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Abstract. Present paper brings together two novel evolutionary techniques designed for clas-
sification and applied for the differentiation among five possible degrees of liver fibrosis within
chronic hepatitis C. A purely evolutionary method - the cooperative coevolutionary classifier
- endowed with a hill climbing algorithm for the selection of influential attributes is put in
opposition to a hybridized approach for the task - the evolutionary support vector machine.
Each of the two exhibits interesting resulting features as regards additional information on
the importance of each indicator and the interaction among these for the final predicted out-
come. The medical experts can eventually benefit from both methodologies as a support for
their decision making and decide what further knowledge they need to extract from them, i.e.,
either in the form of conditional rules, weighted formulas or both.
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1. Introduction

The correct prediction of the degree of liver fibrosis provides crucial information
about the appropriate diagnosis and treatment in patients with chronic hepatitis C.
New non-invasive ways of assessment in combination with intelligent computational
support are the primary current concern of this area in medicine. The current paper
responds to this demand by presenting two possible evolutionary learning techniques
that can achieve both a competitive accuracy and provide valuable extra information
on the influence and interaction of predictive attributes.

The cooperative coevolutionary algorithm (CCEA) has been previously successfully
embedded into a classification scheme [21, 22] and is now used for distinguishing
between five possible stages of fibrosis. Conditional rules for each degree are evolved
by parallel subpopulations and interact at the evaluation phase in order to form
a complete set to classify the data. Moreover, a hill climbing algorithm is further
inserted to the preamble of the CCEA and conducts a dynamic feature selection to
aid the decision process.

Complementarily, a support vector learning (SVM) scheme endowed with an evolu-
tionary algorithm (EA) engine for solving the inherent optimization problem is put to
the same task. The evolutionary support vector machine approach (ESVM) [23, 24]
outputs weighted formulas of the relations between the medical indicators towards a
certain fibrosis outcome.
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The paper is structured in the following manner. Section 2 describes the fibrosis
staging problem in detail and outlines the available data for experimentation. Section
3 defines the chosen standpoint on the classification task, while sections 4 and 5
present the two approaches in turn. Section 6 gives the experimental results while a
comparison of the advantages of each considered technique is discussed in the enclosing
section.

2. Liver Fibrosis Staging

The prognosis and management of chronic liver diseases largely depend on the
amount and progression of liver fibrosis. In patients with chronic hepatitis C, the
precise stage of liver fibrosis is the most important predictor of disease progression
and determines the need for antiviral therapy [17]. Until recently, liver biopsy has
been the only way to evaluate fibrosis and it has traditionally been considered as
the gold standard [3]. Liver fibrosis is evaluated semi-quantitatively according to the
METAVIR scoring system as follows: F0 - no fibrosis, F1 - portal fibrosis without
septa, F2 - portal fibrosis and few septa, F3 - numerous septa without cirrhosis and
F4 - cirrhosis.

However, liver biopsy is an invasive and painful procedure, often with poor patient
compliance, also carrying a significant, although small risk of life-threatening com-
plications [5]. An obvious trend in the clinical practice observed in the latest years
consists of finding a correct method for liver fibrosis evaluation in a non-invasive way,
both by biochemical tests as well as imaging methods, as an alternative to liver biopsy.
The latest technological discovery in the evaluation of liver fibrosis is the Fibroscan, a
specially adapted ultrasound device using the principle of the one-dimension transient
elastography for the assessment of liver stiffness. This gained popularity as a user-
friendly, non-invasive technique for measuring liver stiffness, which has been shown to
be significantly correlated with liver fibrosis stages in a variety of clinical conditions
including chronic hepatitis C [6, 19]. Although a good binary threshold differentiation
among degrees of fibrosis has been obtained from investigating solely stiffness [8, 29]
(even on the particular patients involved in this study [14]), the interaction between
itself and the other complementary medical examinations could further improve the
performance while increasing the complexity of the problem through a simultaneous
distinction between more degrees of fibrosis.

It is in this respect that the association between the elastographical value, together
with the other clinical and biochemical medical attributes, and the corresponding
different stages of liver fibrosis must be artificially discovered and intelligently learnt
in order to offer a reliable automated assistance within the modern medical decision-
making in the field. Therefore, we study a chronic hepatitis C data set coming from
the 3rd Medical Clinic, University of Medicine and Pharmacy, Cluj-Napoca, Romania,
that contains 722 samples of 24 indicators. The first one is the stiffness indicator from
the Fibroscan, while the others represent the usual hematological and biochemical
(illustrative of the hepatic function) exams that are required in a patient with chronic
hepatitis C. The fibrosis stage is confirmed by the result of the liver biopsy procedure.

Previous works on a primary division of the current data set included 125 patients
and 26 attributes and pursued the same goal of differentiating among the 5 distinct
liver fibrosis stages. It involved the application of neural networks, näıve Bayesian
classification and the k-nearest neighbor algorithm, while investigating the importance
of the stiffness indicator within the discrimination [9]. On the same initial collection,
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[1] employed a näıve Bayes classifier and a probabilistic neural network model; these
were also used in conjunction with a feature selection algorithm, but there was gain
only in runtime, without improving the accuracy. Overall, the best reported accuracy
of prediction on this smaller data set was of 70%.

In comparison to the previous research inquiries, the two proposed evolutionary-
powered learning engines aim to demarcate among the 5 different classes on the signif-
icantly larger data set and additionally provide some automatically detected relations
(either in the form of rules or weighted formulas) between the indicators that were
considered for classification.

3. A Viewpoint on the Formulation of the Classification Task

A classification problem may be defined by a training set of m pairs of the form
(xi, yi), where each couple holds the information related to a data sample and its
confirmed outcome, and a test set of p pairs of the type (x

′
i, y

′
i), where the target is

hidden to the learning machine and must be predicted. Every example is described
by n attributes, xi,x

′
i ∈ [a1, b1]× [a2, b2]× ...× [an, bn], where ai, bi denote the bounds

of definition for attribute i of a sample, i = 1, 2, ..., n, and each corroborated outcome
yi, y

′
i ∈ {0, 1, ..., k − 1}, where there are k possible classes.

Learning then pursues two steps: training and testing. A chosen classifier learns
the associations between each training sample and the acknowledged output. Either
in a black-box manner or explicitly, the obtained classifier then takes each test sample
and makes a forecast on its probable class, according to what has been learnt. For
generalization ability testing and objectivity, it is customary that the training/test
stages are repeated for a (sufficient) number of times over different arrangements
of the training/test sets and this is called cross-validation. One common type of
cross-validation (and the one experimentally chosen for this work) is the repeated
random sub-sampling validation, which presumes the successive random splitting of
the given data into training and test sets. The prediction accuracy of the technique is
eventually assessed as the average result concerning the number of correctly labeled
cases over the total number of test samples. The information regarding the disposal
of the misclassified examples – the confusion matrix – brings additional insight into
the problem and possible limitations of the considered method.

4. Cooperating Evolutionary Rules for Degree Differentiation

Within a possible evolutionary treatment of a classification problem [21, 22, 26],
the aim is to perform a generation of rules for each class. Rules are first randomly
created, subsequently tested against the training set and continually adjusted in order
to increase the training accuracy they provide. A means through which rules with
different labels communicate must be consequently further created. Recent research
showed that cooperative coevolution can be successfully applied for classification pur-
poses [21, 22].

According to the Darwinian principles, an individual evolves through the inter-
action with the environment. An important part of its environment is, however,
represented by other individuals so, as a consequence, evolution can be viewed as
coevolution. On the one hand, the individuals could collaborate for the same purpose
and thus construct the solution together within a cooperative coevolution or, on the
contrary, they could compete against each other for the same resources as part of a
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competitive framework. The CCEA [18] requires that any candidate solution of the
problem at hand is decomposed into several subsolutions and each of these separate
components is evolved by a distinct EA. The only interaction between the different
populations takes place when an individual is evaluated: its quality (or adaptation to
the environment) cannot be measured separately because it represents only a part of
a potential solution, but individuals from all the other populations have to be selected
and brought together in order to construct a complete candidate solution that can be
assigned a fitness score. The numerical value that stands for its evaluation is assigned
as the fitness of the initial individual; naturally, its fitness value directly depends on
the collaborators that are chosen, as an individual might form a good solution with
some individuals from the other populations, while it might yield very poor results
with others.

For the classification problem, each population may evolve rules for a certain class
and thus the number of species equals the number of outcomes of the classification
problem. A complete candidate solution may therefore represent an entire set of rules
that optimally associates the indicators with the fibrosis levels.

Each rule has the same representation as the samples in the data set to be clas-
sified, i.e., it has the same number of features and one outcome. The value for each
attribute is initially randomly generated following a uniform distribution between the
definition bounds for that specific feature, that is between the minimum value that
exists for that attribute in the data set and the maximum one. Individuals can be
interpreted as simple IF-THEN rules having the condition part in the attributes space
and the conclusion in the classes space (1). This representation is consistent with the
considerations within the area of learning classifier systems [4, 11, 28].

However, here an individual does not specifically encode the decision class, as this
is implicit from the population to which the rule belongs.

IF attr1 = val1 AND attr2 = val2... AND attrn = valn THEN yi (1)

In order to evaluate an individual (rule) from a certain population, a complete set
of rules has to be formed, in the sense that one rule from each of the other classes
has to be selected. The entire rule set is then applied to the training data: for every
sample, similarities between each rule in the set and the current object are computed
and the found class is concluded to be the one of the rule that is closest. A prediction
accuracy over all training samples is obtained and assigned as the fitness of the rule
to be evaluated.

In order to calculate how close the current rule is to a sample from the training/test
set, a distance measure has to be employed. In the experiments conducted within the
current paper, it is the Manhattan distance (2) that is considered in this respect; c
and s represent an individual and a sample, respectively, and ci is the i-th component
of the potential solution.

d(c, s) =
n∑

i=1

| ci − si | (2)

However, there is obviously no obstacle in using any other desired distance measure.
At the end of the run, CCEA provides several populations of rules, each one with

the prototypes that define a certain class. In order to apply these rules for samples
in the test set, individuals are selected once more from each population, objects are
labeled accordingly and the prediction accuracy is achieved.
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It is customary that techniques for automated diagnosis in biology and medicine
[15, 20] make an a priori use of some mechanism of selecting the most relevant indi-
cators in the data set. The reason lies in the assumption that some attributes might
only hinder the search for the accurate solutions or even block the entire method
under the curse of dimensionality. This proves especially true for the CCEA, as it
otherwise takes all indicators in the conditional part of a rule.

In this respect, the classification method can be aided by an incorporated dynamic
feature selection mechanism. In order to make the additional procedure efficient, a
limited number of applications of the CCEA technique is desired. For that reason, a
hill climbing algorithm is used with the purpose of choosing the attributes that make
the CCEA perform more beneficially.

An individual is represented as binary, has a number of genes equal to the number
of features that exist in the data set and a value of 1 means that the corresponding
attribute is taken into consideration, while 0 that the attribute is skipped. An in-
dividual is randomly constituted and the selected attributes are considered for the
CCEA. The algorithm generates rules based on the newly defined training set and
then applies them to the test set; an accuracy is obtained and that value represents
the fitness evaluation of the hill climber. Perturbation is then applied for the individ-
ual, a new climber is obtained, it is evaluated and, if fitter, it replaces the previous
one.

Once evolution is finished, the best individual from each population is collected
into the rule set, which is applied to the test samples. It is therefore one rule that
”votes” for each class.

5. Evolutionary Support Vector Machines for Stage Classification

A modern and powerful way to tackle classification is provided by the original,
though internally complex technique of SVMs. The methodology considers the dis-
tinct classes of examples being divided by geometrical surfaces – separating hyper-
planes – whose optimal behavior is determined by an extension of the method of
Lagrange multipliers.

The SVM learning scheme specifically leads to the optimization problem in (3).
A hyperplane of coefficients w and b is required to simultaneously achieve the sepa-
ration with a minimal training error expressed by the constraints and by preserving
the ability to generalize on new instances, specified by the objective function. The
constraints may be relaxed by introducing allowed deviations ξi, i = 1, 2, ..., m, to the
formulation, with the additional requirement that they are kept to a minimum (pe-
nalized by C). If the samples cannot be delimited in a linear fashion, then a nonlinear
surface is obtained by the kernel trick [27]: data are mapped into a higher dimen-
sional space where a linear surface is able to do the separation. Kernels are commonly
taken in either a polynomial expression (with a certain degree) or Gaussian (radial)
formulation (of parameter γ).

min
w,b

such that the objective ‖w‖2 + C

m∑

i=1

ξi, C > 0, holds

subject to constraints yi(〈w,xi〉 − b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, ..., m . (3)
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The resulting unimodal optimization statement in (3) may be standardly resolved
by relying on a mathematically complex extension of the Lagrange multipliers tech-
nique [27]. A dual formulation is derived and the optimal Lagrange multipliers are
considered as the solutions of the system resulting by setting the gradient of the new
objective function to zero. Once the Lagrange multipliers are found, several under-
lying conditions may be used to further compute the coefficients of the hyperplane.
Existing software programs, however, only output the class of a test case directly
after the black-box training; no formula describing the relations among indicators
can be visualized, at least not straightforwardly. However, (3) may be alternatively
plainly addressed by the adaptable and general algorithms of evolutionary computa-
tion. Based on principles of evolution and hereditary [7], EAs are able to inherently
and unrestrainedly determine the coefficients that lead to an optimal separation into
classes. The novel evolutionary technique constructed as an alternative of the SVM
architecture thus adopts the learning strategy of the latter but aims to simplify and
generalize its training, by offering a transparent substitute optimization. Contrary to
the canonical technique, the evolutionary approach can at all times explicitly acquire
the coefficients of the decision function, without any further constraints. Moreover,
in order to converge, the evolutionary method does not require the positive (semi-
)definition properties for kernels within nonlinear learning.

The present EA methodology addresses the primal optimization problem, however
there are other evolutionary computation approaches that either solve the dual prob-
lem [16] or target further SVM-related issues like kernel evolution [12], parameter
approximation [10] or selection of best features [13].

ESVMs [23, 24, 25] maintain a population of potential solutions. Each such in-
dividual encodes a candidate array of w and b and the whole set interacts towards
the creation of enhanced solutions and the survival of the fittest against the training
examples. After a number of generations, the EA converges to an optimal solution,
which represents the best decision hyperplane that separates samples from divergent
classes and is both accurate and general enough. Since the coefficients w and b are
encoded in the structure of individuals, the equation of the evolving separating hy-
perplane is available at all times and especially useful at the end of the process. The
evolved mathematical combination of chronic hepatitis C indicators may prove to be
helpful to understand the weight and interaction of each medical attribute on the liver
fibrosis grade. The accuracy of prediction of the model is computed using the avail-
able test samples, while the formula is stored for future reference and employment
when a new case appears.

The considered EA features the following specific elements and behavior. An indi-
vidual c is represented as an array of the coefficients of the hyperplane, w and b (4).
Individuals are randomly generated, such that wi ∈ [−1, 1], i = 1, 2, ..., n (recall that
n is the number of features of a sample), and b ∈ [−1, 1].

c = (w1, ..., wn, b). (4)

The fitness expression derives from the objective function of the optimization prob-
lem (3) and is subject to minimization. Constraints are handled by penalizing the
infeasible individuals through appointing a function t : R → R which returns the value
of the argument, if negative, and zero otherwise. Consequently, the expression of the
fitness function for determining the optimal coefficients of the decision hyperplane is
defined as in (5).
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f(w, b) = ‖w‖2 + C

m∑

i=1

ξi +
m∑

i=1

[t(yi(〈w,xi〉 − b)− 1 + ξi)]2. (5)

Additionally, all deviations ξi, i = 1, 2, ...,m (m is the number of samples), are
computed [2] in order to be referred in the fitness function. If the sign of the deviation
equals that of the class, the corresponding ξi = 0; else, the (normalized) absolute
deviation is returned as the indicator for error. Normalization may be necessary
as the sum of deviations is added to the expression of the fitness function. As a
consequence, in the early generations, when the generated coefficients lead to high
deviations, their sum, considered from 1 to the number of training samples, takes
over the whole fitness value and the evolutionary process is driven off the course to
the optimum.

As the fittest coefficients of the separating hyperplane, wopt and bopt, are found,
the target for a new, unseen test data instance x

′
i can be determined directly following

the function in (6).

f(x) = 〈wopt,x
′
i〉 − bopt, i = 1, 2, ..., p. (6)

If the classification task is intrinsically binary, then the class is determined from
the sign of the function as positive or negative. If the problem has several (k > 2)
classes, then a voting mechanism, based on the values of the current sample as a
parameter of the different resulting decision functions, is applied. In the one-against-
all mechanism that is chosen to act on the present prediction challenge, a distinct
ESVM is created to separate one fibrosis grade from the united others. Each ESVM
algorithm determines the optimal expression of a corresponding decision function (6).
In order to establish the label for a test sample, the values of the k functions for that
example are compared and the highest estimate is taken to point to the class that
triggered that ESVM. The accuracy of the ESVM classifier is calculated by counting
the percent of correctly appointed test cases.

6. Rules versus Formulas for Fibrosis Staging

On the one hand, experimentation targets to obtain the ESVM model for the
separation of the chronic hepatitis C patients into the five distinct classes of fibrosis
in the additional attempt to provide the formula of indicators interaction for each
outcome as opposed to the others. On the other hand, a hill climbing algorithm is
initially used to dynamically pick the proper attributes from the data set and then
the CCEA is employed to classify the selected data into the same five different stages.
Our task is to put the two approaches against each other with the aim of an objective
comparison in terms of both accuracy and further support for the medical decision
making.

6.1. Experimental setup. Both methodologies obey the following conditions:
• The 722 patient examples available for fibrosis degree determination are split into

542 training and 180 test samples, in the proportion 75-25% that is customary
in machine learning experimentation. Samples are normalized.

• Both the ESVM and the CCEA are run 30 times on the randomly generated
training and test sets of the established percentage, for reasons of both statistical
validity and mandatory analysis within EA trials. The reported performance
is computed as the average of the accuracy results in 30 applications of the
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algorithm on the test samples. Therefore, we employ repeated random sub-
sampling cross-validation.

• The values for the variables to be tuned are manually generated, therefore show-
ing the ease of parameterization of both algorithms.

• We employ common operators for real encoding, i.e., intermediate recombina-
tion and mutation with normal perturbation [7]; selection is chosen as the well
performing binary tournament type.

The hill climber starts from a randomly generated binary configuration of 24 genes
(the number of attributes from the data set), the indicators that have a corresponding
value of 1 are considered as selected and the CCEA is applied 30 times to the data
set referring only the chosen features. The average accuracy obtained over the 30
repeats represents the fitness evaluation of the hill climber. In each of the 30 runs,
the training and test sets are randomly chosen in order to have a more objective
evaluation.

Mutation is then applied and the genes values can be flipped depending on the
probability set for this purpose. The generated offspring is evaluated and, if fitter, it
replaces the parent hill climber. The process continues and, if there is no improvement
in fitness for a number of iterations (20), a new individual is generated and the process
restarts. A fixed budget of fitness evaluations is set for the hill climber as a stop
condition for the algorithm (1000). The mutation probability is decided to be small
(0.1) in order to have only slight steps from one configuration to another (about 2-3
bits are changed when mutation occurs).

Each involved CCEA population is set to a size of 50 and, since there exist five
classes, there are 250 individuals evolved overall. A high probability is set for recom-
bination (0.9) with the purpose of bringing homogeneity within each species, while
for the mutation probability a small value is chosen (0.2) in order to gradually explore
the search space and avoid the rapid change of the entire genotype. As the values of
the genes are set between 0 and 1, the mutation strength is set to a small number
that allows the search to perform fine tuning (0.1). A number of 80 generations is
set as a stop condition, as it has been observed during pre-experimentation that it
provides sufficient time to reach an optimum.

As for the parameters of the ESVM, the population of potential hyperplanes has
a size of 150. Probabilities of recombination (0.2) and mutation (0.2) have small
values for a slow change in individual structure, while mutation strength (0.9) makes
large jumps for the selected genes. The stop condition for the algorithm is set to
300 generations. Following pre-experimental conclusions, the SVM specific variables
consist of a polynomial kernel of degree 1 and a penalty for errors C = 1.

The obtained results and specific outcome behavior of the two approaches for
fibrosis staging are shown separately in the next subsections.

6.2. Results of cooperative coevolution for classification. Depending on the
selected attributes, the best accuracy result obtained as the average over 30 repeated
runs of random cross-validation of the CCEA is of 62.11% correctly classified pa-
tients. Over the 1000 fitness evaluations of the hill climber, the average accuracy is
of 55.93%, while the worst test accuracy is of 47.92%. The individual that yields the
best obtained accuracy only selected 9 attributes out of the 24 available and these are
the following: stiffness, triglycerides, HDL cholesterol, aspartate aminotransferase,
gama glutamyl transpeptidase, alkaline phosphatase, prothrombin index, prolonged
activated partial thromboplastin time and hematocrit.
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Actual

Predicted

F0 F1 F2 F3 F4
F0 0 0 2 0 0
F1 7 59 27 7 1
F2 0 0 4 0 8
F3 0 0 0 8 8
F4 0 0 3 2 46

Table 1. Example of a confusion matrix of CCEA for differentiating
the correct labeling from the misclassifications: predicted outcomes
on the rows, actual classes on the columns, number of correct pre-
dictions on the diagonal.

As concerns the quality of the results, a confusion matrix is outlined in Table 1, thus
illustrating how far the misclassified samples are from the actual classes and which
degrees are better interpreted. It is taken from a run that achieved an accuracy of
65% on the test set. The correctly classified samples are the ones on the principal
diagonal. The test set comprises of 180 samples, all from the F1 class are correctly
classified, but, unfortunately many from F2 are also labeled as F1. Most of the data
are split between levels F1 (59) and F4 (62) and the CCEA basically concentrates on
recognizing these two classes as good as possible. However, it has to be underlined
that, in each run, the training and test data are different and the confusion matrices
may change considerably.

Naturally, besides the discussed configuration, there are several others found by
the hill climbing algorithm which also produce good results. It is very interesting
to observe that there are not always the same attributes that are selected; the hill
climbing algorithm rather discovers sets of features that in connection perform better.
However, there are some attributes that are included more often into many success-
ful configurations. Overall, among the attributes that seem more decisive are the
following: stiffness, sex, cholesterol, glycemia, prothrombin index and alkaline phos-
phatase. However, the attributes were not necessarily considered in this combination
and there are others that immediately follow in importance, like prolonged activated
partial thromboplastin time or haematids; the enumeration could continue in the order
of weight, according to the automated artificial intelligence composed methodology
used in the current paper. It has to be underlined however that the most significant
feature, the one that has been chosen in most of the successful combinations, was the
liver stiffness indicator, fact that is also acknowledged by the medical experts. What
is finally important about the approach is that, beside establishing the most impor-
tant attributes, the CCEA also provides thresholds for the values of these remaining
indicators.

The computational effort has also been investigated, in order to fully reach a com-
parison between the two classifiers. The two approaches are mechanically very dif-
ferent, still in order to bring experimentation at this level somewhat closer, we have
run the CCEA only once when evaluating the hill-climber. The necessary number of
fitness evaluations was found to be 1880000, while the computational time reached
1288 seconds. However, it must be remembered that the coevolutionary approach
additionally embeds a preprocessing hill-climber which, naturally, besides its feature
selection advantage also leads to increased computations.
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Actual

Predicted

F0 F1 F2 F3 F4
F0 0 0 0 0 0
F1 7 63 32 9 1
F2 1 1 2 1 0
F3 0 0 4 4 3
F4 0 0 2 2 48

Table 2. Example of a resulting confusion matrix of the ESVM
for the 5-degree fibrosis differentiation: Rows exhibit predicted out-
comes, columns show actual classes. The diagonal outlines the
amount of correctly classified samples, while each intersection of co-
ordinates signals the number of misclassified cases.

6.3. Results of evolutionary support vector machines. The average over the
30 performed trials of random cross-validation resulted in a test accuracy of 62.03%.
The distribution of correctly predicted versus misclassified cases per class can be
visualized in the confusion matrix of Table 2, in an example run that obtained 65%
accuracy.

The solution provided by the ESVM is also important for the capability to output
the formula for the differentiation of each class from all the others. The formulas
bring evidence of the high significance of the Fibroscan-derived stiffness for classes
F0, F1 and F4, while the usual medical exams exhibit different smaller influences
as each class is concerned. Once the expressions of the relationships between the
medical indicators and each fibrosis degree are found as in this example, the labeling
of any new case can be instantly conducted: Its values for every attribute (A1-A24)
are introduced in each stored formula and the maximum obtained number indicates
the predicted grade from whose expression it was computed.

As regards the computational effort of the ESVM, one run is terminated in 42.3
seconds and needs 248179 fitness evaluations.

7. Conclusions

It can be observed that both approaches that are undertaken for offering support
for liver fibrosis degree differentiation behave similarly as concerns the accuracy of
prediction. Each of them may be therefore chosen to be employed for the compu-
tationally aided staging, depending on the preference for the accompanying helpful
information. The ESVM and CCEA with hill-climbing each possess unique features
in this respect that are summarized below:
• The hill-climber inside the CCEA is additionally able to select the most im-

portant indicators of fibrosis. This proves to be important for the given task,
as learning can concentrate only on the most influential features from all given
attributes.

• The ESVM inherits the learning roots from SVMs and can thus circumvent the
curse of dimensionality for highly multidimensional data sets.

• The ESVM is able to provide a formula of the relationship between indicators
and fibrosis degree. This is highly significant for an immediate testing of new
cases and for understanding relationships between medical variables that may be
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difficult to grasp even for experienced physicians. The weights also offer some
insight on the importance of every indicator for the staging process.

• The CCEA can provide the thresholds under which the previously considered
essential attributes make the distinction between one fibrosis level and the others.

• Although the CCEA needs more computational effort, this is explainable for its
preprocessing abilities.
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