Annals of the University of Craiova, Mathematics and Computer Science Series Volume 37(1), 2010, Pages 96–103 ISSN: 1223-6934

Characterization of K-algebras by self maps II

KARAMAT H. DAR AND MUHAMMAD AKRAM

ABSTRACT. The notion of a K-algebra was introduced in [2] and it was characterized by its left and right mappings in [3] when group is abelian. In this paper we first explore some new properties of K-algebras, and then we characterize K-algebras by using their left and right mappings when the group is non-abelian.

2010 Mathematics Subject Classification. 06F35. Key words and phrases. K-algebras, Left and right mappings.

1. Introduction

The notion of a K-algebra (G, \cdot, \odot, e) was first introduced by Dar and Akram [2] in 2003 and published in 2005. A K-algebra is an algebra built on a group (G, \cdot, e) by adjoining an induced binary operation \odot on G which is attached to an abstract Kalgebra (G, \cdot, \odot, e) . This system is, in general non-commutative and non-associative with a right identity e, if (G, \cdot, e) is non-commutative. For a given group G, the K-algebra is proper if G is not an elementary abelian 2-group. Thus, a K-algebra is abelian and non-abelian purely depends on the base group G. Dar and Akram further renamed a K-algebra on a group G as a K(G)-algebra [3] due to its structural basis G. The K(G)-algebras have already been characterized by their left and right mappings in [3] when group is abelian. In this paper we shall explore some new properties and examples of K-algebras. We shall characterize K-algebras by using their left and right mappings when the group is non-abelian. K-algebras have been extensively studied by authors since 2004 (see [1-7]).

2. Properties of K-algebras

Definition 2.1. [2] Let (G, \cdot, e) be a group in which each non-identity element is not of order 2. Then a K- algebra is a structure $\mathcal{K} = (G, \cdot, \odot, e)$ on a group G in which induced binary operation $\odot : G \times G \to G$ is defined by $\odot(x, y) = x \odot y = x \cdot y^{-1}$ and satisfies the following axioms:

 $\begin{array}{ll} (\mathrm{K1}) & (x \odot y) \odot (x \odot z) = (x \odot ((e \odot z) \odot (e \odot y))) \odot x, \\ (\mathrm{K2}) & x \odot (x \odot y) = (x \odot (e \odot y)) \odot x, \\ (\mathrm{K3}) & (x \odot x) = e, \\ (\mathrm{K4}) & (x \odot e) = x, \\ (\mathrm{K5}) & (e \odot x) = x^{-1} \\ for \ all \ x, \ y, \ z \in G. \end{array}$

Definition 2.2. [4] A K-algebra \mathcal{K} is called abelian if and only if $x \odot (e \odot y) = y \odot (e \odot x)$ for all $x, y \in G$.

Received January 10, 2010. Revision received February 14, 2010.

If a K-algebra \mathcal{K} is abelian, then the axioms (K1) and (K2) can be written as: $(\overline{K1}) \ (x \odot y) \odot (x \odot z) = z \odot y$. $(\overline{K2}) \ x \odot (x \odot y) = y$.

Remark 2.1. (a) Let $G = \{e, a, b, c\}$ be a Klein four group. Consider a K-algebra on G with the following Cayley table:

\odot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

This is an improper K-algebra on Klein four group since it is elementary abelian 2-group, i.e., $x \odot y = x \cdot y^{-1} = x \cdot y$.

(b) A K-algebra is proper if G is not an elementary abelian 2-group.

Example 2.1. Let $G_1 = \{\langle a \rangle : a^3 = e\}$ and $G_2 = \{\langle a \rangle : a^2 = e\}$ be two cyclic groups. Then $G = G_1 \times G_2 = \{(e, e), (a, e), (a^2, e), (e, b), (a, b), (a^2, b)\}$ is a cyclic group of order 6. Consider the K-algebra $\mathcal{K} = (G, \cdot, \odot, e)$ on $G = \{e, v, w, x, y, z\}$, where e = (e, e), v = (a, e), $w = (a^2, e)$, x = (e, b), y = (a, b), $z = (a^2, b)$, and \odot is given by the following Cayley's table:

\odot	e	v	w	x	y	z
e	e	w	v	x	z	y
v	v	e	w	y	x	z
w	w	v	e	z	y	x
x	x	z	y	e	w	v
y	y	x	z	v	e	w
z		y	x	w	v	e

Example 2.2. Consider the K-algebra $\mathcal{K} = (G, \cdot, \odot, e)$ on the Dihedral group $G = \{e, a, u, v, b, x, y, z\}$ where $u = a^2$, $v = a^3$, x = ab, $y = a^2b$, $z = a^3b$, and \odot is given by the following Cayley's table:

\odot	e	a	u	v	b	x	y	z
e	e	v	u	a	b	x	y	z
a	a	e	v	u	x	y	z	b
u	u	a	e	v	y	z	b	x
v	v	u	a	e	z	b	x	y
b	b	x	y	z	e	v	u	a
x	x	y	z	b	a	e	v	u
y	y	z	b	x	u	a	e	v
z	z	b	x	y	v	u	a	e

Example 2.3. Let $G = V_3(R) = \{(x, y, z) : x, y, z \in R\}$ be the set of all 3-dimensional real vectors which forms an additive (+) abelian group. Define the operation \odot on $V_3(R)$ by $a \odot b = a - b$ for all $a, b \in V_3(R)$. Then $(G, +, \odot, e)$ is a K-algebra K.

We give the following theorem without proof.

Theorem 2.1. Let G_1 and G_2 be two groups and let \mathcal{K}_1 and \mathcal{K}_2 be K-algebras constructed on G_1 and G_2 , respectively. Then $\mathcal{K}_1 \cong \mathcal{K}_2$ if $G_1 \cong G_2$, but its converse is not true.

Proposition 2.1. In K-algebras \mathcal{K} the following statements are equivalent:

 $\begin{array}{ll} (a) & A \ K\ algebra \ \mathcal{K} \ is \ abelian, \\ (b) & x \odot (e \odot y) = y \odot (e \odot x), \\ (c) & x \odot (x \odot y) = y, \\ (d) & (x \odot y) \odot z = (x \odot z) \odot y, \\ (e) & (e \odot x) \odot (e \odot y) = e \odot (x \odot y), \\ (f) & (x \odot y) \odot (x \odot z) = z \odot y \end{array}$

for all $x,y, z \in G$.

Proof. The proof is easy and hence omitted.

Proposition 2.2. If the class of K-algebras \mathcal{K} is an abelian. Then the following identities hold:

1. $x \odot (e \odot y) = y \odot (e \odot x),$ 2. $(x \odot y) \odot z = (x \odot z) \odot y,$ 3. $(x \odot (x \odot y)) \odot y = e,$ 4. $e \odot (x \odot y) = (e \odot x) \odot (e \odot y) = y \odot x$ for all $x, y, z \in G.$

Proof. The proof is easy and hence omitted.

Proposition 2.3. In an abelian K-algebra \mathcal{K} the following assertions are equivalent:

5. $x \odot (y \odot z)$ 6. $(x \odot y) \odot (e \odot z)$ 7. $z \odot (y \odot x)$

Proof. $(5) \Rightarrow (6)$ since

 $\begin{array}{rcl} x \odot (y \odot z) &=& (x \odot (e \odot (z \odot y)) \quad [by \ 4] \\ &=& (z \odot y) \odot (e \odot x) \quad [by \ 1] \\ &=& (z \odot (e \odot x)) \odot y) \quad [by \ 2] \\ &=& (x \odot (e \odot z)) \odot y) \quad [by \ 1] \\ &=& (x \odot y) \odot (e \odot z) \quad [by \ 2] \end{array}$

 $(6) \Rightarrow (7)$ since

$$\begin{array}{rcl} (x \odot y) \odot (e \odot x) &=& (e \odot (y \odot x)) \odot (e \odot z) & [by \ 4] \\ &=& z \odot (e \odot (e \odot (y \odot x))) & [by \ 1] \\ &=& z \odot (y \odot x) & [by \ 4] \end{array}$$

 $(7) \Rightarrow (5)$ since

$$z \odot (y \odot x) = x \odot (y \odot z) by(7) and (6).$$

We now formulate the following propositions without their proofs when the group is non abelian.

Proposition 2.4. Let \mathcal{K} be a K-algebra on non-abelian group G. Then the following identities hold in \mathcal{K} for all $x, y, z \in G$: (a) $x \odot (y \odot z) = (x \odot (e \odot z)) \odot y$.

98

(b) $(x \odot y) \odot z = x \odot (z \odot (e \odot y)).$ (c) $e \odot (x \odot y) = y \odot x.$

Proposition 2.5. Let \mathcal{K} be a K-algebra on non-abelian group G. Then the following identities hold in \mathcal{K} for all $x, y, z \in G$:

- (d) $e \odot (e \odot x) = x$.
- (e) $x \odot (x \odot (e \odot x)) = e \odot x$.
- (f) $x \odot (z \odot (e \odot x)) = (e \odot x) \odot (z \odot x) = e \odot z$.
- (g) $(x \odot y) \odot (z \odot y) = x \odot z$.
- (h) $(x \odot y) \odot (e \odot y) = x$.
- (i) $x \odot y = e = y \odot x \Longrightarrow x = y$.

3. Characterization of K-algebras using self maps

It is known that all the bijective mappings on a group form a group under the binary operation of their usual composition. The sets of all left and right mappings on group G coincide elementwise if (G, \cdot, e) is an abelian group. In this Section, we extend the concept of left and right mappings to K-algebra \mathcal{K} when G is non-abelian.

Right mappings of K-algebras

Definition 3.1. Let \mathcal{K} be a K-algebra. For a fixed element $x \in \mathcal{K}$, the mapping $R_x : \mathcal{K} \to \mathcal{K}$ defined by $R_x(y) = y \odot x$ for all $y \in \mathcal{K}$, is called right map on \mathcal{K} . The set of all right mappings on K- algebra \mathcal{K} is denoted by R.

Definition 3.2. The binary operation of composition (\circ) of R on K-algebras built on non- abelian group G behaves in the following way:

 $(g)R_x \circ R_y = ((g)R_x)R_y = (g \odot x) \odot y = g \odot (y \odot (e \odot x)) = (g)R_{y \odot (e \odot x)}.$

Example 3.1. Consider the K-algebra $\mathcal{K} = (S_3, \cdot, \odot, e)$ on the symmetric group $S_3 = \{e, a, b, x, y, z\}$ where e = (1), a = (123), b = (132), x = (12), y = (13), z = (23), and \odot is given by the following Cayley's table:

\odot	e	x	y	z	a	b
e	e	x	y	z	b	a
x	x	e	a	b	z	y
y	y	b	e	a	x	z
z	z	a	b	e	y	x
a	a	z	x	y	e	b
b	b	y	z	x	a	e

The set of all right mappings of a K-algebra is

 $R = \{R_e, R_x, R_y, R_z, R_a, R_b\}$

where

$$\begin{array}{rcl} {\rm R}_{\rm e} & : & (e)(a)(b)(x)(y)(z) = I, \\ {\rm R}_{\rm x} & : & (e \; x)(y \; b)(z \; a), \\ {\rm R}_{\rm y} & : & (e \; y)(x \; a)(z \; b), \\ {\rm R}_{\rm z} & : & (e \; z)(x \; b)(y \; a), \\ {\rm R}_{\rm a} & : & (e \; b \; a)(x \; z \; y), \\ {\rm R}_{\rm b} & : & (e \; a \; b)(x \; y \; z). \end{array}$$

By routine calculations, it is easy to see that

$$(R, \circ) = \{ < R_a, R_z >: R_a^3 = I = R_z^2 = (R_a \circ R_z)^2 \} \cong S_3.$$

Theorem 3.1. Let \mathcal{K} be a K-algebra on non-abelian group G. Let R be the set of all right mappings of K-algebra with the binary operation of composition (\circ) of the right mappings defined by

$$R_x \circ R_y = R_{y \odot (e \odot x)}$$

Then

a. the system (R, \circ) forms non-abelian group.

b. $(R, \circ) \cong G$.

- *Proof.* (a) Since R_x, R_y on K-algebra are composed by $R_x \circ R_y = R_{y \odot (e \odot x)}$. So it is easy to see that:
 - (i) the composition is non commutative, that is,

$$R_x \circ R_y = R_{y \odot (e \odot x)} \neq R_{x \odot (e \odot y)} = R_y \circ R_x \quad \forall x, y \in G.$$

(ii) the composition is associative, that is,

$$(R_x \circ R_y) \circ R_z = R_x \circ (R_y \circ R_z)$$

for all $x, y, z \in G$.

(iii) If R_e is the identity element of (R, \circ) and $R_x^{-1} = R_{e \odot x}$ is the inverse of (R, \circ) for all $x \in G$, then

$$R_x \circ R_{e \odot x} \quad = \quad R_e = R_{e \odot x} \circ R_x.$$

Hence (R, \circ) forms non-abelian group.

- (b) In order to show that (R, ◦) ≅ G, we consider the map φ : R → G, from R into G defined by φ(R_x) = e ⊙ x for all R_x ∈ R. We notice that: (i)clearly φ is well-defined.
 - (ii) ϕ is a homomorphism since for $R_x, R_y \in R$

 $\phi(R_x \circ R_y) = \phi(R_{y \odot (e \odot x)}) = e \odot (y \odot (e \odot x)) = (e \odot x) \cdot (e \odot y) = \phi(R_x) \circ \phi(R_y).$

(iii) ϕ is one-to-one since

$$\begin{split} \phi(R_x) &= \phi(R_y) \quad \Rightarrow \quad e \odot x = e \odot y \\ \Rightarrow \quad (e \odot x) \odot (e \odot y) = e \\ \Rightarrow \quad y \odot x = e \\ \Rightarrow \quad R_{y \odot x} = R_e \\ \Rightarrow \quad R_y \circ R_{e \odot x} = R_e \\ \Rightarrow \quad R_y \circ R_{x^{-1}} = R_e \\ \Rightarrow \quad R_x = R_y. \end{split}$$
$$(R, \circ) \cong G.$$

Hence

We give the following Theorem without proof.

Theorem 3.2. Let \mathcal{K} be a K-algebra on abelian group G. Let R be a set of all right mappings of K-algebra \mathcal{K} . Then (R, \odot) is a K-algebra \mathcal{K} on R if and only if the system (R, \circ) on \mathcal{K} is isomorphic to the group G.

Left mappings of *K*-algebras

Definition 3.3. Let \mathcal{K} be a K-algebra. For a fixed element $x \in \mathcal{K}$, the mapping $L_x : \mathcal{K} \to \mathcal{K}$ defined by $L_x(y) = x \odot y$ for all $y \in \mathcal{K}$, is called left map on \mathcal{K} . The set of all left mappings on K- algebra \mathcal{K} is denoted by L.

Example 3.2. Consider the K-algebra $\mathcal{K} = (S_3, \cdot, \odot, e)$ on the symmetric group $S_3 = \{e, a, b, x, y, z\}$ where e = (1), a = (123), b = (132), x = (12), y = (13), z = (23), and \odot is given by the Cayley's table in Example 3.2. The set of all left mappings of a K-algebra is

$$\mathbf{L} = \{\mathbf{L}_{\mathbf{e}}, \mathbf{L}_{\mathbf{x}}, \mathbf{L}_{\mathbf{y}}, \mathbf{L}_{\mathbf{z}}, \mathbf{L}_{\mathbf{a}}, \mathbf{L}_{\mathbf{b}}\}$$

where

 $\begin{array}{rcl} {\rm L_e} &:& (e)(x)(y)(z)(a\;b),\\ {\rm L_x} &:& (e\;x)(y\;a\;z\;b),\\ {\rm L_y} &:& (e\;y)(x\;b\;z\;a),\\ {\rm L_z} &:& (e\;z)(x\;a\;y\;b),\\ {\rm L_a} &:& (e\;a)(x\;z\;y)(b),\\ {\rm L_b} &:& (e\;b)(x\;y\;z)(a). \end{array}$

It is easy to verify the following:

• $L_x \circ L_e = R_x$, $L_y \circ L_e = R_y$, $L_z \circ L_e = R_z$, $L_a \circ L_e = R_a$, $L_b \circ L_e = R_b$. By routine calculations, it is easy to see that (L, \circ) does not form a group.

Definition 3.4. The binary operation of composition (\circ) of L on a K-algebra built on a non-abelian group behaves in the following way:

$$L_x \circ L_y(z) = L_x(L_y(z)) = x \odot (y \odot z) = (x \odot (e \odot z)) \odot y)$$

= $R_y \circ L_x \circ L_e(z).$

It is easy to see the following identities:

- $L_x(y) = R_y(x)$
- $R_z \circ L_x = L_x \circ L_z \circ L_e$

for all $x, y, z \in G$. In order to extend further to the mutual interactions of the left and right mappings of a K-algebra, we include the following:

Proposition 3.1. Let \mathcal{K} be a K-algebra. Then the left mappings of the set (L, \circ) compose on \mathcal{K} holding the following interacting properties to (R, \circ) for all $x, y, z \in G$:

 $\begin{array}{ll} (1) \ \ L_{e}^{2} = R_{e}, \\ (2) \ \ L_{e} \circ L_{x} = R_{x}, \\ (3) \ \ L_{x \odot y} = L_{x} \circ R_{e \odot y} = L_{x} \circ L_{e \odot y} \circ L_{e}, \\ (4) \ \ L_{e}(x \odot y) = y \odot x = L_{y}(x) = R_{x}(y), \\ (5) \ \ L_{x}^{2} \circ L_{e} = R_{x} \circ L_{x}, \\ (6) \ \ L_{x} \circ L_{z} \circ L_{e} = R_{z} \circ L_{x}. \end{array}$

Proof. Routine.

Lemma 3.1. [3] Let \mathcal{K} be a K-algebra on an abelian group G and let (L, \circ) be the set of all left mappings of \mathcal{K} . Then $L_e \in L$ is the only non-identity automorphism of \mathcal{K} .

Theorem 3.3. Let \mathcal{K} be a \mathcal{K} -algebra on a non-abelian group G and let (L, \circ) be the set of all left mappings of \mathcal{K} . Then $L_e \in L$ is the only non-identity endomorphism of \mathcal{K} .

Proof. L_e is an endomorphism of \mathcal{K} since

$$L_e(x \odot y) = e \odot (x \odot y) = (e \odot x) \odot (e \odot y) = L_e(x) \odot L_e(y).$$

Hence L_e is an endomorphism of K-algebras \mathcal{K} .

From the mutual intersection of the left mappings of a K-algebra \mathcal{K} , it is easy to note that, if $L_e \circ L_x = \overline{L}_x$, then $\overline{L}_x(y) = e \odot (x \odot y)$ for all $x \in G$. Let $L/L_e = \overline{L} =$ $\{\overline{L}_x : x \in G\}$, then by routine simplification process one can find in (\overline{L}, \circ) that:

- $L_e \circ L_e = \overline{L}_e =$ Identity= R_e $\overline{L}_x \circ \overline{L}_y = \overline{L}_{y \odot (e \odot x)}$
- $(\overline{L}_x \circ \overline{L}_y) \circ \overline{L}_z = \overline{L}_x \circ (\overline{L}_y \circ \overline{L}_z)$ $\overline{L}_x \circ \overline{L}_{e \odot x} = \overline{L}_e = \overline{L}_{e \odot x} \circ \overline{L}_x$

Example 3.3. In Example 3.8, we see that the set of left mappings L of a K-algebra on non-abelian G does not form group. We generate the group of left mappings formed by $L/L_e = L = \{L_e \circ L_x : x \in G\}$. By routine computations, It is easy to see the following:

$$\begin{array}{rcl} \overline{\mathrm{L}}_{\mathrm{e}} &=& \mathrm{L}_{\mathrm{e}} \circ \mathrm{L}_{\mathrm{e}} = I \\ \overline{\mathrm{L}}_{\mathrm{x}} &=& \mathrm{L}_{\mathrm{e}} \circ \mathrm{L}_{\mathrm{x}} = (e \ x)(y \ a)(z \ b) \\ \overline{\mathrm{L}}_{\mathrm{y}} &=& \mathrm{L}_{\mathrm{e}} \circ \mathrm{L}_{\mathrm{y}} = (e \ y)(x \ b)(z \ a) \\ \overline{\mathrm{L}}_{\mathrm{z}} &=& \mathrm{L}_{\mathrm{e}} \circ \mathrm{L}_{\mathrm{z}} = (e \ z)(x \ a)(y \ b) \\ \overline{\mathrm{L}}_{\mathrm{a}} &=& \mathrm{L}_{\mathrm{e}} \circ \mathrm{L}_{\mathrm{a}} = (e \ a \ b)(x \ z \ y) \\ \overline{\mathrm{L}}_{\mathrm{b}} &=& \mathrm{L}_{\mathrm{e}} \circ \mathrm{L}_{\mathrm{b}} = (e \ b \ a)(x \ y \ z) \end{array}$$

By routine calculations, it is easy to see that

$$(\overline{L}, \circ) = \{ \langle \overline{L}_a, \overline{L}_z \rangle : \overline{L}_a^3 = I = \overline{L}_z^2 = (\overline{L}_a \overline{L}_z)^2 \} \cong S_3.$$

We state the following theorem without proof.

Theorem 3.4. Let \mathcal{K} be a K-algebra on non-abelian group G. and let

$$\overline{L} = L/L_e = \{L_e \circ L_x : x \in G\}$$

be the set of all left mappings of a K-algebra with the binary operation of composition (\circ) of left mappings defined by

$$\overline{L}_x \circ \overline{L}_y = \overline{L}_{y \odot (e \odot x)}.$$

Then

a. the system (\overline{L}, \circ) forms non-abelian group.

b. $(L, \circ) \cong (R, \circ) \cong G$.

Example 3.4. Let $\overline{L} = \{I = \overline{L}_e, \overline{L}_x, \overline{L}_y, \overline{L}_z, \overline{L}_a, \overline{L}_b\}$ be the set of all left mappings of \mathcal{K} on the symmetric group $S_3 = \{e, a, b, x, y, z\}$ where e = (1), a = (123), b = (132),x = (12), y = (13), z = (23). Consider K-algebra K on \overline{L} , and \odot is given by the following Cayley table:

102

Thus we state the following Theorem without proof.

Theorem 3.5. Let \mathcal{K} be a K-algebra on non-abelian group G. Let \overline{L} be a set of all left mappings of K-algebra \mathcal{K} . Then (\overline{L}, \odot) is a K-algebra \mathcal{K} on \overline{L} if and only if the system (\overline{L}, \circ) on \mathcal{K} is isomorphic to the group G.

In closing this paper, we state the following Theorem which can be easily proved. We hence omit the details.

Theorem 3.6. Let G be a group and let R and L be the sets of right and left mappings of K-algebras. Then $R \cong L$.

References

- M. Akram and H. S. Kim, On K-algebras and BCI-algebras, International Mathematical Forum 2 (2007), no. 9-12, 583–587.
- [2] K. H. Dar and M. Akram, On a K-algebra built on a group, Southeast Asian Bulletin of Mathematics 29 (2005), no. 1, 41–49.
- [3] K. H. Dar and M. Akram, Characterization of a K(G)-algebra by self maps, Southeast Asian Bulletin of Mathematics 28 (2004), 601–610.
- [4] K. H. Dar and M. Akram, On K-homomorphisms of K-algebras, International Mathematical Forum 46 (2007), 2283–2293.
- [5] K. H. Dar and M. Akram, On subclasses of K(G)-algebras, Annals of University of Craiova, Math. Comp. Sci. Ser. 33 (2006), 235–240.
- [6] K. H. Dar and M. Akram, A BCC-algebra as a subclass of K-algebras, Annals of University of Craiova, Math. Comp. Sci. Ser. 36 (2009), 12–16.
- [7] K.H. Dar, M. Akram and A. Farooq, A note on a left K(G)-algebra, Southeast Asian Bulletin of Mathematics 31 (2007), 231–238.
- [8] Y. Imai and K. Iseki, On axiom system of propositional calculi, Proc. Japonica Acad 42 (1966), 19–22.

[9] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad 42 (1966), 26–29.

[10] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co. Seoul, Korea, 1994.

(Karamat H. Dar) G. C. UNIVERSITY LAHORE, DEPARTMENT OF MATHEMATICS, KATCHERY ROAD, LAHORE-54000, PAKISTAN *E-mail address*: prof_khdar@yahoo.com

(Muhammad Akram) Punjab University College of Information Technology,

UNIVERSITY OF THE PUNJAB, OLD CAMPUS,

Lahore-54000, Pakistan

E-mail address: m.akram@pucit.edu.pk, makrammath@yahoo.com