n−1∑

j=0

2jTj

where Tj is given by:

Tj =
m−1∑

i=0

ci,jφ
i(P ) =

d n
we−1∑

i=0

φwiScwi+w−1,j ,...,cwi,j

The following algorithm was described in [6]:

Algorithm 1 Lee et. al. algorithm for scalar multiplication
1: Q = O
2: for j = n− 1 downto 0 do
3: Q = 2Q
4: T = O
5: for i = dm/we − 1 downto 0 do
6: T = φw(T )
7: a = (cwi+w−1,j , cwi+w−2,j , . . . , cwi+1,j , cwi,j)
8: T = T + Sa

9: end for
10: Q = Q + T
11: end for
12: return Q
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The input for this algorithm are the integer k and the point P ∈ E, while the
output is the multiplication kP . Also, the precomputations and the storages for this
algorithm are the following:
• k =

∑m−1
i=0 ciφ

i(0 ≤ ci < q) (Frobenius expansion of k);
• for each ci compute ci,n−1, ci,n−2, . . . , ci,1, ci,0;
• compute Sa = aw−1φ

w−1(P )+aw−2φ
w−2(P )+. . .+a1φ(P )+a0∀(aw−1, . . . , a0) ∈

{0, 1}w.
An improved method for this algorithm was proposed in [6]. The main ideea is to

decrease the value of w. If w is small enough the amount of storage is considerably
improved. The authors take w = 2 and apply JSF of ci and ci+1. This increases the
probability that Sa = 0. The steps of the algorithm are described below:
(1) Compute the Frobenius expansion of k =

∑m−1
i=0 ciφ

i(−q/1 < ci ≤ q/2).
(2) If m mod 2 = 1 then ci = 0
(3) s = b(m− 1)/2c
(4) Apply JSF on each pair (c2x, c2x+1) ∀x = 0, 1, . . . , s
(5) a = (a1, a0) and Sa = a1φ(P ) + a0P

(6) Compute kP =
∑n−1

j=0 2j
∑m−1

i=0 ci,jφ
i(P ) =

∑n−1
j=0 2jTj where Tj =

∑m−1
i=0 ci,jφ

i(P ) =∑bm/2c−1
i=0 φ2iS(c2i+1,j , c2i,j)

The input and the output are the same as in the Lee et. al. algorithm: integer k,
point P and, respectively, kP . The precomputation and the storage are:
• k =

∑m−1
i=0 ciφ

i(−q/2 < ci ≤ q/2) (Frobenius expansion)
• JSF of (c2x, c2x+1∀(x = 0, 1, . . . , s))
• Sa = a1φ(P ) + a0P∀(a1, a0) ∈ {0,±1}2
The algorithm is:

Algorithm 2 The improved method of the Lee. et. al. algorithm
1: Q = O
2: for j = n− 1 downto 0 do
3: Q = 2Q
4: T = O
5: for i = s downto 0 do
6: T = φ2(T )
7: a = (c2i+1,j , c2i,j)
8: T = T + Sa

9: end for
10: Q = Q + T
11: end for
12: return Q

3. Our Method

3.1. Premises.
The method we propose in this paper is for computing simultaneous multiple point

multiplications. It is based on the Muller’s method and on the algorithm described
earlier.

The method has the input the integers k and l and the points of the elliptic curve
P and R, and the output kP + lR. In fact we have to compute:
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kP + lR = P + P + P + . . . + P︸ ︷︷ ︸
k times

+ R + R + R + . . . + R︸ ︷︷ ︸
l times

For computing kP + lR we know that:

kP =
n−1∑

j=0

2jTj

lR =
n−1∑

j=0

2jT ′j

where Tj =
∑bm/2c−1

i=0 φ2iS(c2i+1,j ,c2i,j) and T ′j =
∑bm/2c−1

i=0 φ2iS(c′2i+1,j ,c′2i,j)
. So,

we have:

kP + lR =
n−1∑

j=0

2j(Tj + T ′j) =
n−1∑

j=1

bm/2c−1∑

i=0

φ2i(S(c2i+1,j ,c2i,j) + S(c′2i+1,j ,c′2i,j)
)

3.2. Parameters.
The precomputation and the storage for our method are:
• k =

∑m−1
i=0 ciφ

i(−q/2 < ci ≤ q/2) (Frobenius expansion for k)
• l =

∑m−1
i=0 c′iφ

i(−q/2 < c′i ≤ q/2) (Frobenius expansion for l)
• JSF of (c2x, c2x+1 ∀x = 0, 1, . . . , s)
• JSF of (c′2x, c′2x+1 ∀x = 0, 1, . . . , s)
• Sa = a1φ(P ) + a0P∀(a1, a0) ∈ {0,±1}2
• Sa′ = a′1φ(P ) + a′0P∀(a′1, a′0) ∈ {0,±1}2

3.3. Algorithm.
A simple algorithm for our method is described below. It represents an improvement

brought to the algorithm 1 for the particular case w = 2.

Algorithm 3 Simultaneous multiple point multiplication
1: Q = O
2: for j = n− 1 downto 0 do
3: Q = 2Q
4: T = O
5: T ′ = O
6: for i = s downto 0 do
7: T = φ2(T )
8: T ′ = φ2(T ′)
9: a = (c2i+1,j , c2i,j)

10: a = (c′2i+1,j , c
′
2i,j)

11: T = T + Sa

12: T ′ = T ′ + Sa′

13: end for
14: Q = Q + T + T ′

15: end for
16: return Q
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3.4. Comparison.
For Lee’s improved algorithm presented earlier, the total number of operations is:

nD+A((nm/4)+(nm)Φ) where A means point addition, D doubling and Φ Frobenius
map. The demonstration is described in [6]. That means that for computing kP we
need nD + A(nm/4) + (nm)Φ operations. So, for computing kP and lR, applying
this algorithm two times, we will have 2(nD + A((nm/4) + (nm)Φ)) operations. For
computing kP + lR with the method we proposed the number of operations will be
smaller. This is because Q = 2Q will be computed for n times, unlike 2n times. So,
by applying our method we will have up to nD + 2(A((nm/4) + (nm)Φ)). This may
not seem a big difference, but when k and l are large numbers, the computing time
is considerable improved. The following image illustrates the two complexities of the
algorithms.

Figure 1

The complexity is presented for 1000 points from the elliptic curve. If the number
of points increases, the difference between the two figures will be more obvious.

4. Conclusions

In the last years, the cryptosystems based on elliptic curves are increasingly used.
This is because their security level and the efficiency one are very high. The complex-
ity of these cryptographic systems depends the most on the scalar multiplications.
The Frobenius map and the JSF are often used to decrease the operations’ number
for multiplying. The presented algorithms are some of the most optimized methods.
All three algorithms described were proposed for elliptic curves defined over subfields.
If the size of subfields is too small, it is hard to find good cryptographic curves. So,
it is recommended to use subfields like F2m . The simultaneous multiple point multi-
plication is often used for replacing the simple multiplication. Our method efficiently
computes kP + lR. The algorithm is practical for relatively small w. The method
can be applied not only for w = 2, but, also, for w = 3 or w = 4. In this case, the
storage resource is rich. If w > 4 the method cannot be applied because the storage
is highly increased.
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