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Positive Mapping from Semigroup into Anti-ordered Set

Daniel A. Romano

Abstract. We introduce a definition of positive mapping from semigroup with apartness into
anti-ordered set and describe a connection between this notion and positive quasi-antiorder.
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1. Introduction and preliminaries

This short investigation, in Bishop’s constructive mathematics in sense of well-
known book [1] and Romano’s papers [5]-[8], is continuation of forthcoming papers
Romano’s [9], and Crvenković, Mitrović and Romano’s [3]. Bishop’s constructive
mathematics was developed on Constructive logic ([10]) - logic without the Law of
Excluded Middle P ∨ ¬P . Let us note that in the Constructive logic the ’Double
Negation Law’ P ⇐⇒ ¬¬P does not hold, but the following implication P =⇒ ¬¬P
holds even in the Minimal logic. Since the Constructive logic is a part of the Classical
logic, results gained in the Constructive mathematics are compatible with suitable
results in the Classical mathematics. Let us recall that the following deduction prin-
ciple A ∨B,¬B ` A acceptable in the Constructive logic.

Let (X, =, 6=) be a set, where the relation ” 6=” is a binary relation on X, called
diversity on X, which satisfies the following properties:

¬(x 6= x), x 6= y =⇒ y 6= x, x 6= y ∧ y = z =⇒ x 6= z.

Follows Heyting, if the following implication x 6= z =⇒ x 6= y ∨ y 6= z holds then the
diversity 6= called apartness. Let x be an element of X and A a subset of X. We
write x ./ A if and only if (∀a ∈ A)(x 6= a), and AC = {x ∈ X : x ./ A}. In X ×X
the equality and diversity are defined by

(x, y) = (u, v) ⇐⇒ x = u ∧ y = v, (x, y) 6= (u, v) ⇐⇒ x 6= u ∨ y 6= v.

A relation q on X is a coequality relation ([5], [6]) on X if and only if it is consistent,
symmetric and cotransitive:

q ⊆6=, q = q−1, q ⊆ q ∗ q,

where ”∗ ” is operation between relations α ⊆ X × Y and β ⊆ Y × Z defined by
(a, c) ∈ β ∗ α ⇐⇒ (∀b ∈ Y )((a, b) ∈ α ∨ (b, c) ∈ β).

This operation is called filled product ([6]) of relations. For coequality q on semigroup
S we say that it is an anticongruence on S if
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(∀a, b, x, y ∈ S)((ax, by) ∈ q =⇒ ((a, b) ∈ q ∨ (x, y) ∈ q)).
In articles [5] and [6] the author proved the following: If e is an equivalence on set
X, then there exists the maximal coequality relation q on X compatible with e in
the following sense: e ◦ q ⊆ q and q ◦ e ⊆ q. Opposite, if q is a coequality relation
on set X, then the relation qC = {(x, y) ∈ X ×X : (x, y) ./ q} is an equivalence on
X compatible with q ([6], Theorem 1), and we can ([6], Theorem 2) construct the
factor-set X/(qC , q) = {aqC : a ∈ X} with:

aqC =1 bqC ⇐⇒ (a, b) ./ q, aqC 6=1 bqC ⇐⇒ (a, b) ∈ q.

Also, we can ([6]) construct the factor-set X/q = {aq : aX}. If q is a coequality
relation on a set X, then ([6], Theorem 3) X/q is a set with:

aq =1 bq ⇐⇒ (a, b) ./ q, aq 6=1 bq ⇐⇒ (a, b) ∈ q.

It is clear that X/(qC , q) ∼= X/q, and the mapping π : X −→ X/q, defined by
π(x) = xq, a strongly extensional surjective mapping.

Subset C(x) = {y ∈ S : y 6= x} satisfies the following implication:
y ∈ C(x) ∧ z ∈ X =⇒ y 6= z ∨ z ∈ C(x).

It is called a principal strongly extensional subset of X, and besides it satisfies the
following condition x ./ C(x). If A is a subset of X, we say that it is a strongly
extensional subset of X if and only if the following implication

x ∈ A ∧ y ∈ X =⇒ x 6= y ∨ y ∈ A

holds.

As in [7] and [8] a relation α on X is an antiorder on X if and only if
α ⊆6=, α ⊆ α ∗ α, 6=⊆ α ∪ α−1 (linearity).

Let ϕ be a strongly extensional mapping of anti-ordered sets from (X, =, 6=, α) into
(Y, =, 6=, β). For ϕ we say that it is reverse isotone if

(∀a, b ∈ X)((ϕ(a), ϕ(b)) ∈ β =⇒ (a, b) ∈ α)
holds. A relation τ on X is a quasi-antiorder ([7], [8]) on X if

τ ⊆ (α ⊆) 6=, τ ⊆ τ ∗ τ.

It is clear that each coequality relation q on set X is a quasi-antiorder relation on X,
and the apartness is a trivial anti-order relation on X. It is easy to check that if τ is
a quasi-antiorder on X, then ([8]) the relation q = τ ∪ τ−1 is an coequality relation
on X. According to [8], in that case, the relation Θ in X/q, defined by

(aq, bq) ∈ Θ ⇐⇒ (a, b) ∈ τ ,
is an anti-order on X/q.

In the next lemma we give a description of classes of quasi-antiorder:

Lemma 1.1. Let τ be a quasi-antiorder on set X. Then xτ (res. τx) is a strongly
extensional subset of X, such that x ./ xτ (res. x ./ τx), for each x ∈ X. Besides,
the following implication (x, z) ∈ τ =⇒ xτ ∪ τz = X holds for each x, z of X.

Proof. From τ ⊆ 6= follows x ./ xτ . Let y ∈ xτ and let z be an arbitrary element
of X. Thus (x, y) ∈ τ and (x, z) ∈ τ ∨ (z, y) ∈ τ . So, we have z ∈ xτ ∨ y 6= z.
Therefore, xτ is a strongly extensional subset of X such that x ./ xτ . The proof that
τx is a strongly extensional subset of X such that x ./ τx is analogous. Besides, the
following implication (x, z) ∈ τ =⇒ xτ ∪ zτ = X holds for each x, y of X. Indeed, if
(x, z) ∈ τ and y is an arbitrary element of X, then (∀y ∈ X)((x, y) ∈ τ ∨ (y, z) ∈ τ).
Thus S = xτ ∪ τz. ¤
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In the next proposition we give a construction of quasi-antiorder relation.

Proposition 1.1. If A is a strongly extensional subset of X, then the relation σ on
X, defined by (x, y) ∈ σ ⇐⇒ x ∈ A ∧ x 6= y, is a quasi-antiorder relation on X.

Proof. It is clear that σ is a consistent relation on X. Let (x, z) ∈ σ and let y be an
arbitrary element of X. Then, x ∈ A ∧ x 6= z. Thus, x 6= y ∨ y 6= z . If x 6= y and
x ∈ A, then (x, y) ∈ σ. If y 6= z and x ∈ A, by strongly extensionality of A, we have
y 6= z and x ∈ A and x 6= y ∨ y ∈ A. In the case when y 6= z ∧ x ∈ A∧ x 6= y we have
again (x, y) ∈ σ; in the case when y 6= z and x ∈ A and y ∈ A we have (y, z) ∈ σ.
So, the relation σ a is cotransitive relation. Therefore, relation σ is a quasi-antiorder
relation on X. Further, we have:

x ∈ A =⇒ xσ = C(x), ¬(x ∈ A) =⇒ xσ = ∅;
y ∈ A =⇒ y = C(y) ∩A, y ./ A =⇒ σy = A.

¤
For undefined notions and notations we refer readers to the books [1] and [10] and

to author’s papers [5]-[8]

2. Positive quasi-antiorder

According to [3], in this section we give a definition and some basic properties of
positive quasi-antiorder: A quasi-antiorder τ on a semigroup (S, =, 6=, ·) is positive if
and only if

(∀a, b ∈ S)((a, ab) ./ τ ∧ (a, ba) ./ τ).
Quasi-order and positive quasi-order are important notion in the Semigroup Theory.
They studied, for example, by M.S.Putcha in [4] and S.Bogdanović and M.Ćirić in [2].
Quasi-antiorder is introduced and studied by Romano in [7], [8] and [9]. In the arti-
cle [7], this author studied the maximal quasi-antiorder in semigroup with apartness.
Positive quasi-antiorder defined and studied by Crvenković, Mitrović and Romano in
their forthcoming article [3].

In the following proposition we give a construction of positive quasi-antiorder re-
lation on semigroup with apartness using ideal of S:

Proposition 2.1. Let J be a strongly extensional ideal of S such that J ⊂ S. Then
the relation σ on S, defined by (a, b) ∈ σ ⇐⇒ a ∈ J ∧ b ./ J , is a positive quasi-
antiorder relation on S.

Proof. It is clearly that σ ⊆6=. Let (a, c) ∈ σ and let b be an arbitrary element of S.
Then, a ∈ J and c ./ J . Thus, by strongly extensionality of J , we have

a ∈ J ∧ (t 6= b ∨ b ∈ J) ∧ c ./ J for any t ∈ J .

If b ∈ J ∧ c ./ J , then (b, c) ∈ σ. In the second case we have (a, b) ∈ σ. So, relation
σ is cotransitive. Let (u, v) be an arbitrary element of σ and let a, b be arbitrary
elements of S. Then, we have
(u, v) ∈ σ =⇒ (u, a) ∈ σ ∨ (a, ab) ∈ σ ∨ (ab, v) ∈ σ

=⇒ u 6= a ∨ (a ∈ J ∧ ab ./ J) ∨ ab 6= v

=⇒ (a, ab) 6= (u, v) ∈ σ .
The proof for (a, ba) ./ σ is similar to this proof.
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Immediately follows:

a ∈ J =⇒ aσ = JC , ¬(a ∈ J) =⇒ aσ = ∅;
b ∈ J =⇒ σb = ∅ , b ./ J =⇒ σb = J .

¤
In the following theorem, taken from article [3], we give without proof some fun-

damental properties of positive quasi-antiorder in semigroup S with apartness:

Theorem 2.1. The following conditions for a quasi-antiorder τ on a semigroup S
are equivalent:
(1) τ is positive;
(2) (∀a, b ∈ S)(aτ ∪ bτ ⊆ (ab)τ);
(3) (∀a, b ∈ S)(τ(ab) ⊆ τa ∩ τb);
(4) aτ is a strongly extensional consistent subset of S such that a ./ aτ for each a ∈ S;
and
(5) τb is a strongly extensional ideal of S such that b ./ τb , for each b ∈ S.

As in [6] we describe construction of the maximal positive quasi-antiorder in a
semigroup S = S1. Let a be an element of S. Then ([6], Theorem 6) the set C(a) =
{x ∈ S : x ./ SaS} is a consistent subset of S such that a ./ C(a). This subset C(a) is
called a principal consistent subset of S generated by a. If we introduce relation f ,
defined by (a, b) ∈ f ⇐⇒ b ∈ C(a) , we have ([6], Theorem 7) that the relation f is a
consistent relation, and the relation c(f) =

⋂
n∈N

nf is a quasi-antiorder on S. For
an element a of a semigroup S and for n ∈ N we introduce the following notations

An(a) = {x ∈ S : (a, x) ∈ nf}, A(a) = {x ∈ S : (a, x) ∈ c(f)}
Bn(a) = {y ∈ S : (y, a) ∈ nf}, B(a) = y ∈ S : (y, a) ∈ c(f).

In the following theorem present some characteristics of these sets.

Theorem 2.2. (1) The set A(a) =
⋂

n∈N An(a) is the maximal strongly extensional
consistent subset of S such that a ./ A(a).
(2) A(a) ∪A(b) ⊆ A(ab).
(3) The set B(a) =

⋂
n∈N Bn(a) is the maximal strongly extensional ideal of S such

that a ./ B(a).
(4) B(ab) ⊆ B(a) ∩B(b).
(5)The relation c(f) is the maximal positive quasi-antiorder relation on semigroup S.
(6) A quasi-antiorder τ on a semigroup S is positive if and only if it contained in the
maximal quasi-antiorder relation c(f) on S.

Proof. (1)-(5) Proofs for (1)-(5) immediately follows from Theorem 2, Theorem 3,
Theorem 4 and Theorem 5 of [6].
(6) It is clear that if τ is a positive quasi-antiorder relation on S, then τ ⊆ c(f), since
c(f) is the maximal positive quasi-antiorder relation on S. For opposite proof, let
holds τ ⊆ c(f). Then (x, xy) ./ c(f) ⊇ τ and (x, yx) ./ c(f) ⊇ τ for any x, y of S.
So, the quasi-antiorder τ is positive. ¤

3. Positive mapping

In parallel with positive quasi-antiorders there is possibility to define and inves-
tigate positive mapping from semigroup S into an anti-ordered set. For mapping
ϕ : S −→ P , from a semigroup (S, =, 6=, ·) into an anti-ordered set (P, =, 6=, θ), we
say that it is positive if and only if
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(ϕ(a), ϕ(ab)) ./ θ and (ϕ(b), ϕ(ab)) ./ θ , for all a, b ∈ S.
A connection between this mapping and positive quasi-antiorder has been given by
the following theorem:

Theorem 3.1. If ϕ is a positive mapping of a semigroup S into an anti-ordered set
P , then the relation τ on S, defined by (a, b) ∈ τ ⇐⇒ (ϕ(a), ϕ(b)) ∈ θ, is a positive
quasi-order on S. Opposite, if τ is a positive quasi-antiorder on semigroup S, then
there anti-ordered semigroup T and positive mapping ϕ : S −→ T .

Proof. (1) By Lemma 2 in [8], the relation τ on semigroup S is a quasi-antiorder on
S. Let x, y, a and b be arbitrary elements of S such that (x, y) ∈ τ . Then:
(x, y) ∈ τ =⇒ (x, a) ∈ τ ∨ (a, ab) ∈ τ ∨ (ab, y) ∈ τ

=⇒ x 6= a ∨ (ϕ(a), ϕ(ab)) ∈ θ ∨ ab 6= y

=⇒ (a, ab) 6= (x, y) ∈ τ .
For the fact (b, ab) ./ τ a proof is analogous. Therefore, the relation τ on S is a
positive quasi-antiorder relation on S.
(2) If τ is a positive quasi-antiorder on semigroup S, then the relation q = τ ∪τ−1 is a
coequality on S. Thus, the factor-set S/q is an anti-ordered set under the antiorder θ,
defined by (aq, bq) ∈ θ ⇐⇒ (a, b) ∈ τ . Expect that, let xq, yq, aq and bq be elements
of S/q such that (xq, yq) ∈ θ. Thus:
(xq, yq) ∈ θ =⇒ (xq, aq) ∈ θ ∨ (aq, abq) ∈ θ ∨ (abq, yq) ∈ θ

=⇒ xq 6= aq ∨ (a, ab) ∈ τ ∨ abq 6= yq

=⇒ (aq, abq) 6= (xq, yq) ∈ θ

and, analogously, we have (bq, abq) ./ θ. So, for the strongly extensional mapping
π : S −→ S/q we have:

(∀a, b ∈ S)((π(a), π(ab)) ./ θ ∧ (π(b), π(ab)) ./ θ).

¤
Using such connection between quasi-antiorders and mappings of a semigroup into

a anti-ordered set, various notions concerning quasi-antiorders can be translated to
the notions concerning the corresponding mappings.
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