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Characterization of K-algebras by self maps 11

KArRAMAT H. DAR AND MUHAMMAD AKRAM

ABsTrRACT. The notion of a K-algebra was introduced in [2] and it was characterized by its
left and right mappings in [3] when group is abelian. In this paper we first explore some new
properties of K-algebras, and then we characterize K-algebras by using their left and right
mappings when the group is non-abelian.
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1. Introduction

The notion of a K-algebra (G, -, ®,e) was first introduced by Dar and Akram [2]
in 2003 and published in 2005. A K-algebra is an algebra built on a group (G, -, e) by
adjoining an induced binary operation ® on G which is attached to an abstract K-
algebra (G, -, ®,e). This system is, in general non-commutative and non-associative
with a right identity e, if (G,-, e) is non-commutative. For a given group G, the
K-algebra is proper if G is not an elementary abelian 2-group. Thus, a K-algebra is
abelian and non-abelian purely depends on the base group G. Dar and Akram further
renamed a K -algebra on a group G as a K(G)-algebra [3] due to its structural basis G.
The K(G)-algebras have already been characterized by their left and right mappings
in [3] when group is abelian. In this paper we shall explore some new properties and
examples of K-algebras. We shall characterize K-algebras by using their left and right
mappings when the group is non-abelian. K-algebras have been extensively studied
by authors since 2004 (see [1-7]).

2. Properties of K-algebras

Definition 2.1. [2| Let (G, -, e) be a group in which each non-identity element is not
of order 2. Then a K- algebra is a structure K = (G,-,®,€) on a group G in which
induced binary operation ® : G x G — G is defined by O(z,y) =x Oy = z.y~ ! and
satisfies the following axioms:

(K)(a:@y)@( O2)=x0(e®2)0(edy))) oz
(K2) z ( y)=(r0(0y)) O,

(K3) (zoz)=e,

(K4) (zoe) =

(K5) (e@x) =127t

forallx, y, z € G.

Definition 2.2. [4] A K-algebra K is called abelian if and only if v ® (e ® y) =
y© (e®a) forall z,y € G.
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_Ifa K-algebra K is abelian, then the axioms (K1) and (K2) can be written as:
(®D) oy ooz =20y

(K2) z0(x0y) =y.

Remark 2.1. (a) Let G = {e,a,b,c} be a Klein four group. Consider a K -algebra
on G with the following Cayley table:

@‘ea b ¢
ele a b c
ala e ¢ b
b|b ¢ e a
cle b a e

This is an improper K -algebra on Klein four group since it is elementary abelian
2-group, i.e., tOy=z.y ' =z.9.

(b) A K-algebra is proper if G is not an elementary abelian 2-group.

Example 2.1. Let G; = {< a >: a® = ¢} and G2 = {< a >: a® = e} be two cyclic
groups. Then G = Gy x Gy = {(e,e), (a,e),(a? e), (e,b), (a,b), (a®,b)} is a cyclic
group of order 6. Consider the K-algebra K = (G,-,®,e) on G = {e,v,w,z,y,z},
where e = (e,e), v = (a,e), w = (a%,€), z = (e,b), y = (a,b), 2 = (a?,b), and © is
given by the following Cayley’s table:

©le v w T Y =z
ele w v = z y
viv e w Yy T 2
wlw v e z Yy T
rlx 2z Yy e w v
yly = z v e w
z|lz Yy T w v e
Example 2.2. Consider the K-algebra K = (G,-,®,¢e) on the Dihedral group G =

{e,a,u,v,b,2,y, 2} where u = a?, v = a®, x = ab, y = a®b, z = a®b, and © is given

by the following Cayley’s table:

Ole a u v b x y =z
ele v u a b z y =z
ala e v u x y z b
u|lu a e v y z b x
viv u a e z b x y
b|b z vy z e v u a
zlx y z b a e v u
yly z b x u a e v
z|lz b x y v u a e

Example 2.3. Let G = V5(R) = {(z,y,2) : 2,y,z € R} be the set of all 3-dimensional
real vectors which forms an additive (+) abelian group. Define the operation ® on
V3(R) bya®b=a—"0 for all a, b € V3(R).

Then (G, +,0,¢) is a K-algebra K.

We give the following theorem without proof.

Theorem 2.1. Let G1 and G be two groups and let Iy and Ko be K-algebras con-
structed on G1 and Ga, respectively. Then K1 = Ko if G1 =2 Go, but its converse is
not true.
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Proposition 2.1. In K-algebras K the following statements are equivalent:
(a) A K-algebra K is abelian,

(b) z0(e0y)=yo(eo),

() 20 (@Y =y,

d) (zoy)©z=(z02) 0y,

(&) (cOn) 0 (Oy) =6 (oY),

() (206 @oz) =20y
forallxzyy, z € G.

Proof. The proof is easy and hence omitted. O

Proposition 2.2. If the class of K-algebras K is an abelian. Then the following
identities hold:

1L.zo(e@y)=y0o (e® ),

2. (z0y)0z=(z02) 0y,

3. (zo(oy)oy=e,

4 e0@@oy) =(0r)0(e0y)=yoz
forallz,y, z € G.

Proof. The proof is easy and hence omitted. O

Proposition 2.3. In an abelian K-algebra K the following assertions are equivalent:
5. 20 (y©2)
6. (z0Oy)©(®z2)

7. 20 (yOx)
Proof. (5) = (6) since
zO(yo2) (0 (e®(z0y)) [by4]
= (z0y)o(eon) [byl]
= (z0(e0x)0y) [by2]
= (z0(e©2)oy) [byl]
= (oY o(eo2) [by?2]
(6) = (7) since
(roy)o(eor) = (c0(yor)o(c0z) [by4]
= 20(0 (0 (yor)) [byl]
= 2z0yox) by 4
(7) = (5) since
20 @yozr) = O (yo2)by(7) and (6).

O

We now formulate the following propositions without their proofs when the group
is non abelian.

Proposition 2.4. Let IC be a K-algebra on non-abelian group G. Then the following
identities hold in IC for all z, y, z € G:

(@) 20 (yo2)=(z0(0z2) 0y
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b)) (z0YOz=206 (20 (c®y)).

(©) €0 @Oy =y oo

Proposition 2.5. Let IC be a K-algebra on non-abelian group G. Then the following
identities hold in K for allx, y, z € G:

d) ev(evx) =

(e) ( (€®fc))—6®w

(f) = Oz)=(0r)0(z0r) =02
(8) (af@y) (Z®y) _q;@z

() (z0y) ©(eoy) =

(i) x@y—e—y@x:x—y

3. Characterization of K-algebras using self maps

It is known that all the bijective mappings on a group form a group under the
binary operation of their usual composition. The sets of all left and right mappings
on group G coincide elementwise if (G, -, e) is an abelian group. In this Section, we
extend the concept of left and right mappings to K-algebra K when G is non-abelian.

Right mappings of K-algebras

Definition 3.1. Let K be a K-algebra. For a fixed element x € K, the mapping
R, : K — K defined by Ry(y) =y©x for all y € K, is called right map on K. The
set of all right mappings on K- algebra K is denoted by R.

Definition 3.2. The binary operation of composition (o) of R on K -algebras built
on non- abelian group G behaves in the following way:

(9 R0 Ry = ((9)Ra)Ry = (90 2) Oy =90 (y© (e © ) = (9)Ryo (con)-
Example 3.1. Consider the K-algebra K = (Ss,-,®,€e) on the symmetric group
S3 = {e,a,b,x,y,z} where e = (1), a = (123), b = (132), z = (12), y = (13),

= (23), and © is given by the following Cayley’s table:

Ole x y z a b
ele z y z b a
r|lx e a b z y
yly b e a x z
z|lz a b e y x
ala z = y e b
blb vy z = a e

The set of all right mappings of a K-algebra is
R= {Rc; va Ryv Rza Raa Rb}

where
Re + (e)(a)(0)(2)(y)(2) = I,
Rx : (ez)(yb)(z a),
Ry : (ey)(za)(zb),
R, : (ez)(zd)(y a),
R. : (eba)(z zy),
Ry @ (eabd)(zy=2).
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By routine calculations, it is easy to see that

(R,0) ={< Ry, R, > R} =1=R?=(R,0R,)*} = 8s.
Theorem 3.1. Let K be a K-algebra on non-abelian group G. Let R be the set of all
right mappings of K -algebra with the binary operation of composition (o) of the right
mappings defined by
Then

a. the system (R,o) forms non- abelian group.
b. (R,0) 2 G.

Proof. (a) Since R, R, on K-algebra are composed by R, o R, = Ry (coz)- SO it
is easy to see that:
(i) the composition is non commutative, that is,

R,oRy, = Ry@(e@w) # Rx@(e@y) =RyoR, Vuz yed.
(ii) the composition is associative, that is,
(RzoRy)oR., = Ryo(RyoR,)

for all z, y, z € G.

(ili) If Re is the identity element of (R,0) and R;' = R, is the inverse of

(R,0) for all z € G, then

R:C o Re@x = Re = Re@x o Rx

Hence (R, o) forms non-abelian group.
(b) In order to show that (R,0) = G, we consider the map ¢ : R — G, from R into

G defined by ¢(R;) = e @z for all R, € R. We notice that:

(i)clearly ¢ is well-defined.

(ii) ¢ is a homomorphism since for R, R, € R
¢(Bq 0 Ry) = ¢(Ryo(con) = O (YO (e ) = (cOx) - (¢ OY) = ¢(Ra) 0 p(Ry).

(iii) ¢ is one-to-one since

¢(Re) = o(Ry) eOT=e0y

(o) ooy =e
yOxr=e
Ry@w = Re
RyoReoz = R.
R,oR;' =R,
R, = R,.

L R

Hence

—
(]

)= G.

We give the following Theorem without proof.

Theorem 3.2. Let K be a K-algebra on abelian group G. Let R be a set of all right
mappings of K-algebra K. Then (R,®) is a K-algebra K on R if and only if the
system (R,0) on K is isomorphic to the group G.
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Left mappings of K-algebras

Definition 3.3. Let K be a K-algebra. For a fixed element x € IC, the mapping
L, : K — K defined by L,(y) =x©y forall y €K, is called left map on K. The
set of all left mappings on K- algebra K is denoted by L.

Example 3.2. Consider the K-algebra K = (Ss,-,®,¢e) on the symmetric group
S3 = {e,a,b,x,y,z} where e = (1), a = (123), b = (132), « = (12), y = (13),
z = (23), and © is given by the Cayley’s table in Example 3.2. The set of all left
mappings of a K-algebra is

L= {Lea LX7 Ly> Lm Lau Lb}

where
Le ¢ (0)@))()ab),
Le = (ex)(yazb),
Ly, : (ey)(zbza),
L, : (ez2)(xaybd),
Lo ¢ (e )z 2 y)b),
Ly (eb)@y2)a)

It is easy to verify the following:
e [yoL.=R;, LyoL.=R,, L.,oL.=R,, LyoL.=R,, LyoL.=Ry.
By routine calculations, it is easy to see that (L,o) does not form a group.

Definition 3.4. The binary operation of composition (o) of L on a K-algebra built
on a non-abelian group behaves in the following way:

LyoLy(z) = La(Ly(2)) =20 (y02)=(20(0z2))0y)
= RyoLgoL.(2).

It is easy to see the following identities:

e R,oL,=L,oL,0lL,
for all z, y, z € G. In order to extend further to the mutual interactions of the left
and right mappings of a K-algebra, we include the following:

Proposition 3.1. Let K be a K-algebra. Then the left mappings of the set (L, o)
compose on K holding the following interacting properties to (R, o) for all z, y, z € G:

) L
) L OLm:Rz;

) Lm@y :LIORSQy :LIOLEQyOLe,
) Le(z@y) =y Oz = Ly(z) = Ra(y),
) L20L.=R,0L,,

) LyoL,oL.=R,0L,.

Proof. Routine. O

Lemma 3.1. [3] Let K be a K-algebra on an abelian group G and let (L, o) be the set
of all left mappings of K. Then L. € L is the only non-identity automorphism of K.

Theorem 3.3. Let K be a K-algebra on a non-abelian group G and let (L, o) be the

set of all left mappings of K. Then L. € L is the only non-identity endomorphism of
K.
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Proof. L, is an endomorphism of K since
Le(z0y)=e0(z0y)=(c0x)©(e®y) = Le(x) © Le(y).

Hence L. is an endomorphism of K-algebras K. (I

From the mutual intersection of the left mappings of a K-algebra I, it is easy to
note that, if L, o L, = L,, then L,(y) =e® (x ©y) for all z € G. Let L/L, = L =
{L, : z € G}, then by routine simplification process one can find in (L, o) that:

o L.oL,= L., Identity=R,

e [, o Ly:LyQ(e@I)

o (LyoLy)oL.=Lyo(LyoL.)

@ L,0Leos=Lc=LeozoLy
Example 3.3. In Example 3.8, we see that the set of left mappings L of a K-algebra
on non-abelian G does not form group. We generate the group of left mappings formed
by L/L. = L = {L.o L, : * € G}. By routine computations, It is easy to see the
following:

Lo = LeoL.,=1

Lo = LeoLs=(ca)(y )z b)
Ly = LeoLy=(ey)(zb)(za)
L, = LeoL,=(ez)(za)(yb)
Lo = LeoLy,=(eab)(zzy)
L, = LeoLy=(eba)(zy=2)

We state the following theorem without proof.
Theorem 3.4. Let K be a K-algebra on non-abelian group G. and let
L=L/L.={LcoL,:x¢€G}
be the set of all left mappings of a K -algebra with the binary operation of composition
(o) of left mappings defined by
f{b o fy = Zy@(e@m)

Then B

a. the system (L, o) forms non-abelian group.

b. (L.0) = (R,0) = G.
Example 3.4. Let L={I =L.,Ly,L,, L., Lo, Ly} be the set of all left mappings of
K on the symmetric group Ss = {e,a,b,x,y, 2z} where e = (1), a = (123), b = (132),

r = (12), y = (13), z = (23). Consider K-algebra K on L, and ® is given by the
following Cayley table:

©|L. T, I, I. L. Ly
I.|L. L. L, L. Ly Ld
I.|T, I. L. L, L. I,
I,|I, I, L. L, L, L.
I.|L. T Iy L. L, L.
I.|L. L. I, I, L. L
Io|Zo I, L. L. L. L.
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Thus we state the following Theorem without proof.

Theorem 3.5. Let K be a K-algebra on non-abelian group G. Let L be a set of all
left mappings of K-algebra K. Then (L,®) is a K-algebra K on L if and only if the
system (L, o) on K is isomorphic to the group G.

In closing this paper, we state the following Theorem which can be easily proved.
We hence omit the details.

Theorem 3.6. Let G be a group and let R and L be the sets of right and left mappings
of K-algebras. Then R = L.
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