
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 37(1), 2010, Pages 35–42
ISSN: 1223-6934

(CQ) algorithm implementation

Cristina Popirlan

Abstract. This paper presents an implementation of (CQ) algorithm of Nakajo and Taka-
hashi. The algorithm implementation permits us to analyze the relation between the weight
factor and the number of iterations and to visualize the sets C, Q and C

⋂
Q. From the

implementation we can see the importance of the weight factor in the (CQ) algorithm (an
algorithm hard to calculate, with difficult formulas and for which a lot of generalizations were
given in order to analyze its convergence).
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1. Introduction

Let Mi ⊂ H, i = 1, ..., m be a family of closed convex subsets of a real Hilbert
space H with nonempty intersection,

⋂
Mi 6= ∅. The convex feasibility problem ([7])

is:

Find a point of
⋂

Mi.

To solve the convex feasibility problem, in 2003, Nakajo and Takahashi [1] intro-
duced the following algorithm: every Mann iteration is projected onto some conve-
niently chosen sets Cn and Qn:




x0 = x ∈ Q,
yn = (1− tn)xn + tnTxn,
Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x0,

where PMx is the projection of x on the set M, T is the projection and tn ∈ [0, 1].
The name (CQ) algorithm comes from the sets C and Q that are calculated at

every step of the algorithm. From the construction of the algorithm, the sets Cn and
Qn are closed and convex, so Cn

⋂
Qn is also closed and convex, and we can conclude

that the sequence {xn}n ≥ 0 is well defined.
We also observe that Fix(T ) ⊂ Cn

⋂
Qn and so the construction of the sets Cn

and Qn is natural; if z ∈ Fix(T ), then, if T is demicontractiv, then relation that
defines Cn is satisfied, and if z ∈ Fix(T ) and xn is the projection of x0 on Qn, then
the relation that defines Qn is also satisfied. So it is natural to take xn+1 as close to
the intersection and so we take

xn+1 = PCn

⋂
Qn

x0.
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The concrete application of the (CQ) algorithm implies the evaluation of the sets Cn

and Qn, then explicit calculation of the projection of x0 on the intersection Cn

⋂
Qn,

or to solve a conditioned optimization problem, at ever step of the iteration. The
papers which contain data about the (CQ) algorithm implementation are limited.

All the topics about the (CQ) algorithm are about his convergence. The papers ([6],
[10]) connected to this subject analyze the strong convergence ([9]) of the algorithm
by studying the conditions that must be imposed to the operator so that the strong
convergence ([8]) is obtained. Because the (CQ) algorithm has difficult formulas, in
order to obtain strong convergence, some papers tried to improve the algorithm by
modifying it ([3], [11], [12]).

The convergence of the algorithm has been extensively studied. The main result
of [1] is:

Theorem 1.1. [1] Let C ⊂ H be a closed convex set from a Hilbert space H and
T : C → C a nonexpansiv operator with Fix(T ) 6= ∅. Suppose that the weight
sequence {tn}n≥0 satisfies the condition tn ∈ (0, 1].

Then the sequence {xn}n≥0 generated by the (CQ) algorithm converges strongly to
PFix(T )x0.

Remark 1.1. The (CQ) algorithm is also strong convergent if the operator is k-
demicontractiv [2] and the following condition is satisfied: the operator I-T is demi-
closed at zero.

A partial simulation of the (CQ) algorithm was given in [4]. The program analyses
the repartition of the points from a square which has the 2a dimensions, the square
has the center in axes origin, where a > 2 is given by the user of the application. In
the square it is built a n2 points network, where n is also given by the user. For every
point from the network it is studied if the points belongs to one, two or none of the
sets C and Q. This sets are different colored for each case in part:
(1) blue for the points in C that are not in Q;
(2) green for the points that are not in C but are in Q;
(3) red for the points in C and Q;
(4) yellow for the points that are not in C and not in Q.

In extension of that paper which implements a single step of the algorithm, in
this paper a complete implementation of the algorithm is given. All the conclusion,
from [5] and [4], regarding the distribution of a points network in the sets C, Q and
Cn

⋂
Qn, are extended in this paper which also analyze the influence of the weight

factor onto the number of iterations calculated until the solution if found.

2. The (CQ) algorithm - implementation and numerical experiments

The main idea of the algorithm is to project each Mann iteration on an intersection
of sets that are built at every step Cn and Qn. The application simulates the algorithm
and represents the sets Cn, Qn and Cn

⋂
Qn. For different input parameters, the

weight factor t, the initial approximation (starting point) and the network that is
analyzed, we study how the network is organized between the sets C, Q and C

⋂
Q,

how the weight factor influences the number of iterations until the solution is found.
Let us consider a family of 4 sets: Mi, i = 1, . . . , 4. Each set contains the points

(x, y) that verify the inequation aix+ biy + ci ≥ 0 where ai, bi, ci ∈ R are given. This
way we obtain a 4 inequations system with the solution given by the intersection of
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those 4 sets. Thus, the solution of the system represents the solution for the following

convex feasibility problem: Find a point of M =
4⋂

i=1

Mi.

In the paper it is implemented the (CQ) algorithm for solving the following convex
feasibility problem:





Mi = {(x1, x2) ∈ R×R, aix1 + bix2 + ci ≥ 0}, i = 1, . . . , 4

find (x1, x2) ∈ M =
4⋂

i=1

Mi

The sets Mi are half-spaces determinate by aix1 + bix2 + ci = 0, ai, bi, ci ∈ R,
i = 1, . . . , 4. So the sets are convex subsets of the space R2.

The application is made in MathCad and implements the algorithm (CQ) in the
form proposed by Nakajo and Takahashi [1]. To simulate the (CQ) algorithm need
projection operator which we will build with following four lines that will make pro-
jections and that, in our case, will lead to a square of side 2.




d1(x1, x2) = x1 + 1 ≥ 0
d2(x1, x2) = −x1 + 1 ≥ 0
d3(x1, x2) = x2 + 1 ≥ 0
d4(x1, x2) = −x2 + 1 ≥ 0

The sets Mi = {(x1, y1) ∈ R ×R, di(x1, x2) ≥ 0} are convex and the intersection
is represented by a square of side 2.

In the algorithm, the square is build with vectors a and b:

a=




−1
1
0
0


 and b=




0
0
1
−1




The application is build on the following algorithm: having a starting point, at
every step determinate the side square on which the projection is made on, then the
sets C, Q and C

⋂
Q are calculated by browsing the points from the network in order

to have a visual representation of the sets and, in the end of the application, the line
from the starting point to the final point (the point from the square of side 2, the
projection of the starting point onto this square) is drawn.

The starting point is set in the algorithm, as a weight factor t, but can be modified
easily so studying how these parameters influence the algorithm.

Let’s consider x = (x1, x2) ∈ R2, check for each of the four inequalities if di(x) < 0,
i = 1, 4 and take k so that

dk(x) = max
i=1,4,di(x)<0

|di(x)|.

The projection operator T is calculated with the formula:

T

(
x
y

)
= −

(
ak

bk

)
t +

(
x
y

)

where
(

ak

bk

)
represents the projection line and t is given by the following formula

t =
akx + bky + 1

a2
k + b2

k

.
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Figure 1. The construction of sets C and Q

Figure 2. The construction of set C
⋂

Q

In order to obtain the set C
⋂

Q the condition that must be satisfied is obtain by
unifying the conditions from the sets C and Q: nr1 < nr2 and ps > 0, where nr1, nr2

and ps are calculated in the algorithm.
The visual representations from figures 1 and 2 where obtain for the initial point

(4,−2). For a different starting point the representation of sets C and Q is different
and so the intersection set C

⋂
Q, the set where the projection is made in order to

obtain the next iteration, is also different.
In the application presented in [4] the obtained conclusion is that the weight factor

influence the representation of sets C and Q, and consequently of set C
⋂

Q. The
results obtained with this application reinforce previous results, and extend them
from a partial simulation to the entire algorithm.

Next the application build the iterative sequence, from the initial point with the
(CQ) algorithm the next iterations are calculated until the final point is the projection
of the starting point onto the square of side 2. And so the algorithm is used to solve a
convex feasibility (the inequalities that gives the square sides represents the sets and
the square is the intersection of those sets). The algorithm permits us to visualize
the projections until a point from the intersection is determined.

The function that permits us to construct the sequence of iterations is described
in the following algorithm:
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Algorithm 1 Set C and set Q
i=0
ii=0
p = T (x1, x2)(

y1

y2

)
= (1− t)

(
x1

x2

)
+ t

(
p0

p1

)

For i = 0, n
z1 = −aa + 2·aa

n · i
For j = 0, n

z2 = −aa + 2·aa
n · j

nr1 = (y1 − z1)2 + (y2 − z2)2

nr2 = (x1 − z1)2 + (x2 − z2)2

ps = (x01 − x1)(x1 − z1) + (x02 − x2)(x2 − z2)
If nr1 < nr2 then

c1i = z1

c2i = z2

i=i+1
If ps > 0 then

q1ii = z1

q2ii = z2

ii=ii+1
c pct0 = c1
c pct1 = c2
q pct0 = q1
q pct1 = q2

Algorithm 2 (CQ) Algorithm - construction of the iterative sequence
s0,0 = x1

s0,1 = x2

i=0
While i < nrmax

v = cq(si,0, si,1)
i = i + 1
si,0 = min(v0,0, v)0
si,1 = min(v0,0, v)1

In the sequence construction algorithm the min function determines the point
with minimum norm (it practical helps to determinate the projection point on the
set C

⋂
Q). In the figure 4 it can be seen the iterations sequence build with the

algorithm.
As it could be seen from the figure 4, the value of weight factor significantly influ-

ences the number of iterations calculated until the solution of the convex feasibility
problem is found. This conclusion holds for a large number of examples, so it can be
generalized.

If the weight factor is small (and that mean that it is between 0 and 1.0) the
iterations number is really large. This number become smaller when the weight factor
is getting closer to 2.0.
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Figure 3. The representation of sets C, Q and C
⋂

Q

Figure 4. Construction of (CQ) sequence
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Table 1. Relation between the weight factor and the iterations number

weight factor iterations number iterations number
0.1 257 372
0.2 200 368
0.3 169 331
0.4 129 304
0.5 93 304
0.6 80 304
0.7 57 275
0.8 35 227
0.9 18 201
1.0 17 183
1.1 17 178
1.2 17 157
1.3 13 140
1.4 7 122
1.5 5 68
1.6 3 49
1.7 2 28
1.8 2 3
1.9 2 3

From numerical experiments we can draw the conclusion that for (CQ) algorithm
the optimal value for the weight factor is a value closer to 2 (this analyze was made
for different examples and it was explained in tabel 1).

3. Conclusions and Future Work

The application represents a complete simulation of the (CQ) algorithm and allows
us to analyze the way weight factor influences the number of iterations calculated
until the solution of the convex feasibility problem is computed (until a point from
the set C

⋂
Q is found). It can easily be observed how the sets C, Q and C

⋂
Q are

constructed. The road from the starting point (the initial approximation) to the finish
point (the projection of the initial point onto the square of side 2) can be visualize.

The (CQ) algorithm was implemented in this paper in order to study the connection
between the weight factor and the number of iterations calculated until a solution of
the convex feasibility problem is found.

The results are as expected. The weight factor influences the iterations number
and this has nothing to do with the initial point. This means that for any initial point
for small weight factor the iterations number has a large value and when the weight
factor increases the number of iterations decreases.

All results from this paper are obtain by numerical experiments and by applying
the (CQ) algorithm implementation to a lot of numerical data.

In the future work, theoretical results must be obtain in order to sustain the nu-
merical results obtained in this paper.
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