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Algebraic properties of ω-trees (I)

Nicolae Ţăndăreanu and Cristina Zamfir

Abstract. This paper is a starting point for a possible research line to study the theoretical
aspects of the answer function for a master-slave system based on semantic schemas. We
define the concept of ω-labeled tree as a binary, ordered and labeled tree with several features
concerning the labels and order between the direct descendants of a node. The labeling
operation of the nodes is guided by the mapping ω which defines the splitting operation for
labels. An embedding operation of an ω-tree into another ω-tree is introduced. We prove
that this operation is performed by means of an injective mapping. Based on this operation
some binary relation between ω-labeled trees is defined. This is a reflexive and transitive
relation, but is not antisymmetric. All the results proved in this paper and in [15] constitute
the algebraic background of a forthcoming paper as we mention in the last section.
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1. Introduction

Research in artificial intelligence based on graphs theory, knowledge-based systems,
neural networks and algebraic methods is very productive. An integrated approach
with some graph-based heuristic working rules and neural networks-based practices
to assist the assembly engineers in generating and predicting a best and most effective
assembly sequence is described in [4]. The problem of verifying external adequacy in
expert systems by means of the graph theory is treated in [16]. The use of attack
graphs in network security can be found in [2]. Learning schemas based on decision
forests were studied in [8]. The theory of conceptual graphs was first published by
John Sowa ([7]). Since then various studies based on this concept were obtained such
as nested conceptual graphs and conceptual graphs with negation ([3]). The coherence
graphs, which give a graphical representation of the conditional lower previsions,
were treated in [6]. The paper [5] develops a representation of multi-model based
controllers using artificial intelligence techniques as graph theory, neural networks,
genetic algorithms, and fuzzy logic. The structures known as labeled stratified graphs
([9], [10], [11]) and semantic schemas ([12], [13], [14]) use a labeled graph and contain
an algebraic structure helping to knowledge representation.

This paper is the first in a series of papers which aims to study certain algebraic
properties of the master-slave systems based on semantic schemas. The last papers
of this series help us to introduce the concepts of semantic tree and syntactic tree.
Both concepts help us to study the mechanism of the computations in a master-slave
systems based on semantic schemas. Finally we intend to apply these results to design
intelligent dialogue systems.
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In the remainder of this section we give a short description of this paper. In Section
2 we recall the basic concepts and notations used in the subsequent sections: directed
ordered graph, ordered tree, arcs and paths in these structures. In Section 3 we
introduce the concept of ω-labeled tree. This structure is a binary ordered tree whose
nodes are labeled by the elements of a set L. Each node has a label and the labeling
rule is given by the mapping ω. The set L is divided into two distinct subset: terminal
and nonterminal labels. A node labeled by a terminal label is a leaf of the tree. For
a given labeling mapping ω we consider the set OBT (ω) of all binary ordered trees
whose nodes are labeled by means of ω. In Section 4 we define an embedding operation
of a tree into another tree. This operation allow us to define a binary relation on the
set OBT (ω). We prove that this is a reflexive and transitive relation, but is not
an antisymmetric one. Based on this relation in [15] we introduce an equivalence
relation on the set OBT (ω). These results allows to study the mechanism of formal
computations in a master-slave system based on semantic schemas. The last section
contains conclusions and future work.

2. Basic notions and notations

A directed ordered graph ([1]) is a pair G = (A,D), where
• A is a finite set of elements called nodes;
• D is a finite set of elements of the form [(i, i1), . . . , (i, in)], where n ≥ 1 and

i, i1, . . .,in ∈ A;
• D satisfies the following condition: if [(i, i1), . . . , (i, in)] ∈ D and [(j, j1), . . . ,

(j, js)] ∈ D then i 6= j.
We observe that for an element [(i, i1), . . . , (i, in)] ∈ D we may have ij = ik for some
j 6= k. On the other hand, an element of D is a list and the order of its elements are
taken into consideration. An element of a list is a directed arc and simply is named
arc. This can explain why the concept is named directed ordered graph.

We can represent a directed ordered graph as follows. We represent, as usual, a
node of the graph by a point. If [(i, i1), . . . , (i, in)] ∈ D then we draw an arc from
node i to node ij for every j ∈ {1, . . . n}. The elements i1, . . . , in are called the direct
descendants of i. We shall consider that all direct descendants of i are ordered linearly
and the order is given by the place of ij in the element [(i, i1), . . . , (i, in)].

If G = (A,D) is a directed ordered graph then we can associate to G a directed
graph G′ = (A,D′), where

D′ = {(i, j) | ∃[(i, i1), . . . , (i, in)] ∈ D, ∃r ∈ {1, . . . , n} : j = ir}
An ordered tree is a directed ordered graph G = (A,D) such that G′ is a tree and the
following property is satisfied:

[(i, i1), . . . , (i, in)] ∈ D, j, r ∈ {1, . . . , n}, j 6= r ⇒ ij 6= ir (1)

Two distinct ordered trees are represented in Figure 1. In the left part of this figure
we have [(c, d), (c, e), (c, f)] ∈ D, whereas in the right part we have [(c, f), (c, e), (c, d)] ∈
D. They have the same set of nodes but the order is another.

A path in a directed ordered graph is a sequence d = (n0, n1, . . . , nk) of nodes such
that for every i ∈ {0, . . . , k− 1} we have an arc from ni to ni+1. The number k is the
length of d. We denote by Path(G) the set of all paths in G.

A binary tree is a tree such that every node has exactly zero or two direct descen-
dants. The root is a node that is not a direct descendant of any other node. A tree
has a single root. Every node that is not the root in the binary tree is reachable from
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Figure 1. Two distinct ordered trees

the root node by a unique path. A node with neither a left descendant nor a right
descendant is called a leaf. By an abuse of language we shall use the concepts of arc
and path in an ordered tree t and in this case we suppose that these concepts are
applied to the graph associated to t. Moreover, for an ordered tree t we denote by
Path(t) the set of all paths of t.

3. The set OBT(ω) of ordered binary trees

We consider a finite set L and a decomposition L = LN ∪LT , where LN ∩LT = ∅.
The elements of LN are called nonterminal labels and those of LT are called terminal
labels. The elements of L are called labels.

Definition 3.1. Let L = LN ∪ LT be a set of labels. A split mapping on L is a
function ω : LN −→ L× L. For each x ∈ LN we denote ω(x) = (ω1(x), ω2(x)). The
entity ω1(x) is named the left component and ω2(x) is the right component of
ω(b).

Definition 3.2. Let ω : LN −→ L×L be a split mapping on L. An ω-tree is a triple
t = (A,D, h), where
• (A,D) is an ordered tree and every element of D is of the form [(i, i1), (i, i2)];
• h : A −→ L is a mapping such that

[(i, i1), (i, i2)] ∈ D ⇒ h(i) ∈ LN & ω(h(i)) = (h(i1), h(i2)) (2)

For each i ∈ A the element h(i) is called the label of the node i. The mapping h is
named the labeling mapping of t. By OBT (ω) we denote the set of all ω-trees.

Remark 3.1. In an ω-tree we have the following property: if a node n has direct
descendants then the label h(n) of n is an element of LN . Moreover, in this case the
left (right) descendant of n is labeled by the left (right) component of ω(h(n)). A leaf
of an ω-labeled tree may be labeled by an element of LN , but a node labeled by an
element of LT is a leaf.

In order to exemplify these concepts we consider the following case:
• L = {ai, bi, ci}i≥1, LN = {bi, ci}i≥1, LT = {ai}i≥1;
• ω(bi) = (ai, ci) and ω(ci) = (bi, bi) for i ≥ 1.

In Figure 2 we represented the following two ω-trees t1 = (A1, D1, h1) and t2 =
(A2, D2, h2), where:
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Figure 2. Two ω-trees

• A1 = {nj}j=1,...,7; A2 = {mj}j=1,...,11;
• h1(ni) = b1 for i ∈ {1, 4, 5}; h1(n2) = h(n6) = a1; h1(n3) = h1(n7) = c1;
• h2(m4) = h2(m8) = a1; h2(mi) = b1 for i ∈ {2, 3, 6, 7, 10, 11}; h2(m1) =

h2(m5) = h2(m9) = c1;
• D1 = {[(n1, n2), (n1, n3)], [(n3, n4), (n3, n5)], [(n4, n6), (n4, n7)]}
• D2 = {[(m1,m2), (m1,m3)], [(m2,m4), (m2,m5)], [(m5,m6), (m5,m7)],

[(m6,m8), (m6,m9)], [(m9,m10), (m9,m11)]}.
Remark 3.2. In Figure 2 we remark that if we make abstraction of node names and
translate t1 such that n1 overlaps m2 then t1 becomes a part of t2. This part can be
viewed as an ”image” of t1 into t2. We see that the image of t1 is not a subtree of t2
because the nodes m10 and m11 do not belong to this image.

4. Embedding mappings

Let t1 = (A1, D1, h1) and t2 = (A2, D2, h2) be two elements of OBT (ω) and an
arbitrary mapping α : A1 −→ A2. For every u = [(i, i1), (i, i2)] ∈ D1 we denote

α(u) = [(α(i), α(i1)), (α(i), α(i2))]

If t = (A,D, h) is an ω-tree then we denote by root(t) the element of A designated
by the root of t.

Definition 4.1. If t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈ OBT (ω)
then we define the relation t1 ¹ t2 if and only if there is a mapping α : A1 −→ A2

such that:
u ∈ D1 ⇒ α(u) ∈ D2 (3)

h1(root(t1)) = h2(α(root(t1))) (4)
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Figure 3. Two ω-trees

Such a mapping α is an embedding mapping of t1 into t2.

If we consider the trees from Figure 2 then we can verify immediately that t1 ¹ t2.
Really, the mapping α defined by α(n1) = m2 and α(nj) = mj+2 for j = 2, . . . , 7
satisfies Definition 4.1 and thus α is an embedding mapping.

If t1 ¹ t2 then the embedding mapping of t1 into t2 is not uniquely determined.
In order to see such a case we consider the elements represented in Figure 3. The
translations given by the mappings h1(n1) = m1, h2(n1) = m2 and h3(n1) = m6 give
three distinct embedding mappings of t1 into t2.

The next proposition shows that the condition (4) is extended to all nodes of t1.

Proposition 4.1. Let be t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈
OBT (ω). If t1 ¹ t2 then h1(i) = h2(α(i)) for every i ∈ A1, where α is an embedding
mapping.

Proof. In a regular tree t for every node n 6= root(t) there is a path and only
one from root(t) to n. We shall verify by induction on k the following property
P (k): for every i ∈ A1 such that the path from root(t1) to i has k ≥ 0 arcs we have
h1(i) = h2(α(i)).
For k = 0 the property P (k) is true because in this case we have i = root(t1) and
P (0) is true in virtue of (4).
We suppose the property P (k) is true and let us verify that P (k + 1) is true. We
consider a node j ∈ A1 for which the path (root(t1), n1, . . . , nk, j) from root(t1) to
j has k + 1 arcs. The node j is a direct descendant of nk. In order to make a
choice we suppose that j is a left direct descendant of nk. In other words, there is
r ∈ A1 such that u = [(nk, j), (nk, r)] ∈ D1. From (3) we have α(u) ∈ D2. But
α(u) = [(α(nk), α(j)), (α(nk), α(r))]. From (2) we have

ω(h2(α(nk))) = (h2(α(j)), h2(α(r))) (5)



ω-TREES 85

Analogous, because [(nk, j), (nk, r)] ∈ D1 we have

ω(h1(nk)) = (h1(j), h1(r)) (6)

By the inductive assumption for P (k) we have h1(nk) = h2(α(nk)). From (5) and (6)
we deduce h1(j) = h2(α(j)) and thus the proposition is proved.

Proposition 4.2. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω), t2 = (A2, D2, h2) ∈
OBT (ω) and t1 ¹ t2. Let us denote by α : A1 −→ A2 an embedding mapping of t1
into t2.
(1) If (m, n) is an arc in t1 then (α(m), α(n)) is an arc in t2;
(2) If d = (n0, n1, . . . , nk) ∈ Path(t1) then α(d) = (α(n0), α(n1), . . . , α(nk)) ∈

Path(t2).

Proof. If (m, n)) is an arc in t1 then there is u ∈ D1 such that u = [(m,n), (m, p)]
or u = [(m, p), (m,n)]. But α(u) ∈ D2, therefore [(α(m), α(n)), (α(m), α(p))] ∈ D2 or
[(α(m), α(p)), (α(m), α(n))] ∈ D2. It follows that (α(m), α(n)) is an arc in t2. The
second property is immediate from the first property.

Proposition 4.3. An embedding mapping is injective.

Proof. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈
OBT (ω). Consider that t1 ¹ t2 and α : A1 −→ A2 is an embedding mapping of
t1 into t2. Suppose that n1, n2 ∈ A1 and n1 6= n2. We prove that α(n1) 6= α(n2).
We consider the following sets of nodes:{

M0 = {root(t1)}
Mk+1 = {n ∈ A1 | ∃(root(t1), n1, . . . , nk, n) ∈ Path(t1)}, k ≥ 0 (7)

Obviously there is a natural number n such that Mn = Mn+i for every i ≥ 1, so we
can write

A1 =
⋃

i≥0

Mi (8)

We prove that for every k ≥ 1 the following property P (k) is true: if n1, n2 ∈
⋃k

i=0 Mi

and n1 6= n2 then α(n1) 6= α(n2). Based on this property and the relation (8) we
obtain our proposition.
Take n1, n2 ∈ M1 such that n1 6= n2. If n1 = root(t1) then there is an arc
from n1 to n2 in t1, therefore from Proposition 4.2 there is an arc from α(n1)
to α(n2) in t2, therefore α(n1) 6= α(n2). The case n2 = root(t1) is a similar
one. Let us suppose now that [(root(t1), n1), (root(t1), n2)] ∈ D1. In this case
we have [(α(root(t1)), α(n1)), (α(root(t1)), α(n2))] ∈ D2. From (1) it follows that
α(n1) 6= α(n2). Therefore the property P (1) is true.
Let us suppose that P (k) is true and we prove now that P (k + 1) is also true. We
take n1, n2 ∈

⋃k+1
i=0 Mi such that n1 6= n2. We have the following three cases:

a) Suppose that n1, n2 ∈
⋃k

i=0 Mi. In this case the property is true following the
inductive assumption P (k).

b) Suppose that n1, n2 ∈ Mk+1. There are the arcs (p1, n1) and (p2, n2) in t1. We
have p1, p2 ∈

⋃k
i=0 Mi.

- If p1 = p2 then taking into account the fact that (p1, n1) and (p2, n2) are arcs in t1
we deduce that [(p1, n1), (p1, n2)] ∈ D1 or [(p1, n2), (p1, n1)] ∈ D1. From Proposition
4.2 we deduce that [(α(p1), α(n1)), (α(p1), α(n2))] ∈ D2 or [(α(p1), α(n2)), (α(p1),
α(n1))] ∈ D2. From (1) we have α(n1) 6= α(n2).

- If p1 6= p2 then by the inductive assumption we have α(p1) 6= α(p2). But (p1, n1)
and (p2, n2) are arcs in t1. From Proposition 4.2 we deduce that (α(p1), α(n1)) and
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(α(p2), α(n2)) are arcs in t2. If α(n1) = α(n2) then t2 is not a tree. It follows that
α(n1) 6= α(n2).

c) Suppose that n1 ∈
⋃k

i=0 Mi and n2 ∈ Mk+1. We have two cases:
- Suppose that n1 ∈ M0. In other words we have n1 = root(t1). There is a path

d = (n1, . . . , n2) of length k + 1 in t1. From Proposition 4.2 we deduce that α(d) is a
path from α(n1) to α(n2) of length k + 1. It follows that a α(n1) 6= α(n2), otherwise
the path α(d) is a circuit in t2.

- Suppose that n1 ∈ Mr, where 1 ≤ r ≤ k. There is a sequence (root(t1), q1,
. . . , qr−1, n1) ∈ Path(t1). There is also a sequence (root(t1), s1, . . . , sk, n2) ∈ Path(t1).
From Proposition 4.2 we deduce that d1 = (α(root(t1)), α(q1), . . . , α(qr−1), α(n1)) ∈
Path(t2). Similarly we have d2 = (α(root(t1)), α(s1), . . . , α(sk), α(n2)) ∈ Path(n2).
The length of d1 is r, the length of d2 is k + 1 and r < k + 1. If α(n1) = α(n2) then
there are two distinct paths from α(root(t1)) to α(n1). This contradicts the fact that
t2 is a tree. Therefore α(n1) 6= α(n2).

If t = (A,D, h) ∈ OBT (ω) and β : A −→ B is an injective mapping then we
consider the triple tβ = (Aβ , Dβ , hβ), where the components of tβ are defined as
follows:

Aβ = β(A)
Dβ = { [(β(i), β(i1)), (β(i), β(i2))] | [(i, i1), (i, i2)] ∈ D}
hβ : Aβ −→ L, hβ(β(i)) = h(i)

Proposition 4.4. If t ∈ OBT (ω) then tβ ∈ OBT (ω) and root(tβ) = β(root(t)).

Proof. We verify that Gβ = (Aβ , Dβ) is an ordered tree.
a) Gβ is a directed ordered graph.

In order to verify this property we consider two elements [(β(i), β(i1)), (β(i), β(i2))] ∈
Dβ and [(β(j), β(j1)), (β(j), β(j2))] ∈ Dβ . From the definition of Dβ we obtain
[(i, i1), (i, i2)] ∈ D and [(j, j1), (j, j2)] ∈ D. But (A,D) is a directed ordered graph,
therefore i 6= j. The mapping β is injective, therefore β(i) 6= β(j).

b) Take [(j, j1), (j, j2)] ∈ Dβ . There is [(i, i1), (i, i2)] ∈ D such that [(β(i),
β(i1)), (β(i), β(i2))] = [(j, j1), (j, j2)]. But (A,D) is an ordered tree, therefore i1 6= i2.
It follows that β(i1) 6= β(i2) because β is an injective mapping. Thus j1 6= j2.

c) The associated graph of Gβ is a tree:
- Obviously (i, i1) is an arc in the associated graph of (A,D) if and only if the pair

(β(i), β(i1)) is an arc in the associated graph of Gβ . The sequence (i1, . . . , in) is a
path in the associated graph of (A,D) if and only if (β(i1), . . . , β(in)) is a path in the
associated graph of Gβ .

- We have root(tβ) = β(root(t)). There is no predecessor of β(root(t)) in the
associated graph of Gβ because if (β(j), β(root(t))) is an arc then (j, root(t)) is an
arc in the associated graph of (A,D) and this property contradicts the property of
root(t). For every j ∈ Aβ there is a path and only one from root(tβ) to j. If j ∈ Aβ

then there is i ∈ A such that j = β(i). There is a path (root(t), i1, . . . , in, i) in
the associated graph of (A, D), therefore (root(tβ), β(i1), . . . , β(in), β(i)) is a path in
the associated graph of Gβ from root(tβ) to j. Suppose that (root(tβ), j1, . . . , js, j)
and (root(tβ), p1, . . . , pk, j) are two paths in the associated graph of Gβ . There are
i1, . . . , is, q1, . . . , qk ∈ A such that

β(i1) = j1, . . ., β(is) = js

β(q1) = p1, . . ., β(pk) = qk

(root(t), i1, . . . , is, i) and (root(t), q1, . . . , qk, i) are paths in the associated graph of
(A,D).
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It follows that s = k and i1 = q1, . . ., is = qs. Thus j1 = p1, . . ., is = ps and
(root(tβ), j1, . . . , js, j) = (root(tβ), p1, . . . , pk, j).
Let us verify the condition (2). Suppose that j ∈ Aβ and [(j, j1), (j, j2)] ∈ Dβ .
There is [(i, i1), (i, i2)] ∈ D such that [(β(i), β(i1)), (β(i), β(i2))] = [(j, j1), (j, j2)]. The
condition (2) is satisfied by t. It follows that h(i) ∈ LN and ω(h(i)) = (h(i1), h(i2)).
But ω(hβ(j)) = ω(hβ(β(i))) = ω(h(i)) and ω(h(i)) ∈ LN , therefore ω(hβ(j)) ∈
LN . But ω(h(i)) = (h(i1), h(i2)), therefore ω(hβ(j)) = (h(i1), h(i2)). On the other
hand hβ(j1) = hβ(β(i1)) = h(i1) and hβ(j2) = hβ(β(i2)) = h(i2). It follows that
ω(hβ(j)) = (hβ(j1), hβ(j2)).

Proposition 4.5. If t1 ¹ t2 then t1 ¹ tβ1 ¹ t2.

Proof. Consider t1 = (A1, D1, h1) and t2 = (A2, D2, h2). Let us denote by α
the embedding mapping of t1 into t2. This means that the following conditions are
satisfied:

u ∈ D1 ⇒ α(u) ∈ D2 (9)

h2(α(root(t1))) = h1(root(t1)) (10)

We consider the mapping γ : Aβ
1 −→ A2 defined by

γ(β(i)) = α(i) (11)

for every i ∈ A1.
In order to prove that tβ1 ¹ t2 we have to verify the conditions (3) and (4) for these
ω-trees.
First we verify the condition (3). Let us suppose that v ∈ Dβ

1 . From the def-
inition of Dβ

1 we deduce that there is u = [(i, i1), (i, i2)] ∈ D1 such that v =
[(β(i), β(i1)), (β(i), β(i2))]. Based on this property we deduce that γ(v) = [(γ(β(i)),
γ(β(i1))), (γ(β(i)), γ(β(i2)))] = [(α(i), α(i1)), (α(i), α(i2))]. From (9) we deduce
α(u) ∈ D2. In conclusion the implication:

v ∈ Dβ
1 ⇒ γ(v) ∈ D2 (12)

is true.
Now we verify (4). Based on the Proposition 4.4 we have root(tβ1 ) = β(root(t1)),
therefore we can write hβ

1 (root(tβ1 )) = hβ
1 (β(root(t1))). According to the definition of

hβ
1 we have hβ

1 (β(i)) = h1(i), therefore

hβ
1 (root(tβ1 )) = h1(root(t1)) (13)

Based on the same proposition we have h2(γ(root(tβ1 ))) = h2(γ(β(root(t1)))), there-
fore in virtue of (11) we obtain

h2(γ(root(tβ1 ))) = h2(α(root(t1))) (14)

From (10), (13) and (14) we obtain

hβ
1 (root(tβ1 )) = h2(γ(root(tβ1 ))) (15)

From (12) and (15) we deduce that tβ1 ¹ t2 and moreover, γ is an embedding mapping
of tβ1 into t2.
Directly from definition of tβ1 we have

v ∈ D1 ⇒ β(v) ∈ Dβ
1
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and from (13) we have hβ
1 (β(root(t1))) = h1(root(t1)). Thus we verified that t1 ¹ tβ1 .

Corollary 4.1. If t1 ¹ t2 and α is an embedding mapping of t1 into t2 then t1 ¹
tα1 ¹ t2.

Proposition 4.6. The relation ¹ is reflexive and transitive, but is not antisymmetric.

Proof. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω). Taking the identity mapping
α : A1 −→ A1, α(x) = x for every x ∈ A1 we find that t1 ¹ t1 because from Corollary
4.1 we have t1 ¹ tα1 and tα = t1 for our choice of α. Therefore the relation ¹ is
reflexive.
Now we suppose that t1 = (A1, D1, h1), t2 = (A2, D2, h2) and t3 = (A3, D3, h3) are
three ω-labeled trees such that t1 ¹ t2 and t2 ¹ t3. There is an embedding mapping
α : A1 −→ A2 of t1 into t2 and an embedding mapping β : A2 −→ A3 of t2 into t3. It
follows that the following conditions are satisfied:

u ∈ D1 ⇒ α(u) ∈ D2 (16)

u ∈ D2 ⇒ β(u) ∈ D3 (17)
h1(root(t1)) = h2(α(root(t1))) (18)

We consider the mapping α ◦ β : A1 −→ A3 defined by α ◦ β(x) = β(α(x)). From
(16) and (17) we obtain

u ∈ D1 ⇒ α ◦ β(u) ∈ D3 (19)
because α ◦ β(u) = β(α(u)).
If we use Proposition 4.1 then we obtain h3(β(j)) = h2(j) for every j ∈ A2. It follows
that h3(α ◦ β(root(t1))) = h3(β(α(root(t1)))) = h2(α(root(t1))). Now if we use (18)
then we obtain

h3(α ◦ β(root(t1))) = h1(root(t1)) (20)
From (19) and (20) we obtain t1 ¹ t3 and thus the relation ¹ is transitive.
If β is not the identity mapping then applying Proposition 4.5 for the case t ¹ t we
obtain t ¹ tβ and tβ ¹ t. But t 6= tβ because β is not the identity mapping. Thus
the relation ¹ is not antisymmetric.

Remark 4.1. The relation ¹ is not based on the concept of subtree of a tree. More
precisely, if t1 ¹ t2 and α is an embedding mapping of t1 into t2 then tα1 is not
necessarily a subtree of t2. This can be viewed if we consider again the case presented
in Figure 2. It is easy to see that tα1 is not a subtree of t2 because the node m9 has
two direct descendants in t2.

5. Conclusions and future work

In this paper we considered a set L of elements such that L = LN ∪ LT , where
LN ∩ LT = ∅ and for a given mapping ω : LN −→ L× L we defined the set OBT (ω)
of ω-trees. An element of OBT (ω) is a binary tree, an ordered tree and a labeled
tree. The labels of such a structure are assigned to nodes by a rule defined as follows:
if n is a node labeled by k ∈ LN and n1, n2 are the left descendant and respectively
the right descendant of n then the label of n1 is k1 and the label of n2 is k2 if
ω(k) = (k1, k2). We defined the embedding operation of an ω-tree into another ω-
tree. This operation allows to define a binary relation on OBT (ω), such that this is
a reflexive and transitive relation, but is not an antisymmetric one. Several algebraic
properties are proved and the concepts are exemplified.
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The subject presented in this paper will be continued in [15]. Based on the relation
¹ we shall define an equivalence relation on the set OBT (ω). The factor set of
equivalence classes is organized as a partially ordered set and the maximal elements
of this set are characterized in [15]. An equivalence class can be viewed as a template
and the maximal templates are used in a forthcoming paper to relieve several algebraic
properties of the formal computations in a master-slave system based on semantic
schemas.
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