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Characterization of K-algebras by self maps II

Karamat H. Dar and Muhammad Akram

Abstract. The notion of a K-algebra was introduced in [2] and it was characterized by its
left and right mappings in [3] when group is abelian. In this paper we first explore some new
properties of K-algebras, and then we characterize K-algebras by using their left and right
mappings when the group is non-abelian.
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1. Introduction

The notion of a K-algebra (G, ·,¯, e) was first introduced by Dar and Akram [2]
in 2003 and published in 2005. A K-algebra is an algebra built on a group (G, ·, e) by
adjoining an induced binary operation ¯ on G which is attached to an abstract K-
algebra (G, ·,¯, e). This system is, in general non-commutative and non-associative
with a right identity e, if (G, ·, e) is non-commutative. For a given group G, the
K-algebra is proper if G is not an elementary abelian 2-group. Thus, a K-algebra is
abelian and non-abelian purely depends on the base group G. Dar and Akram further
renamed a K-algebra on a group G as a K(G)-algebra [3] due to its structural basis G.
The K(G)-algebras have already been characterized by their left and right mappings
in [3] when group is abelian. In this paper we shall explore some new properties and
examples of K-algebras. We shall characterize K-algebras by using their left and right
mappings when the group is non-abelian. K-algebras have been extensively studied
by authors since 2004 (see [1-7]).

2. Properties of K-algebras

Definition 2.1. [2] Let (G, ·, e) be a group in which each non-identity element is not
of order 2. Then a K- algebra is a structure K = (G, ·,¯, e) on a group G in which
induced binary operation ¯ : G × G → G is defined by ¯(x, y) = x ¯ y = x.y−1 and
satisfies the following axioms:
(K1) (x¯ y)¯ (x¯ z) = (x¯ ((e¯ z)¯ (e¯ y)))¯ x,
(K2) x¯ (x¯ y) = (x¯ (e¯ y))¯ x,
(K3) (x¯ x) = e,
(K4) (x¯ e) = x,
(K5) (e¯ x) = x−1

for all x, y, z ∈ G.

Definition 2.2. [4] A K-algebra K is called abelian if and only if x ¯ (e ¯ y) =
y ¯ (e¯ x) for all x, y ∈ G.
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If a K-algebra K is abelian, then the axioms (K1) and (K2) can be written as:
(K1) (x¯ y)¯ (x¯ z) = z ¯ y .
(K2) x¯ (x¯ y) = y.

Remark 2.1. (a) Let G = {e, a, b, c} be a Klein four group. Consider a K-algebra
on G with the following Cayley table:

¯ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

This is an improper K-algebra on Klein four group since it is elementary abelian
2-group, i.e., x¯ y = x.y−1 = x.y.

(b) A K-algebra is proper if G is not an elementary abelian 2-group.

Example 2.1. Let G1 = {< a >: a3 = e} and G2 = {< a >: a2 = e} be two cyclic
groups. Then G = G1 × G2 = {(e, e), (a, e), (a2, e), (e, b), (a, b), (a2, b)} is a cyclic
group of order 6. Consider the K-algebra K = (G, ·,¯, e) on G = {e, v, w, x, y, z},
where e = (e, e), v = (a, e), w = (a2, e), x = (e, b), y = (a, b), z = (a2, b), and ¯ is
given by the following Cayley’s table:

¯ e v w x y z
e e w v x z y
v v e w y x z
w w v e z y x
x x z y e w v
y y x z v e w
z z y x w v e

Example 2.2. Consider the K-algebra K = (G, ·,¯, e) on the Dihedral group G =
{e, a, u, v, b, x, y, z} where u = a2, v = a3, x = ab, y = a2b, z = a3b, and ¯ is given
by the following Cayley’s table:

¯ e a u v b x y z
e e v u a b x y z
a a e v u x y z b
u u a e v y z b x
v v u a e z b x y
b b x y z e v u a
x x y z b a e v u
y y z b x u a e v
z z b x y v u a e

Example 2.3. Let G = V3(R) = {(x, y, z) : x, y, z ∈ R} be the set of all 3-dimensional
real vectors which forms an additive (+) abelian group. Define the operation ¯ on
V3(R) by a¯ b = a− b for all a, b ∈ V3(R).
Then (G,+,¯, e) is a K-algebra K.
We give the following theorem without proof.

Theorem 2.1. Let G1 and G2 be two groups and let K1 and K2 be K-algebras con-
structed on G1 and G2, respectively. Then K1

∼= K2 if G1
∼= G2, but its converse is

not true.
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Proposition 2.1. In K-algebras K the following statements are equivalent:
(a) A K-algebra K is abelian,
(b) x¯ (e¯ y) = y ¯ (e¯ x),
(c) x¯ (x¯ y) = y,
(d) (x¯ y)¯ z = (x¯ z)¯ y,
(e) (e¯ x)¯ (e¯ y) = e¯ (x¯ y),
(f) (x¯ y)¯ (x¯ z) = z ¯ y
for all x,y, z ∈ G.

Proof. The proof is easy and hence omitted. ¤

Proposition 2.2. If the class of K-algebras K is an abelian. Then the following
identities hold:
1. x¯ (e¯ y) = y ¯ (e¯ x),
2. (x¯ y)¯ z = (x¯ z)¯ y,
3. (x¯ (x¯ y))¯ y = e,
4. e¯ (x¯ y) = (e¯ x)¯ (e¯ y) = y ¯ x

for all x, y, z ∈ G.

Proof. The proof is easy and hence omitted. ¤

Proposition 2.3. In an abelian K-algebra K the following assertions are equivalent:
5. x¯ (y ¯ z)
6. (x¯ y)¯ (e¯ z)
7. z ¯ (y ¯ x)

Proof. (5) ⇒ (6) since

x¯ (y ¯ z) = (x¯ (e¯ (z ¯ y)) [by 4]
= (z ¯ y)¯ (e¯ x) [by 1]
= (z ¯ (e¯ x))¯ y) [by 2]
= (x¯ (e¯ z))¯ y) [by 1]
= (x¯ y)¯ (e¯ z) [by 2]

(6) ⇒ (7) since

(x¯ y)¯ (e¯ x) = (e¯ (y ¯ x))¯ (e¯ z) [by 4]
= z ¯ (e¯ (e¯ (y ¯ x))) [by 1]
= z ¯ (y ¯ x) [by 4]

(7) ⇒ (5) since

z ¯ (y ¯ x) = x¯ (y ¯ z)by(7) and (6).

¤

We now formulate the following propositions without their proofs when the group
is non abelian.

Proposition 2.4. Let K be a K-algebra on non-abelian group G. Then the following
identities hold in K for all x, y, z ∈ G:
(a) x¯ (y ¯ z) = (x¯ (e¯ z))¯ y.
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(b) (x¯ y)¯ z = x¯ (z ¯ (e¯ y)).
(c) e¯ (x¯ y) = y ¯ x.

Proposition 2.5. Let K be a K-algebra on non-abelian group G. Then the following
identities hold in K for all x, y, z ∈ G:
(d) e¯ (e¯ x) = x.
(e) x¯ (x¯ (e¯ x)) = e¯ x.
(f) x¯ (z ¯ (e¯ x)) = (e¯ x)¯ (z ¯ x) = e¯ z.
(g) (x¯ y)¯ (z ¯ y) = x¯ z.
(h) (x¯ y)¯ (e¯ y) = x.
(i) x¯ y = e = y ¯ x =⇒ x = y.

3. Characterization of K-algebras using self maps

It is known that all the bijective mappings on a group form a group under the
binary operation of their usual composition. The sets of all left and right mappings
on group G coincide elementwise if (G, ·, e) is an abelian group. In this Section, we
extend the concept of left and right mappings to K-algebra K when G is non-abelian.

Right mappings of K-algebras

Definition 3.1. Let K be a K-algebra. For a fixed element x ∈ K, the mapping
Rx : K → K defined by Rx(y) = y ¯ x for all y ∈ K, is called right map on K. The
set of all right mappings on K- algebra K is denoted by R.

Definition 3.2. The binary operation of composition (◦) of R on K-algebras built
on non- abelian group G behaves in the following way:

(g)Rx ◦Ry = ((g)Rx)Ry = (g ¯ x)¯ y = g ¯ (y ¯ (e¯ x)) = (g)Ry¯(e¯x).

Example 3.1. Consider the K-algebra K = (S3, ·,¯, e) on the symmetric group
S3 = {e, a, b, x, y, z} where e = (1), a = (123), b = (132), x = (12), y = (13),
z = (23), and ¯ is given by the following Cayley’s table:

¯ e x y z a b
e e x y z b a
x x e a b z y
y y b e a x z
z z a b e y x
a a z x y e b
b b y z x a e

The set of all right mappings of a K-algebra is

R = {Re,Rx,Ry, Rz, Ra,Rb}
where

Re : (e)(a)(b)(x)(y)(z) = I,

Rx : (e x)(y b)(z a),
Ry : (e y)(x a)(z b),
Rz : (e z)(x b)(y a),
Ra : (e b a)(x z y),
Rb : (e a b)(x y z).
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By routine calculations, it is easy to see that

(R, ◦) = {< Ra, Rz >: R3
a = I = R2

z = (Ra ◦Rz)2} ∼= S3.

Theorem 3.1. Let K be a K-algebra on non-abelian group G. Let R be the set of all
right mappings of K-algebra with the binary operation of composition (◦) of the right
mappings defined by

Rx ◦Ry = Ry¯(e¯x).

Then
a. the system (R, ◦) forms non- abelian group.
b. (R, ◦) ∼= G.

Proof. (a) Since Rx, Ry on K-algebra are composed by Rx ◦ Ry = Ry¯(e¯x). So it
is easy to see that:
(i) the composition is non commutative, that is,

Rx ◦Ry = Ry¯(e¯x) 6= Rx¯(e¯y) = Ry ◦Rx ∀ x, y ∈ G.

(ii) the composition is associative, that is,

(Rx ◦Ry) ◦Rz = Rx ◦ (Ry ◦Rz)

for all x, y, z ∈ G.
(iii) If Re is the identity element of (R, ◦) and R−1

x = Re
⊙

x is the inverse of
(R, ◦) for all x ∈ G, then

Rx ◦Re¯x = Re = Re¯x ◦Rx.

Hence (R, ◦) forms non-abelian group.
(b) In order to show that (R, ◦) ∼= G, we consider the map φ : R → G, from R into

G defined by φ(Rx) = e¯ x for all Rx ∈ R. We notice that:
(i)clearly φ is well-defined.
(ii) φ is a homomorphism since for Rx, Ry ∈ R

φ(Rx ◦Ry) = φ(Ry¯(e¯x)) = e¯ (y ¯ (e¯ x)) = (e¯ x) · (e¯ y) = φ(Rx) ◦ φ(Ry).

(iii) φ is one-to-one since

φ(Rx) = φ(Ry) ⇒ e¯ x = e¯ y

⇒ (e¯ x)¯ (e¯ y) = e

⇒ y ¯ x = e

⇒ Ry¯x = Re

⇒ Ry ◦Re¯x = Re

⇒ Ry ◦R−1
x = Re

⇒ Rx = Ry.

Hence
(R, ◦) ∼= G.

¤
We give the following Theorem without proof.

Theorem 3.2. Let K be a K-algebra on abelian group G. Let R be a set of all right
mappings of K-algebra K. Then (R,¯) is a K-algebra K on R if and only if the
system (R, ◦) on K is isomorphic to the group G.
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Left mappings of K-algebras
Definition 3.3. Let K be a K-algebra. For a fixed element x ∈ K, the mapping
Lx : K → K defined by Lx(y) = x ¯ y for all y ∈ K, is called left map on K. The
set of all left mappings on K- algebra K is denoted by L.

Example 3.2. Consider the K-algebra K = (S3, ·,¯, e) on the symmetric group
S3 = {e, a, b, x, y, z} where e = (1), a = (123), b = (132), x = (12), y = (13),
z = (23), and ¯ is given by the Cayley’s table in Example 3.2. The set of all left
mappings of a K-algebra is

L = {Le,Lx, Ly, Lz, La, Lb}
where

Le : (e)(x)(y)(z)(a b),
Lx : (e x)(y a z b),
Ly : (e y)(x b z a),
Lz : (e z)(x a y b),
La : (e a)(x z y)(b),
Lb : (e b)(x y z)(a).

It is easy to verify the following:
• Lx ◦ Le = Rx, Ly ◦ Le = Ry, Lz ◦ Le = Rz, La ◦ Le = Ra, Lb ◦ Le = Rb.
By routine calculations, it is easy to see that (L, ◦) does not form a group.

Definition 3.4. The binary operation of composition (◦) of L on a K-algebra built
on a non-abelian group behaves in the following way:

Lx ◦ Ly(z) = Lx(Ly(z)) = x¯ (y ¯ z) = (x¯ (e¯ z))¯ y)
= Ry ◦ Lx ◦ Le(z).

It is easy to see the following identities:
• Lx(y) = Ry(x)
• Rz ◦ Lx = Lx ◦ Lz ◦ Le

for all x, y, z ∈ G. In order to extend further to the mutual interactions of the left
and right mappings of a K-algebra, we include the following:

Proposition 3.1. Let K be a K-algebra. Then the left mappings of the set (L, ◦)
compose on K holding the following interacting properties to (R, ◦) for all x, y, z ∈ G:

(1) L2
e = Re,

(2) Le ◦ Lx = Rx,
(3) Lx¯y = Lx ◦Re¯y = Lx ◦ Le¯y ◦ Le,
(4) Le(x¯ y) = y ¯ x = Ly(x) = Rx(y),
(5) L2

x ◦ Le = Rx ◦ Lx,
(6) Lx ◦ Lz ◦ Le = Rz ◦ Lx.

Proof. Routine. ¤
Lemma 3.1. [3] Let K be a K-algebra on an abelian group G and let (L, ◦) be the set
of all left mappings of K. Then Le ∈ L is the only non-identity automorphism of K.
Theorem 3.3. Let K be a K-algebra on a non-abelian group G and let (L, ◦) be the
set of all left mappings of K. Then Le ∈ L is the only non-identity endomorphism of
K.
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Proof. Le is an endomorphism of K since

Le(x¯ y) = e¯ (x¯ y) = (e¯ x)¯ (e¯ y) = Le(x)¯ Le(y).

Hence Le is an endomorphism of K-algebras K. ¤
From the mutual intersection of the left mappings of a K-algebra K, it is easy to

note that, if Le ◦ Lx = Lx, then Lx(y) = e¯ (x¯ y) for all x ∈ G. Let L/Le = L =
{Lx : x ∈ G}, then by routine simplification process one can find in (L, ◦) that:
• Le ◦ Le = Le= Identity=Re

• Lx ◦ Ly=Ly¯(e¯x)

• (Lx ◦ Ly) ◦ Lz = Lx ◦ (Ly ◦ Lz)
• Lx ◦ Le¯x = Le = Le¯x ◦ Lx

Example 3.3. In Example 3.8, we see that the set of left mappings L of a K-algebra
on non-abelian G does not form group. We generate the group of left mappings formed
by L/Le = L = {Le ◦ Lx : x ∈ G}. By routine computations, It is easy to see the
following:

Le = Le ◦ Le = I

Lx = Le ◦ Lx = (e x)(y a)(z b)

Ly = Le ◦ Ly = (e y)(x b)(z a)

Lz = Le ◦ Lz = (e z)(x a)(y b)

La = Le ◦ La = (e a b)(x z y)

Lb = Le ◦ Lb = (e b a)(x y z)

By routine calculations, it is easy to see that

(L, ◦) = {< La, Lz >: L
3

a = I = L
2

z = (LaLz)2} ∼= S3.

We state the following theorem without proof.

Theorem 3.4. Let K be a K-algebra on non-abelian group G. and let

L = L/Le = {Le ◦ Lx : x ∈ G}
be the set of all left mappings of a K-algebra with the binary operation of composition
(◦) of left mappings defined by

Lx ◦ Ly = Ly¯(e¯x).

Then
a. the system (L, ◦) forms non-abelian group.
b. (L, ◦) ∼= (R, ◦) ∼= G.

Example 3.4. Let L = {I = Le, Lx, Ly, Lz, La, Lb} be the set of all left mappings of
K on the symmetric group S3 = {e, a, b, x, y, z} where e = (1), a = (123), b = (132),
x = (12), y = (13), z = (23). Consider K-algebra K on L, and ¯ is given by the
following Cayley table:

¯ Le Lx Ly Lz La Lb

Le Le Lx Ly Lz Lb La

Lx Lx Le La Lb Lz Ly

Ly Ly Lb Le La Lx Lz

Lz Lz La Lb Le Ly Lx

La La Lz Lx Ly Le Lb

Lb Lb Ly Lz Lx La Le
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Thus we state the following Theorem without proof.

Theorem 3.5. Let K be a K-algebra on non-abelian group G. Let L be a set of all
left mappings of K-algebra K. Then (L,¯) is a K-algebra K on L if and only if the
system (L, ◦) on K is isomorphic to the group G.

In closing this paper, we state the following Theorem which can be easily proved.
We hence omit the details.

Theorem 3.6. Let G be a group and let R and L be the sets of right and left mappings
of K-algebras. Then R ∼= L.
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