
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 37(1), 2010, Pages 55–70
ISSN: 1223-6934

Inference Mechanism in Conditional Schemas

Mihaela Colhon and Nicolae Ţăndăreanu

Abstract. Most of the rule-based systems are developed starting with a given set of rules.
Thus, various inputs of the system are applied on the same rules in the reasoning process. This
is an important restriction that can be avoided by designing systems for which the inference
rules are extracted from the knowledge piece applied on their inputs. Such inputs are called
conditional knowledge ([14]). By the name of conditional schema we understand a graph
based structure that can represent conditional knowledge ([14]). Such a structure does not
include proper rules as in the case of the rule-based systems. The rules are extracted from
conditional knowledge. In this paper we formalize the inference in conditional schemas.

2010 Mathematics Subject Classification. Primary 68T30; Secondary 68T50.

Key words and phrases. conditional knowledge, rule-based reasoning, partial algebra,
morphism of partial algebras, inference.

1. Introduction

Various aspects related to the concept of conditional knowledge can be relieved in
the literature. This concept can involve a probabilistic aspect. In [16] a Bayesian
higher-order probability logic reasoning approach with interval probability parame-
ters to the problem of making inference from conditional knowledge is proposed. A
logical approach to non monotonic reasoning based on the notion of a non monotonic
consequence relation is proposed in [8]. A conditional knowledge concept intended to
help the reasoning process about distributed simulations is given in [3]. Conditional
knowledge bases have been proposed as belief bases that include defaults rules of the
form “generally, if α then β”. The complexity of default reasoning from conditional
knowledge bases is treated in [5]. The concepts of nested conditional knowledge bases
and co-nested conditional knowledge bases were introduced in [6]. The tractable
classes presented in [6] can be recognized in linear time. Possibilistic and probabilis-
tic semantics of conditional knowledge bases are analyzed in [1]. The inference with
conditional knowledge bases is also investigated in [2].

The concept of conditional knowledge is connected also by rule based systems.
Today, most of the successful knowledge-based systems are such systems. These are
computer programs that operate using a set of IF-THEN rules (production rules).
The knowledge in the rule-based systems or production systems is often classified as
follows ([12]):
◦ declarative - propositions or facts describing the current state of the problem

(e.g. facts that are known to be true)
◦ procedural - the logical rules: IF condition THEN action

A comprehensive collection of state-of-the-art advancements in rule languages, con-
taining methodologies for building rule-based applications can be found in [7].

Received December 20, 2009. Revision received February 08, 2010.

55

56 M. COLHON AND N. ŢĂNDĂREANU

There are two ways to work with rules of the form IF-THEN:
• Many systems contain their proper set of rules and declarative knowledge are

applied on these rules. This is the classic way. The basic control architecture of
such rule-based system consists of two modules called “recognition” and “action”
([4]). The recognition module involves selecting a single rule for execution which
is further passed to the selection and conflict resolution module. Two strategies
were developed for these systems: forward chaining also known as data-driven
reasoning (LISP70, DENDRAL) and backward chaining or goal-driven reasoning
(MYCIN).

• The second way is to describe the rules in input texts and thus, the control
architecture of such systems is very dynamic as it changes for each input. The
concept of conditional schema introduced in [14] belongs to this category.

In [13] we introduced the concept of conditional relation, the algebra of these relations
is studied and an intuitive connection with knowledge representation is presented. The
concepts of conditional schema and conditional graph were defined in [14]. We proved
that every conditional schema generates one and only one conditional graph.

In this paper we describe the inference mechanism in a conditional schema. As we
proved in [14], a conditional schema generates one and only one conditional graph and
thus the concepts of graph theory can be successfully used. The inference process of
conditional schema is defined by means of the conditional graph structure. It uses the
rules extracted from inputs in order to assign values for some “conditional mappings”.
In this manner, the rules can be considered as ”semaphores” that allow to use some
parts of the paths in the corresponding conditional graph.

The advantages of using a graph-based structure in the representation and reason-
ing mechanism consist in the fact that we can model complex flow and loop patterns,
that cannot be directly translated into block structures ([9]).

The paper is organized as follows: in Section 2 we recall the main concepts and
results treated in [14], which are used by the subsequent sections; in Section 3 we
formalize the inference in a conditional schema; Section 4 defines the answer function
of a system based on conditional schemas; In Section 5 all the concepts are exemplified
and the computations are illustrated; the last section includes the conclusions and
future work. As we mentioned in Section 6 the model of knowledge representation
proposed in this paper lies at the confluence of mathematical logic, rule-based systems
and graph theory.

2. Previous concepts and results

The conditional schema proposed in [14] is designed to represent declarative and
procedural knowledge given in a natural language. The set of objects from such texts
together with their properties and the relations existing between objects form the
declarative knowledge of the schema. The set of sentences of the form if-then defines
the context of procedural knowledge. In what follows we will suppose that the relations
between objects are binary ones. A relation is obtained by extracting from the text
all the ordered pairs of objects satisfying the same property.

If we note by Ob the set of objects then, each binary relation σ extracted from the
text is a subset σ ⊆ Ob×Ob. In [13] two types of binary relations are considered:

- classical binary relations which are unconditionally true, eg. “Bob is a fish”
represented by:

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 57

is−a = {(Bob, fish), T (Bob)}
where T stands for true.

- conditional binary relations that are true under some conditions; for example,
the sentence “If Bob lives in a fishbowl then it is a fish” has the representation:

is−a = {(Bob, fish), p(Bob)}
where p(x) has the meaning “x lives in a fishbowl”

Conditional mappings like p are defined in terms of declarative knowledge ([13]). If
Cs denotes the set of these mappings then:

- each t ∈ Cs is defined as t : Ob → {true, false}
- if t = T ∈ Cs then T (n) = true, for every n ∈ Ob.
Intuitively, for each conditional mapping t ∈ Cs and for an arbitrary object n we

say that “t is on” for n if the condition attached to t is satisfied for n and “t is off ”
otherwise.
A conditional schema is a tuple S = (Ob, Cs, Er, A, V , Bcr, h, f) such that ([14]):
• Ob = Obind∪Obabstr, where Obind is the set of the individual objects and Obabstr

is the set of the abstract objects; we suppose that Obind ∩Obabstr = ∅;
• Cs is the set of conditional mappings;
• Er is the set of the symbols for conditional binary relations;
• A is the set of attributes for the elements of Obind while V is the set of their

values;
• Bcr ⊆ 2((Ob×I)×(Ob×I))×Cs is the set of conditional binary relations and I =
{i, a}, where i is used to designate individual objects and a is used to specify
abstract objects. Thus an individual object is specified as (x, i) and an abstract
object has the form (x, a).

• h : Er −→ Bcr maps a conditional binary relation for every symbol of Er;
• f : Obind −→ 2A×V assigns declarative knowledge to the individual objects of

Obind.

A pair (attr, val) ∈ f(x), x ∈ Obind, specifies the value val of the attribute attr
for the object x. The set of all pairs

{(attr, val) ∈ A× V | (attr, val) ∈ f(x)}
can be considered as the set of slots for the object x ∈ Obind (as it is defined in [11]).
In what concerns the conditional mappings, we use the notations:

((n, ω1), (m,ω2)) ∈c h(r) (1)
p(n) = Condr((n, ω1), (m,ω2)) (2)

for the fact that ((n, ω1), (m,ω2), p(n)) belongs to the conditional relation h(r).

As an example we consider the following knowledge piece: Helen and George are
students. Every student plays basketball if the student is tall.

We consider Er = {r1, r2} and Cs = {p}. From the case presented above we can
take:

h(r1) = {(((Helen, i), (student, a)), T (Helen)),
(((George, i), (student, a)), T (George))}

h(r2) = {(((student, a), (basketball, a)), p(student))}
where Ob = {Helen, George, student, basketball} and p : Ob −→ {true, false} is
defined as follows: p(n) = true if n is tall and p(n) = false otherwise.

For two arbitrary mappings p, q : Ob −→ {true, false} we define the mapping
p ∧ q : Ob −→ {true, false} by (p ∧ q)(n) = true if and only if p(n) = true and
q(n) = true.

58 M. COLHON AND N. ŢĂNDĂREANU

i aObject_name Object_name

Figure 1. Graphical representation of a node

Figure 2. Additional information for individual node

The components of a conditional schema can be uniquely represented in a particular
directed labeled graph named conditional graph ([14]).

Let S = (Ob, Cs, Er, A, V , Bcr, h, f) be a conditional schema. The conditional
graph ([14]) generated by S is the system GS = (X ∪ Z, ΓX ∪ ΓZ), where:
• X ⊆ Ob× I is the set of nodes such that x ∈ X if and only if there are r ∈ Er,

y ∈ X such that (x, y) ∈c h(r) or (y, x) ∈c h(r);
• ΓX ⊆ X×Er×X and ((n, ω1), r, (m,ω2)) ∈ ΓX if and only if ((n, ω1), (m,ω2)) ∈c

h(r); the elements of ΓX are named arcs of first category ;
• Z = {f(x) | x ∈ Obind} and ΓZ = {(f(x), x) | x ∈ Obind}; the elements of ΓZ

are named arcs of the second category.
The graphical representation of a conditional graph GS = (X∪Z, ΓX∪ΓZ) is obtained
as follows:
• Each element of X is represented by a rectangle as in Figure 1;
• We draw an arc from the node x ∈ X to y ∈ X and we put the label r ∈ Er on

this arc if and only if (x, r, y) ∈ ΓX ;
• For each individual node x ∈ X we append the additional information f(x). This

information is collected in a rounded rectangle linked by x as in Figure 2.

3. The inference mechanism

The inference mechanism in a conditional schema is based on the paths of the cor-
responding conditional graph. In what follows we formalize this path-based inference
mechanism.

Definition 3.1. Let GS = (X ∪ Z, ΓX ∪ ΓZ) be the conditional graph generated by
the conditional schema S = (Ob, Cs, Er, A, V , Bcr, h, f). Let n1, nk+1 ∈ Ob be
two arbitrary objects. A path from n1 to nk+1 in GS is a pair of the form:

([(n1, ω1), . . . , (nk+1, ωk+1)], [r1, . . . , rk])

such that the following conditions are fulfilled:
• (nj , ωj) ∈ X, j ∈ {1, . . . , k + 1}
• for each j ∈ {1, . . . , k} we have rj ∈ Er

• ((nj , ωj), rj , (nj+1, ωj+1)) ∈ ΓX , j ∈ {1, . . . , k}
We denote by Path(n1, nk+1) the set of all paths from n1 to nk+1 in GS .

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 59

Remark 3.1.
(1) Because Obind ∩Obabstr = ∅, pr1X = Ob and Ob = Obind ∪Obabstr, there is no

element n ∈ Ob such that (n, i) ∈ X and (n, a) ∈ X. It follows that in Definition
3.1 the elements n1, nk+1 ∈ Ob determine uniquely the elements (n1, w1) ∈ X
and (nk+1, wk+1) ∈ X.

(2) A path in GS can not contain arcs of the second category.

If we denote by D = 2Ob×Ob the set of all classical binary relations over D then
we define the mapping µ0 : Er −→ D as follows:

µ0(r) = {(n, m) ∈ Ob×Ob | ∃ω1, ω2 ∈ I : ((n, ω1), r, (m, ω2)) ∈ ΓX}
As in the theory of partial algebras, we say that a mapping g is an extension of

the mapping f and we denote this property by f ≺ g if the following conditions are
satisfied:

f : dom(f) −→ A
g : dom(g) −→ A
dom(f) ⊆ dom(g)
g(x) = f(x) for all x ∈ dom(f).

We consider a superset E∗
r of Er, that is:

Er ⊆ E∗
r (3)

and an extension of the mapping µ0:

µ : E∗
r −→ D (4)

We consider also a partial binary operation:

ϕ : E∗
r × E∗

r −→ E∗
r (5)

that satisfies the following property:

µ(ϕ(e1, e2)) = µ(e1) ◦ µ(e2) (6)

where ◦ is the product operation on D. It is understood that the equality (6) holds
for every (e1, e2) ∈ E∗

r×E∗
r such that ϕ(e1, e2) is defined. We can restate the previous

conditions as in the next proposition.

Proposition 3.1. The pairs (E∗
r , ϕ) and (D, ◦) are partial algebras and µ is a mor-

phism of partial algebras. In other words, for (u, v) ∈ dom(ρ) then

µ(ϕ(u, v)) = µ(u) ◦ µ(v) (7)

Many times in the theory of partial algebras the properties are stated in the lan-
guage of diagrams. In this way an intuitive image of the property is obtained. In this
language, Proposition 3.1 can be restated as in the next proposition.

Proposition 3.2. If we can go along the path (E∗
r ×E∗

r , E∗
r , D) in the diagram from

Figure 3 then we can go also along the path (E∗
r × E∗

r , D ×D, D) and we obtain the
same result.

Definition 3.2. We denote by List(E∗
r) the set of all nonempty lists containing

elements from E∗
r . We define the partial mapping Φ : List(E∗

r) −→ E∗
r as follows:

(1) Φ([a1]) = a1

(2) For k ≥ 2 we take Φ([a1, . . . , ak]) = bk, where bk is obtained by the following
procedure:

b1 = a1, b2 = ϕ(b1, a2), . . ., bk = ϕ(bk−1, ak)

60 M. COLHON AND N. ŢĂNDĂREANU

µ× µ

?

E∗
r × E∗

r

ϕ
- E∗

r

µ

?
D

◦ -D ×D

Figure 3. The diagram for µ and ϕ

Proposition 3.3. If [a1, . . . , ak] ∈ dom(Φ) and (Φ([a1, . . . , ak]), ak+1) ∈ dom(ϕ) then
[a1, . . . , ak+1] ∈ dom(Φ) and Φ([a1, . . . , ak+1]) = ϕ(Φ([a1, . . . , ak]), ak+1)

Proof: Suppose that [a1, . . . , ak] ∈ dom(Φ). It follows that Φ([a1, . . . , ak]) = bk,
where bk is obtained from the sequence b1 = a1, b2 = ϕ(b1, a2), . . ., bk = ϕ(bk−1, ak).
If (Φ([a1, . . . , ak]), ak+1) ∈ dom(ϕ) then (bk, ak+1) ∈ dom(ϕ). If we denote bk+1 =
ϕ(bk, ak+1) then [a1, . . . , ak+1] ∈ dom(Φ) and Φ([a1, . . . , ak+1]) = bk+1.

Proposition 3.4. If [a1, . . . , ak+1] ∈ dom(Φ) then [a1, . . . , ak] ∈ dom(Φ) and
µ(Φ([a1, . . . , ak+1])) = µ(Φ([a1, . . . , ak]) ◦ µ(ak+1)

Proof: Applying Proposition 3.3 we obtain:

µ(Φ([a1, . . . , ak+1])) = µ(ϕ(Φ([a1, . . . , ak]), ak+1))

and further, from Proposition 3.1 we obtain

µ(ϕ(Φ([a1, . . . , ak]), ak+1)) = µ(Φ([a1, . . . , ak])) ◦ µ(ak+1)

and the proposition is proved.

Proposition 3.5. Let us consider d = ([(n1, ω1), . . . , (nk+1, ωk+1)], [a1, . . . , ak]) be a
path in the conditional graph GS , where k ≥ 1. If [a1, . . . , ak] ∈ dom(Φ) then:

(n1, nk+1) ∈ µ(Φ([a1, . . . , ak])) (8)

Proof: We proceed by induction on k. Let us verify the proposition for k = 1. In
this case we have the path

d = ([(n1, ω1), (n2, ω2)], [a1])

and from Definition 3.1 we deduce that:

((n1, ω1), a1, (n2, ω2)) ∈ ΓX

Taking into consideration the definition of µ0 we obtain:

(n1, n2) ∈ µ0(a1)

But µ(a1) = µ0(a1) because a1 ∈ E∗
r and Φ([a1]) = a1. Thus (8) is verified for k = 1.

Suppose the relation (8) is verified for k. Consider a path:

d = ([(n1, ω1), . . . , (nk+2, ωk+2)], [a1, . . . , ak+1])

such that [a1, . . . , ak+1] ∈ dom(Φ). By the inductive assumption we have:

(n1, nk) ∈ µ(Φ([a1, . . . , ak])) (9)

But d1 ∈ Path(n1, nk+2) therefore from Definition 3.1 we deduce that:

((nj , ωj), aj , (nj+1, ωj+1)) ∈ ΓX

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 61

for j ∈ {1, . . . , k + 1}. Particularly, we have:

((nk+1, ωk+1), ak+1, (nk+2, ωk+2)) ∈ ΓX

Applying the definition of µ0(ak+1) we obtain:

(nk+1, nk+2) ∈ µ0(ak+1) (10)

Combining (9) and (10) we obtain:

(n1, nk+2) ∈ µ(Φ([a1, . . . , ak])) ◦ µ(ak+1)

Now, from Proposition 3.4 we obtain

(n1, nk+2) ∈ µ(Φ([a1, . . . , ak+1]))

and the proposition is proved.

4. The answer mapping

The answers of the conditional schema to the received interrogations are sentences
in natural language (English). If we denote by G the grammar used to generate
natural language constructions of the system then by L(G) we note the language
generated by the grammar rules.

An answer is constructed by means of the following function:

Sem : Ob× E∗
r ×Ob× {on, off} −→ L(G) (11)

such as:
◦ Sem(x, a, y, on) specifies the semantics of the relation given by µ(a) existing

between the objects x and y;
◦ Sem(x, a, y, off) specifies the converse property.

For example, if

Sem(Peter, is−a, student, on) = Peter is a student

then
Sem(Peter, is−a, student, off) = Peter is not a student

The values of the conditional mappings are expressed in terms of declarative knowl-
edge about the individual objects. Thus, the interrogations and the answers are de-
fined in the system with respect to the individual objects x ∈ Obind, represented in
the conditional graph by pairs (x, i) ∈ X.

Remark 4.1. Based on the previous results and using the notation (2) we observe
that if d = ([(n1, ω1), . . . , (nk+1, ωk+1)], [a1, . . . , ak]) ∈ Path(n1, nk+1) then, there are
t1, . . . , tk ∈ Cs such that:

tj(nj) = Condaj ((nj , ωj), (nj+1, ωj+1)) (12)

In what follows, we will note by CS(d) the list of all conditional mappings of the path
d, that is, CS(d) = [t1, . . . , tk].

Remark 4.2. As the values for the conditional mappings act like semaphores in the
reasoning process of the conditional schema, in what follows we will use the value
“on” instead of “true” and “off” instead of “false”.

Definition 4.1. Let d = ([(n1, w1), . . . , (nk+1, wk+1)], [r1, . . . , rk]) be a path in GS .
We define:

62 M. COLHON AND N. ŢĂNDĂREANU

• Suppose (ni2 , a) ∈ X; the node (ni1 , i) ∈ X is the nearest individual object
of ni2 , where 1 ≤ i1 < i2 ≤ k +1 if there is no s such that i1 < s < i2 and (ns, i)
is in d. In this case we denote Near(ni2) = ni1 . By extension, if (ni2 , i) ∈ X
then we define Near(ni2) = ni2 .

• Suppose that CS(d) = [t1, . . . , tk]. For 1 ≤ j ≤ k we write tj [d] = on if and only
if either tj = T or tj(x) = on for x = Near(nj).

For an individual object x if (attr, value) represents an initial knowledge about it,
then we shall denote:

Vx(attr) = value

in order to specify that value is referred to x for the property attr. For example the
sentence The general score of Peter is 9.50 can be represented by VPeter(gen−score) =
9.50.

The conditions attached to each symbol of Cs can be transposed in IF-THEN-
ELSE rules. For example the following rules set values on and off for each element
of the set Cs = {p1, p2, p3, p4}:

R1(x): IF Vx(gen−score) > 9 THEN p(x) = on ELSE p1(x) = off
R2(x): IF 8 < (Vx(score1) + Vx(score2))/2 ≤ 9 THEN p2(x) = on ELSE

p2(x) = off
R3(x): IF (Vx(score1) + Vx(score2))/2 > 9 THEN p3(x) = on ELSE p3(x) = off
R4(x): IF Vx(height) = tall THEN p4(x) = on ELSE p4(x) = off

where Rj is the name of the rule and Rj(x) denotes the fact that the rule Rj is applied
for the individual object x, where j ∈ {1, 2, 3, 4}.
Definition 4.2. Let S = (Ob, Ccs, Er, A, V, Bcr, h, f) be a conditional schema. A
system VS = (S, E∗

r , L(G), R, ϕ, µ, Sem) is named a valuation system for S if the
conditions (3)-(6) and (11) are satisfied and R is the set of rules that compute the
values of the conditional symbols.

Definition 4.3. Let us consider d = ([(n1, ω1), . . . , (nk+1, ωk+1)], [a1, . . . , ak]) ∈
Path(n1, nk+1) such that:
• there is j ∈ {1, . . . , k + 1} such that ωj = i
• [a1, . . . , ak] ∈ dom(Φ)
• CS(d) = [t1, . . . , tk]

We define ans(d) such that:
• If t1[d] = . . . = tk[d] = on and

(n1, Φ([a1, . . . , ak]), nk+1, on) ∈ dom(Sem)

then
ans(d) = Sem(n1,Φ([a1, . . . , ak]), nk+1, on)

• If there is u ∈ {1, . . . , k} such that tu[d] =off and

(n1,Φ([a1, . . . , ak]), nk+1, off) ∈ dom(Sem)

then
ans(d) = Sem(n1, Φ([a1, . . . , ak]), nk+1, off)

• ans(d) = unknown otherwise.

We define the interrogations for conditional schemas as pairs of the form

(x, y) ∈ Ob×Ob (13)

and as consequence the answer mapping is constructed as follows.

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 63

Definition 4.4. Let S = (Ob, Cs, Er, A, V, Bcr, h, f) be a conditional schema and a
valuation system VS for S. The answer mapping generated by the pair (S, VS) is
the mapping

Ans : Ob×Ob −→ 2L(G) (14)
defined as follows:
(1) If there is d ∈ Path(n1, nk+1) such that ans(d) 6= unknown then

Ans(n1, nk+1) =
⋃

d∈Path(n1,nk+1)

{ans(d) | ans(d) 6= unknown}

(2) Otherwise, Ans(n1, nk+1) = unknown

The algorithm by means of which we can implement the deduction process of a
conditional schema is the following:
Begin algorithm

Input: A knowledge piece given in a natural language, denoted by KP
Step 1: Extract from KP the components of the conditional system S =
(Ob, Ccs, Er, A,Bcr, h, f) associated to KP .
Step 2: Define the components of a valuation system (S, E∗

r , L(G), R, ϕ, µ, Sem)
for S.
Output Ans(n1, nk+1) for every pair (n1, nk+1).

End of algorithm

5. Example of computations

In order to exemplify the computations, firstly we consider the following knowledge
piece KP1:

”Helen is the mother of Peter. She is 40. Helen made cheese cake. Peter likes to
eat cheese cake if this is made by his mother. Susan is Helen’s sister and George is
her son. George likes to eat fruits if they are bought by his mother. Susan is 30. She
bought some bread. Helen likes to eat pizza.”

The conditional graph corresponding to KP1 is illustrated in Figure 4.

Remark 5.1. In order to simplify the writing, the conditional binary relations will be
denoted by ((n,m), p) instead of ((n,m), p(n)) for p ∈ Cs, n,m ∈ Ob, the argument
of the conditional mapping being self-evident.

Remark 5.2. In the graphical representation of a conditional graph GS = (X ∪
Z, ΓX ∪ ΓZ), each arc ((n,w1), r, (m,w2)) ∈ ΓX is labeled with (r, p) where p =
Condr((n,w1), (m,w2)) ∈ Cs.

The conditional schema representations of the information of KP1 are as follows:
• Ob = {Helen, Peter, Susan,George, pizza, cheese−cake, fruits}
• VHelen(made) = cheese−cake, VHelen(age) = 40

VSusan(bought) = fruits, VSusan(age) = 30
• Cs = {p, q}, where p(x) stands for the condition ”if mother of x made cheese

cake”, q(x) stands for ”if mother of x bought fruits ”, x ∈ Ob;
• Er = {is−mother, is−sister, likes, eats}, where

h(is−sister) = {(((Helen, i), (Susan, i)), T)}
h(is−mother) = {(((Helen, i), (Peter, i)), T), (((Susan, i), (George, i)), T)}
h(likes) = {(((Helen, i), (pizza, a)), T)}
h(eats) = (((Peter, i), (cheese−cake, a)), p), (((George, i), (fruits, a)), q)}

64 M. COLHON AND N. ŢĂNDĂREANU

Figure 4. Graphical representation of KP1

µ0(is−sister) = {(Helen, Susan)}
µ0(is−mother) = {(Helen, Peter), (Susan, George)}
µ0(likes) = {(Helen, pizza)}
µ0(eats) = {(Peter, cheese−cake), (George, fruits)}

• In order to define the values of the conditional symbols p and q we can use the
following rules, which give the rules set R:
R1(x): IF (y, x) ∈ µ0(is−mother) ∧ Vy(made) = cheese−cake THEN p(x) = on

ELSE p(x) = off
R2(x): IF (y, x) ∈ µ0(is−mother)∧Vy(bought) = fruits THEN q(x) = on ELSE

q(x) = off
• A = {made, bought, age}
• The mapping ϕ is defined as follows:

ϕ(is−sister, is−mother) = b1

ϕ(b1, eats) = b2

ϕ(is−mother, eats) = b3

• E∗
r = Er ∪ {b1, b2, b3}

• The extension µ of µ0 is obtained by computation as follows:
µ(b1) = µ(ϕ(is−sister, is−mother)) = µ(is−sister) ◦ µ(is−mother) =

µ0(is−sister) ◦ µ0(is−mother) = {(Helen, George)}
µ(b2) = µ(ϕ(b1, eats)) = µ(b1) ◦ µ(eats) =

µ(b1) ◦ µ0(eats) = {(Helen, fruits)}
µ(b3) = µ(ϕ(is−mother), eats)) = µ(is−mother)) ◦ µ(eats) =

µ0(is−mother)) ◦ µ0(eats) = {(Helen, cheese−cake)}
• We define now the mapping Sem as follows:

Sem(x, eats, y, on) = ”x eats y”,
Sem(x, eats, y, off) = ”x does not eat y”,
Sem(x, is−mother, y, on) = ”x is the mother of y”,
Sem(x, is−mother, y, off) = ”x is not the mother of y”,
Sem(x, is−sister, y, on) = ”x is the sister of y”,

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 65

Sem(x, is−sister, y, off) = ”x is not the sister of y”,
Sem(x, likes, y, on) = ”x likes to eat y”,
Sem(x, likes, y, off) = ”x does not like to eat y”,
Sem(x, b1, y, on) = ”x is the aunt of y”,
Sem(x, b1, y, off) = ”x is not the aunt of y”,
Sem(x, b2, y, on) = ”The nephew of x eats y”,
Sem(x, b2, y, off) = ”The nephew of x does not eat y”,
Sem(x, b3, y, on) = ”The son of x eats y”,
Sem(x, b3, y, off) = ”The son of x does not eat y”,

We illustrate the computations of the mapping Ans for two cases: the first one will
produce an affirmative answer and the second one will produce a negative answer.
(1) In order to compute Ans(Helen, cheese−cake) we have to find all the paths

from Helen to cheese−cake, that is to calculate Path(Helen, cheese−cake).
There is only one element in this set, namely

d1 = ([(Helen, i), (Peter, i), (cheese−cake, a)], [is−mother, eats])

Based on d1 we construct the sequence (a1, a2) where:
• a1 = is−mother
• a2 = eats
• Φ([a1, a2]) = ϕ(is−mother, eats) = b3

Thus we have Φ([a1, a2]) = b3 and d1 = ([(Helen, i), (Peter, i), (cheese−cake, a)],
[a1, a2]).
For the path d1 we observe that
t1(Helen) = Conda1((Helen, i), (Peter, i)) = T (Helen) = on
t2(Peter) = Conda2((Peter, i), (cheese−cake, a)) = p(Peter)
therefore CS(d1) = [T, p].
In order to compute

ans(d1) = Sem(Helen, b3, cheese−cake, on) (15)

we have to verify that p[d1] = on. This condition is satisfied for p(Peter) = on.
Applying the rule R1 we have to evaluate

R1(Peter) : IF (y, Peter) ∈ µ0(is−mother) ∧ Vy(made) = cheese−cake

THEN p(Peter) = on ELSE p(Peter) = off
But µ0(is−mother) = {(Helen, Peter), (Susan, George)} therefore we have to
take y = Helen and to verify whether or not VHelen(made) = cheese−cake. This
is a true condition and thus p(Peter) = on. By our notation we can write that
p[d1] = on.
Using now the mapping Sem we obtain

ans(d1)=“The son of Helen eats cheese cake”
and Ans(Helen, cheese−cake) = {ans(d1)}

(2) In order to compute Ans(Helen, fruits) we observe that:

Path(Helen, fruits) = {d2}
where:

d2 = ([(Helen, i), (Susan, i), (George, i), (fruits, a)],
[is−sister, is−mother, eats])

and CS(d2) = [T, T, q] because
(((Helen, i), (Susan, i)), T) ∈ h(is−sister)

66 M. COLHON AND N. ŢĂNDĂREANU

(((Susan, i), (George, i)), T) ∈ h(is−mother)
(((George, i), (fruits, a)), q(George)) ∈ h(eats)

We take the sequence a1, a2 and a3 of labels specified in d2:
a1 = is−sister
a2 = is−mother
a3 = eats

and we compute Φ([a1, a2, a3]):
a1 = is−sister
b1 = ϕ(a1, is−mother)
b2 = ϕ(b1, eats)

therefore Φ([a1, a2, a3]) = b2. Now for the path d2 we observe that:
t1(Helen) = Conda1((Helen, i), (Susan, i)) = T (Helen) = on
t2(Susan) = Conda2((Susan, i), (George, i)) = T (Susan) = on
t3(George) = Conda3((George, i), (eats, a)) = q(George)

therefore CS(d2) = [T, T, q].
In order to compute ans(d2) we have to verify whether or not q[d2] = on. This
condition is satisfied if q(George) = on. Applying the rule R2 we obtain:

R2(George) : IF (y, George) ∈ µ0(is−mother) ∧ Vy(bought) = fruits

THEN q(George) = on ELSE q(George) = off

But µ0(is−mother) = {(Helen, Peter), (Susan, George)} therefore we have to
take y = Susan. We have VSusan(bought) = bread, therefore q(George) = off .
By our notation we can write that q[d2] = off . We have the second case of
the Definition 4.3, therefore we have ans(d2) = Sem(Helen, b2, fruits, off)=
”The son of Helen does not eat fruits”. It follows that Ans(Helen, fruits) =
{ans(d2)}.

Remark 5.3. The case previously exemplified does not use the entity Near introduced
in Definition 4.1. In fact the case presented is a particular one: the predecessor of an
abstract node is an individual one. More precisely, if ((n1, ω1), r, (n2, a)) ∈ ΓX then
ω1 = i and thus Near(n2) = n1.

In order to relieve the use of the entity Near we exemplify this case by considering
the following knowledge piece KP2:
Peter is a student. He is a boy. A student is a competitor if has an initial score
greater that 15. The initial score of Peter is 18. Peter is tall. A competitor plays
tennis if is female and plays basketball if is tall.
In order to represent this piece we use the conditional graph from Figure 5.

We obtain:
• Ob = {Peter, student, competitor, tennis, basketball}
• VPeter(initial−score) = 18
• Cs = {p1, p2, p3}, where p1(x) stands for the condition ”if initial score of x is

greater than 15”, p2(x) stands for ”if x is female ” and p3(x) for ”if x is tall”;
• Er = {c1, c2, c3}, where

h(c1) = {(((Peter, i), (student, a)), T)}
h(c2) = {((student, a)(competitor, a)), p1}
h(c3) = {(((competitor, a), (tennis, a)), p2),

(((competitor, a), (basketball, a)), p3)}
• We use the following rules:

R1(x): IF Vx(initial−score) > 15 THEN p1(x) = on ELSE p1(x) = off
R2(x):IF Vx(sex) = female THEN p2(x) = on ELSE p2(x) = off

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 67

Figure 5. Conditional graph for KP2

R3(x):IF Vx(height) = tall THEN p3(x) = on ELSE p3(x) = off
• Consider the path

d3 = ([(Peter, i), (student, a), (competitor, a), (basketball, a)], [c1, c2, c3])

Obviously we have CS(d3) = [T, p1, p3]. In order to establish whether or not
p1[d3] is on or off we have to valuate p1(x) for x = Near(student). We ob-
serve that Near(student) = Peter, therefore we have to compute the value of
p1(Peter). Based on the rule R1 we obtain p1[d3] = on. In a similar manner
we obtain Near(competitor) = Peter and by R3 we obtain p3[d3] = on. If we
consider the path

d4 = ([(Peter, i), (student, a), (competitor, a), (tennis, a)], [c1, c2, c3])

then we have Near(student) = Peter and Near(competitor) = Peter. Taking
into account the attribute values of the individual node Peter we obtain p1[d4] =
on and p2[d4] = off .

6. Conclusions and future work

The model of knowledge representation proposed in this paper lies at the conflu-
ence of logic, rule-based systems and graph theory. A less obvious connection with
mathematical logic is related to the individual nodes. It is not difficult to observe
that by introducing the attributes for these nodes we intended to model a common
reasoning rule of mathematical logic, known as modus ponens. In order to exemplify
this case we consider a short knowledge piece represented in Figure 6: Peter is tall.
If Peter is tall then he plays basketball. In mathematical logic, from p and p → q we
deduce q. Based on our inference we deduce Peter plays basketball.

The present paper formalizes the inference mechanism of the conditional schemas.
This mechanism is a path-driven one. The conditional graph of a conditional schema
contains two kinds of nodes: individual nodes and abstract nodes. An individual node
enjoys proper values for a set of attributes that characterizes the class of node while
the abstract nodes do not have such values.

In order to interrogate such a system, the user specifies two nodes n1 and nk+1.
All the paths d from n1 to nk+1 are computed, where:

d = ([(n1, w1), . . . , (nk+1, wk+1)], [r1, . . . , rk])

68 M. COLHON AND N. ŢĂNDĂREANU

Figure 6. A model of modus ponens

Figure 7. An architecture for conditional schema implementation

Each arc ((nj , wj), rj , (nj+1, wj+1)) of a given path d from n1 to nk+1 contains two
kinds of labels:
(1) a label to specify a binary relation between nj and nj+1, that is rj , 1 ≤ j ≤ k
(2) a label to specify certain condition which is satisfied/not satisfied by the nearest

individual object of nj , that is Condrj ((nj , wj), (nj+1, wj+1)).
The node n1 must be an individual node. The condition from nj to nj+1 can be
viewed as a semaphore. The value of a semaphore is computed by means of certain
rule, where the attribute values of the individual objects are used. If the condition is
true then the semaphore is ”on”, otherwise is ”off”. If all semaphores of the path d are
”on” then certain conclusion is obtained by the inference mechanism. If a semaphore
is ”off” then either no conclusion is obtained or a ”negative” conclusion is specified.
This depends on the semantics mapping Sem of the conditional schema. If d contains
only abstract nodes then the inference can not be performed for d. A future research
work will include this case.

We intend to implement the inference mechanism of the conditional schema in a
spoken dialogue system. To successfully manage the interaction with users, spoken

INFERENCE MECHANISM IN CONDITIONAL SCHEMAS 69

dialogue systems carry out five main tasks: automatic speech recognition (ASR), nat-
ural language understanding (NLU), dialogue management (DM), natural language
generation (NLG) and text-to-speech synthesis (TSS).

A possible architecture for such a dialogue system that uses conditional schema for
knowledge representation and reasoning is shown in Figure 7. The communication
between user and the system is designed by means of a Voice User Interface through
the Speech Recognition Module. The output of such a module, that is a natural
language text is passed to the Analyse Module which extracts the semantics of the
text.

The system has a second interface, for the knowledge engineer. His task is to
keep updated the conditional schema by performing actions like the following ones:
introduce the components of a conditional schema, modify these components, erase a
component, erase the entire conditional schema etc.

The inference engine is a stand-alone module. This module performs deductions in
the system (receives an interrogation and gives back the result of the computation).
The answer generation module receives the value of the answer mapping and produces
natural language answers which are further passed to the speech synthesis module.

The query-answering GUI can be constructed using graphical controls from AWT
toolkit and Swing toolkit while the inference engine can be written using Prolog
programming. In order to connect SWI-Prolog reasoning engine with Java Native
Interface, Java Prolog Library platform ([10]) is the best choice. A possible idea for
further research is to extract the components of a conditional schema from a text
description. Such an attempt was made to semantic schemas ([17]).

References

[1] S.Benferhat, D.Dubois and H.Prade, Possibilistic and standard probabilistic semantics of con-
ditional knowledge bases, Journal of Logic and Computation 9 (1999), no. 6, 873–895.

[2] S.Benferhat and L.Garcia, A local approach to reasoning with conditional knowledge bases, Pro-
ceedings of Eighth IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
(1996), 404–407.

[3] K.Mani Chandy and J.Misra, Conditional Knowledge as a Basis for Distributed Simulation,
Computer Science Department, California Institute of Technology, 5251:TR:87, Technical Report
(1987).

[4] R.Davis and J.King, The Origin of Rule-Based Systems in AI, Chapter 2 of Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, Edited by
Bruce G. Buchanan and Edward H. Shortliffe.

[5] T.Eiter and T.Lukasiewicz, Default reasoning from conditional knowledge bases: Complexity
and tractable cases, Artificial Intelligence 124 (2000), no. 2, 169–241.

[6] B.B.Garcia, New tractable classes for default reasoning from conditional knowledge bases, An-
nals of Mathematics and Artificial Intelligence, 45 (2005), no. 3-4, 275–291.

[7] A.Giurca, D.Gasevic and K.Taveter, Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches, Information Science Reference, ISBN: 978-
1-60566-402-6, 2009.

[8] D. Lehmann and M. Magidor, What Does a Conditional Knowledge Base Entail?, Artificial
Intelligence 55 (1989), 1–60.

[9] O. Nicolae, M.Diaconescu and G.Wagner, Simulation Modelling for Businesses using BPMN
and AORS, Annals of University of Craiova, Math. Comp. Sci. Ser. 36 (2009), no. 2, 69–78.

[10] P. Singleton, F. Dushin and J. Wielemaker, JPL: A bidirectional Prolog/Java interface, www.
swi-prolog.org/packages/jpl

[11] C.Pop̂ırlan and N.Ţăndăreanu, An Extension of Inheritance Knowledge Bases and Computa-
tional Properties of their Answer Functions, Annals of the University of Craiova, Math. Comp.
Sci. Ser., 35 (2008), 149–170.

70 M. COLHON AND N. ŢĂNDĂREANU

[12] V. A.Thompson, Conditional reasoning: The necessary and sufficient conditions, Canadian
Journal of Experimental Psychology, 49 (1995), 1–60.

[13] N. Ţăndăreanu and M. Ghindeanu, Towards a Mathematical Modelling of Conditional Knowl-
edge, Research Notes in Artificial Intelligence and Digital Communications, 103 (2003), 5–15.

[14] N. Ţăndăreanu and M. Colhon, Conditional graphs generated by conditional schemas, Annals
of University of Craiova, Math. Comp. Sci. Ser., 36 (2009), no. 1, 1–11.

[15] J. White and A. Nechypurenko, Intelligence Frameworks for Assisting Modelers in Combinator-
ically Challenging Domains, Proceedings of Workshop on Generative Programming and Com-
ponent Engineering for QoS Provisioning in Distributed Systems (2006).

[16] Y. Li and W. Liu, Deduction from Conditional Knowledge on Bayesian Networks with Interval
Probability Parameters, International Conference on Computer Science and Software Engi-
neering, 1 (2008), 594–597.

[17] C.Zamfir, From Text Description to Semantic Schema, Annals of University of Craiova, Math.
Comp. Sci. Ser., 36 (2009), no. 2, 97–108.

(Mihaela Colhon and Nicolae Ţăndăreanu) Department of Informatics, University of
Craiova,
Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. & Fax: 40-251412673
E-mail address: mcolhon@inf.ucv.ro, ntand@rdslink.ro

