
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 37(1), 2010, Pages 71–79
ISSN: 1223-6934

A Proposal for an Enhanced Mobile Agent Architecture
(EMA)

Gabriel Stoian and Claudiu Ionuţ Pop̂ırlan

Abstract. Mobile agents become increasingly important in the highly distributed applica-
tions frameworks seen today. Their migration from node to node is a very important issue
as we need to safeguard application efficiency, achieve better load balancing and resource uti-
lization throughout the underlying network. This paper presents an enhanced mobile agent
architecture based on the regular one by adding some components related to synthetic informa-
tion about past activities of mobile agent and which subsequently can lead to an improvement
of its future activities. We prove the benefits of the proposed architecture considering an
adequate case study and providing experimental results.

2010 Mathematics Subject Classification. Primary 68T42; Secondary 68T05.

Key words and phrases. Enhanced Mobile Agents, Recorded Agent Information,
Master-Slave hierarchy, Tracy toolkit.

1. Introduction

The concept of mobile agent has been defined in [1], [2], [4]. They are autonomous
objects that can migrate from node to node on behalf of the user who have executed
them and make use of the databases or computation resources from computers con-
nected by the network. In order for a mobile agent to be able to migrate, there must
be a virtual place, the so-called mobile agent system, that supports mobility.

The mobile agents technology promotes applications made up of network-aware en-
tities (agents) capable of changing their execution environment by transferring them-
selves while executing (migration). However, mobile agents technology has failed to
become a sweeping force of change, and now faces competition in the form of remote
procedure call (RPC) technologies([12]).

The current interest in mobile agents is broadly justified by the advantages their
presence provides in Internet applications:
• mobile agents can carry the code to manage remote resources and do not need the

remote availability of a specific server, thus leading to a more flexible application
scenario; Instead of moving large amounts of data to a single point where it is
searched, information retrieval moves the data-searching code to the data. In [5]
it was described a new type of search engine, in which Web pages are analyzed
locally by a mobile agent that was sent to the Web server. The agent only sends
back a summary of the Web pages, and therefore might reduce network traffic
considerably.

• mobile agents can dramatically save bandwidth, by moving locally to the re-
sources they need, instead of requiring the transfer of possibly large amounts of
data;

Received December 20, 2009. Revision received February 09, 2010.

71

72 G. STOIAN AND C.I. POPÎRLAN

• mobile agents do not require continuous network connection, because interacting
entities can move to the same site when the connection is available and then
interact without needing further network connection; as a consequence mobile
agents intrinsically suit mobile computing systems;

Significant research and development into mobile agency has been conducted in
recent years, and there are many mobile agent architectures available today. The
AgentLink project [11] maintains a list of ongoing projects with regard to any kind
of agent-related topics and also maintains a list of available agent toolkits. Nev-
ertheless, several issues still need to be faced to make the mobile agent technology
widely accepted: secure and efficient execution supports, standardization, appropri-
ate programming languages and coordination models. The appeal of mobile agents is
quite alluring - mobile agents roaming the Internet could search for information, find
us great deals on goods and services, and interact with other agents that also roam
networks (and meet in a gathering place) or remain bound to a particular machine.
However, research so far, does not exploit enough previous activities experience to
make mobile agents more efficient. For example, in [6] was introduced a mobile agent
migration technique based on decision tree learning for P2P networks. The proposed
solution has the objective of an agent based routing algorithm (ABRA) which tries
to give the best path between two nodes ([7]).

In this paper a new approach regarding mobile agents architecture is presented.
Starting from the basic structure of mobile agents was developed an enhanced mobile
agent architecture which was validated on a case study.

2. Enhanced Mobile Agents Architecture

Mobile agents consist of three components: code, data, and execution state. The
code contains the logic of the agent, and all agents of the same type use the same
code. The code must be separated from the code of the agency so that it can be
transferred alone to another agency, and the code must be identifiable and readable
for an agency (e.g., in the form of a file from the local file system or a byte stream
from the network). Usually, as in other programs, an agent’s code consists of more
than one file (e.g., in the Java programming language they could be many class files).

The second component of an agent is data. This term corresponds to the values
of the agent’s instance variables if we assume an agent to be an instance of a class
in object-oriented languages. The data is sometimes also called the object state.
It is important to note that not all data items an agent can access are part of its
object state. Some variables reference objects that are shared with other agents
or the agency software itself, for example, file handlers, threads, the graphical user
interface, or other resources and devices that cannot be moved to other servers. Thus,
we have to restrict the agent’s immediate data to those data items the agent owns
and that are movable.

The third component is the execution state. The difference between object and
execution state information is that the elements of the object state are directly con-
trolled by the agent itself, whereas execution state information is usually controlled
by the processor and the operating system. What this means depends very much on
the decision of the mobile agent toolkit designer and the underlying execution envi-
ronment (processor, operating system, virtual machine). In some toolkits, an agent’s
execution state is comprised of the current value of the instruction pointer and the

A PROPOSAL FOR AN ENHANCED MOBILE AGENT ARCHITECTURE (EMA) 73

stack of the underlying processor. In others it is not possible to determine the execu-
tion state of an agent at all. In most Java-based toolkits, for example, the agent itself
is responsible for copying information about its current execution state on the level
of the programming language into the object state and restoring it after successful
migration.

The proposed Enhanced Mobile Agents (EMA) architecture improves the basic
structure of mobile agents and does not implement an entire new mobile agent. In-
stead, it has been designed to complete the functionality of already available agent
systems, and it is not bound to any specific implementation: it can be associated to
different Java-based mobile agent systems with only a slight extension.

Figure 1. Enhanced Mobile Agent Architecture (EMA)

Within basic mobile agents structure we add the Recorded Agent Information (RAI)
component, as shown in Figure 1, in order to register certain synthetic information
(i.e. registration of visited nodes, successful queries, time calculations, etc.) according
to defined Record() method. This component is intended to act like an aeronautical
“black-box” which can provide a lot of information that can be used to improve and/or
correct the functioning of airplanes. Similarly, RAI will be used to improve/adjust
the behavior of enhanced mobile agents by certain methods included in agent code.

One of the main advantages of the proposed architecture is versatility which allows
defining, trying, and tuning of agent functionality by designing and updating the
implementation of the code which process RAI. As an example, RAI can be used to
feed learning methods in order to control the activity of mobile agents. Resuming,
the developer must perform following actions:
• Design and implement of the RAI collecting method
• Design and implement of the RAI processing algorithm
• Design and implement of the agent control mechanism
When all agents of a mobile agents system are similar, from the hierarchical per-

spective, RAI component is not apprehended as a benefit. The real advantage of
having RAI component become obvious in a hierarchical approach, when more Slave

74 G. STOIAN AND C.I. POPÎRLAN

Agents are subordinate to a Master Agent – this case will be treated in an experi-
mental study (Section 3).

2.1. Master Agent. Slave Agent. EMA advantages can be highlighted very
clearly in case of master/slave mobile agents system. This system includes one Master
Agent and several Slave Agents. The Master Agent receives complex requirements
(interrogations) and create specific Slave Agents in order to process parts of a certain
complex activity. In this case, the Master Agent may use RAI component to adapt its
behavior and/or the actions directed to Slave Agents in order to improve the solving
of assignments. Also, Master Agent can use its RAI component for the same purpose
and at the same time can provide access to it. EMA architecture for both Master and
Slave Agents is presented in Figure 2.

Figure 2. Master/Slave Mobile Agents

In the next two examples we look at the implementation proposed for a Slave Agent
and a Master Agent, using Tracy ([2]) mobile agent toolkit, which is implemented in
the Java programming language.
//SlaveAgent.java

import de.fsuj.tracy.agent.*;

import java.io.Serializable;

import de.fsuj.tracy2.plugins.migration.interfaces.IAgentMigrationContext;

import de.fsuj.tracy2.plugins.migration.interfaces.IMonitor;

public class SlaveAgent extends Agent implements Runnable, Serializable{

//...

protected abstract void Migrate(){

// Defines how the agent should be transferred to the next destination.

Context.getContext("migration");

//...

migrate(destination(), new int[] {units[0]}, definedDataItems, useCache());

//...

}

A PROPOSAL FOR AN ENHANCED MOBILE AGENT ARCHITECTURE (EMA) 75

private void Communicate(){

//Define communication mode

IAgentMessageContext.getContext("message");

//...

}

private void Record(){

//Defines how the agent should record information

IAgentMessageContext.getContext("recorded");

if(domainNodes != null){

shellCxt.writeToUser("Known domain nodes are:");

for(i=0; i < domainNodes.length; i++){

shellCxt.writeToUser(domainNode[i].toString());

}

}

//...

}

public void Task1(){

// Define Task1 for Slave Agent

}

//...

public void Taskn(){

// Define Taskn for Slave Agent

}

}

//MasterAgent.java

import de.fsuj.tracy.agent.*;

import java.io.Serializable;

import de.fsuj.tracy2.plugins.migration.interfaces.IAgentMigrationContext;

import de.fsuj.tracy2.plugins.migration.interfaces.IMonitor;

public class MasterAgent extends Agent implements Runnable, Serializable{

//...

public MasterAgent(){

// do some initialization

}

public void startAgent(){

// do something

}

protected abstract void createSlaveAgent(){

// Define how the Master Agent creates Slave Agents

}

protected abstract void Migrate(){

// Define how the agent should be transferred to the next destination

}

private void Communicate(){

//Define communication mode

}

private void Record(){

//Define how the agent should record information

}

protected abstract void LearnOptimize(){

// Define learning algorithm and optimization method;

DecisionTreeBuilder builder =

76 G. STOIAN AND C.I. POPÎRLAN

new DecisionTreeBuilder(learningSet, testAttributes, goalAttribute);

DecisionTree tree = builder.build().decisionTree();

//...

}

public void Task1(){

// Define Task1 for Master Agent

}

//...

public void Taskn(){

// Define Taskn for Master Agent

}

}

3. Case Study and Experimental Results

To evaluate the efficiency of Enhanced Mobile Agents (EMA) architecture we consider
the following scenario: A romanian client wants to travel in three major cities of Europe –
London, Paris, Rome – comes to the head office of a tour operator from Craiova and asks
for information regarding accomodation, restaurants, local attractions, etc.

The solution is based on four agencies located in the considered cities - the one located in
Craiova is the home agency. The network topology is shown in Figure 3. Each node provide
an execution environment with different hardware configurations and different operating
systems (Windows and Linux). The client requirement assumes finding those objectives
that meet certain criteria related to the type of accommodation (price, breakfast, Internet,
number of beds in the room, hotels classification, refrigerator), local attractions (type, costs),
etc. For implementation we used Tracy ([2]) mobile agent toolkit.

Figure 3. Network topology and agencies locations

Initially, the home agency will contain only the Master Agent. Based on the assignment
it will create at least one Slave Agent to each of the other agencies. To accomplish their
mission, those Slave Agents, will migrate to the appropriate agency, retrieve needed data
locally, process it, and send their results. Also, each Slave Agent will record information,

A PROPOSAL FOR AN ENHANCED MOBILE AGENT ARCHITECTURE (EMA) 77

using RAI component, about queries duration, and Master Agent will use this to improve
the assignment solving. We choose a simple improvement method which will increase by 1
the number of Slave Agents sent to an agency if the recorded query duration is greater than
1 second (see Alghoritm 1).

Algorithm 1 Assignment Improve
for eachSlaveAgent do

if RecordedQueryDuration > 1 then
NumberOfSlaveAgents + +;

end if
end for

To emulate local data retrieving, on each computer, will be performed SQL queries on
relational database which contains records in a table with structure described in Table 1.
The number of records in each local database (with the same structure) are: London – 50000,
Paris – 70000, Rome – 40000.

Table 1. Accommodation Database – Table structure

Id Name Type Class Price Breakfast Internet Beds number Refrigerator

3.1. Experimental results. The results presented in this subsection proves the efficiency
of EMA architecture. The assignment implies to process a query that involves finding the
facility names that meet the following accomodation conditions:
• Class ≥ 3 stars;
• Price ≤ 60 ¤;
• Breakfast = YES;
• Internet = YES;
• Beds number = 2;
• Refrigerator = YES.
In the first run the Master Agent creates only one Slave Agent for each of the London,

Paris, and Rome agencies. The query duration stored in RAI component of each Slave Agent
are presented in Table 2.

Table 2. Experimental results – First Run

London Paris Rome

Recorded Agent Information (RAI) Slave Agents

London1 Paris1 Rome1

NumberOfRecords 50000 70000 40000

QueryDuration (sec) 0,5 1,4 0,2

The final result which aggregates the Slave Agents results was obtained in 1,9 seconds.
The second run with the same requirements will look different, because based on informa-

tion recorded in RAI component of the Paris1 agent, the Master Agent will decide to create
two Slave Agents – Paris1 and Paris2 – which will co-operate by splitting the records in two
ranges. Thus, Paris1 will process the query in records whose names begin with a letter in
the range (A - K), and Paris2 will process the queries in the range (L - Z). The results of
this test are presented in Table 3.

78 G. STOIAN AND C.I. POPÎRLAN

Table 3. Experimental results – Second Run

London Paris Rome

Recorded Agent Information (RAI) Slave Agents

London1 Paris1 Paris2 Rome1

NumberOfRecords 50000 20000 50000 40000

QueryDuration (sec) 0,5 0,5 1,1 0,2

The final result on second processing of the query was obtained in 1,6 seconds. When
trying to understand the values of execution times we have to keep in mind that the mobile
agents code is executed quasi-parallel.

Using the same method, at third processing of the query, Master Agent will create three
Slave Agents on agency Paris: (Paris1, Paris2 and Paris3). Again the Paris-related agents
co-operation method will consists of splitting the database record (in three ranges this time).
Thus, Paris1 will process the query in records whose names begin with a letter in the range
(A - K), Paris2 will process the queries in the range (L - S), and Paris3 will process the
queries in the range (T - Z). The results of this test are presented in Table 4.

Table 4. Experimental results – Third Run

London Paris Rome

Recorded Agent Information (RAI) Slave Agents

London1 Paris1 Paris2 Paris3 Rome1

NumberOfRecords 50000 20000 22000 23000 40000

Query Duration (sec) 0,5 0,6 0,7 0,8 0,2

The final result on third processing of the query was obtained in 1 second.

4. Conclusions and Future Work

In this paper we have introduced Enhanced Mobile Agent (EMA) architecture, based
on common mobile agent structure. This architecture has been designed to complete the
functionality of already available mobile agents, and it is not bound to any specific implemen-
tation. The results obtained can proves that the Mobile Agents efficiency can be effectively
improved using EMA.

As future direction of our research, we intend to study the possibility to develop a toolkit
based on EMA and to design strong learning algorithms fed with recorded agent information
which lead to an increased efficiency in solving assignments. Also, an interesting challenge
for the EMA architecture is to prove its qualities in reasoning environments generated by
new semantic schema named deductive path [3].

References

[1] S. Russell and P. Norvig Artificial Intelligence: A Modern Approach, Prentice Hall, 1995.
[2] P. Braun and W. Rossak, Mobile Agents: Concepts, Mobility Models, & the Tracy Toolkit,

Elsevier Inc.(USA) and dpunkt.verlag(Germany), 2005.
[3] N. Tandareanu and M. Ghindeanu, Path-based Reasoning in Semantic Schemas, Annals of the

University of Craiova - Mathematics and Computer Science Series 35 (2008), 171–181.
[4] J. Baumann, Mobile Agents: Control Algorithms, Lecture Notes in Computer Science, Springer,

2000.

A PROPOSAL FOR AN ENHANCED MOBILE AGENT ARCHITECTURE (EMA) 79

[5] P. Thati, P.-H. Chang and G. Agha, Crawlets: Agents for high performance web search engine,
Proceedings of the 5th International Conference (MA 2001), Lecture Notes in Computer Science
2240 (2001), 119-134.

[6] Y. Ali, H. N. Elmahdy and S. Ahmed, Optimizing Mobile Agents Migration Based on Decision
Tree Learning, World Academy of Science, Engineering and Technology 33 (2007), 326–332.

[7] J.N.K. Liu, B.N.L. Li and T.S. Dillon, An improved naive Bayesian classifier technique coupled
with a novel input solution method, IEEE Transactions on Applications and Reviews 31 (2001),
no. 2, 249–256.

[8] Q. Wenyu, S. Hong and X. Defago, A Survey of Mobile Agent-Based Fault-Tolerant Technology,
Parallel and Distributed Computing, Applications and Technologies 5 (2005), 446–450.

[9] D. Kotz and R.S. Gray, Mobile Agents and the Future of the Internet, ACM Operating Systems
Review 33 (1999), no. 3, 7–13.

[10] D. Johansen, R. van Renesse and F.B. Schneider, Operating System Support for Mobile Agents,
Technical report, Department of Computer Science, Cornell University, USA, 1994.

[11] www.agentlink.org

[12] http://en.wikipedia.org/wiki/Remote_procedure_call

(Gabriel Stoian) University of Craiova Faculty of Mathematics and Computer Science,
Department of Computer Science, 13 Alexandru Ioan Cuza Street, Craiova, 200585,
Romania
E-mail address: gstoian@yahoo.com

(Claudiu Ionuţ Pop̂ırlan) University of Craiova Faculty of Mathematics and Computer
Science, Department of Computer Science, 13 Alexandru Ioan Cuza Street, Craiova,
200585, Romania
E-mail address: popirlan@inf.ucv.ro

