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On a class of automorphic loops

Asma Sadia, Arshad Ali Khan and Karamat H. Dar

Abstract. We introduce a new class of automorphic loops (L, ∗) which is constructed on a
given group (G, ·) by adjoining an induced binary operation ∗ : G × G −→ L defined by the
rule, ∗(x, y) = x ∗ y = x · φ(y) for φ ∈ Aut(G), for all x, y ∈ G. In this paper, we extend the
study of the class of automorphic loops. We also characterize the loop (L, ∗) by Aut(L).
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1. Introduction

It is well-known that a loop is a one-operational non-associative generalization
of a group. The publications of Moufang [5] and Bol [1] provided a motivation to
the theory of loops, which gained a ground to deviate along the research areas of
algebra, geometry, topology and combinatorics. The development of loop theory
remained eclipsed under the fast moving research horizon of the theory of groups.
After the completion of the list of simple groups, the research environment is getting
more suitability for the structures of non-associative models like those of a loop and
quasigroups. In the literature of loop theory, the groups are being used to derive new
families of loops. K-loops are generalizations of abelian groups [3]. In the famous
paper of Moufang [5], she derived that the alternative rule in algebra implies the
well-known four Moufang identities [5]. Then she considered loops satisfying these
identities, now called Moufang loops. In the present research environment it is called
a Bol loop with left Bol property. The theory of Moufang loops has been developed
by Bruck [2]. The theory of loops is expanding in different fields of applied sciences.

2. Automorphic loops

In this section, we introduce a new class of loops, which is constructed, on a group
(G, ·) with identity element e, under the binary operation ∗ : G × G → G, defined
by the rule x ∗ y = x · ψ(y) for a non identity ψ in Aut(G). It shall be denoted by
(L, ∗) = (G, ·, ∗, ψ) in short. Thus we define it as follow:

Definition 2.1. Let (G, ·) be a finite group of order |G| > 2 with identity element e
and a non identity ψ ∈ Aut(G). Then (L, ∗) = (G, ·, ∗) forms an automorphic loop
such that x ∗ y = x · ψ(y), for x, y ∈ (L, ∗)
Remark 2.1. 1. The group operation ’·’ is denoted by juxtaposition for the sake of

convenience and (G, ·) is denoted by G and x · y = xy, forx, y ∈ G.
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2. In this paper the automorphic loop (L, ∗) shall be understood as a loop unless
stated otherwise.

3. The automorphic loop is proper if ψ is not identity of Aut(G).
4. The automorphic loop is not commutative, in general.

Example 2.1. If G = V4 = {< x, y >: x2 = e = y2 = z2; xy = z} and
ψ = (x y) ∈ Aut(V4) then the loop (L, ∗) on V4 by ψ in Aut(V4) is represented by the
following Cayley’s table:

* e x y z
e e y x z
x x z e y
y y e z x
z z x y e

The loop (L, ∗) is proper since, (x ∗ z) ∗ y = z 6= e = x ∗ (z ∗ y) and is clearly
non-commutative.

We notice that the loop (L, ∗) on a group G by an identity automorphism I ∈
Aut(G) forms a group. Thus we characterize that:

Theorem 2.1. A loop (L, ∗) on G by ψ in Aut(G) is a group if and only if ψ is the
identity of Aut(G).

Proposition 2.1. A loop (L, ∗) by ψ in Aut(G) is an abelian group G if and only, if
ψ(x) ∗ y = ψ(y) ∗ x, for all x, y.

Proof. If x, y ∈ G and G is an abelian group, then

xy = yx ⇒ ψ(x)ψ(y) = ψ(y)ψ(x)
⇒ ψ(x) ∗ ψ−1(ψ(y)) = ψ(y) ∗ ψ−1(ψ(x))
⇒ ψ(x) ∗ y = ψ(y) ∗ x

for all x, y ∈ L. The converse is easy to verify. ¤

Definition 2.2. Let (L, ∗) be an automorphic loop by ψ in Aut(G). Then (L, ∗) is
said to be an automorphic left Bol loop, if it fulfils the left Bol property(l.b.p) i.e.,

(x ∗ (y ∗ x)) ∗ z = x ∗ (y ∗ (x ∗ z)) · · · (l.b.p).

Similarly (L, ∗) is said to be an automorphic right Bol loop, if it fulfils the right Bol
property(r.b.p) i.e.,

((z ∗ x) ∗ y) ∗ x = z ∗ ((x ∗ y) ∗ x) · · · (l.b.p).

Definition 2.3. Let (L, ∗) be an automorphic loop by ψ in Aut(G). Then (L, ∗) is
said to be an automorphic Moufang loop if it is both automorphic left as well as right
Bol loop.

We now relate a class of automorphic loops to well-known classes of Bol or Moufang
loops:

Lemma 2.1. Let (L, ∗) be an automorphic loop on a group G by non-identity ψ in
Aut(G). Then (L, ∗) is an automorphic left Bol loop if and only, if ψ2 = I.



ON A CLASS OF AUTOMORPHIC LOOPS 3

Proof. If (L, ∗) is an automorphic left Bol loop then, for every x, y, z ∈ L,

(x ∗ (y ∗ x)) ∗ z = x ∗ (y ∗ (x ∗ z))
⇒ (xψ(yψ(x)))ψ(z) = xψ(yψ(xψ(z))) [definition]
⇒ xψ(y)ψ2(x)ψ(z) = xψ(y)ψ2(x)ψ3(z)

⇒ ψ(z) = ψ3(z), for all z ∈ G

⇒ ψ2 = I.

The converse follows easily. Thus the lemma is proved. ¤

Remark 2.2. It is easy to verify that example (2.2) is an automorphic left Bol loop,
while example 3.6 is not an automorphic Bol loop.

Lemma 2.2. Let (L, ∗) be an automorphic loop on a group G by any non-identity ψ
in Aut(G). If (L, ∗) is an automorphic right Bol loop then (L, ∗) is a group.

Thus we conclude that:

Theorem 2.2. Any automorphic loop (L, ∗) on a group G by ψ in Aut(G) is an
automorphic Moufang loop if and only if (L, ∗) is a group.

3. Structure of autmorphisms of loop (L, ∗)

In this section we determine the structure Aut(L) of all automorphisms of (L, ∗)
in relation to that of Aut(G).

Lemma 3.1. [6] If (L, ∗) is a loop on G by ψ in Aut(G) then ψ ∈ Aut(L).

Corollary 3.1. If (L, ∗) is a loop on G by ψ in Aut(G) then the cyclic group < ψ >
is a subgroup of the Aut(L), i.e., < ψ > ⊆ Aut(L).

Corollary 3.2. [6] Let (L, ∗) be a loop on a group G by ψ in Aut(G). If α in Aut(L)
is contained in Aut(G) then α ◦ ψ = ψ ◦ α.

Proof. Let α(6= ψ) ∈ Aut(L). Then for x, y ∈ G

α(xy) = α(x ∗ ψ−1(y)) (definition)
= α(x) ∗ α(ψ−1(y)) (supposition)
= α(x)ψαψ−1(y) (definition)

Hence
α(x)α(y) = α(x)ψαψ−1(y) ⇒ ψ ◦ α = α ◦ ψ.

¤

Thus α is contained in the centralizer of ψ in Aut(G) and hence

Aut(L) ⊆ Aut(G) · · · (a).

We generalize the following:

Theorem 3.1. If (L, ∗) is a loop on G by ψ ∈ Aut(G) then Aut(L)=Aut(G) if and
only if β ◦ ψ = ψ ◦ β, for all β in Aut(G).
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Proof. Suppose that β ∈ Aut(G) and β ◦ ψ = ψ ◦ β. Then,

β(x ∗ y) = β(xψ(y)) = β(x)β(ψ(y)) (supposition)
= β(x) ∗ ψ−1βψ(y) (definition)
= β(x) ∗ β(y) (supposition)

for all x, y, z ∈ L, which proves that β ∈ Aut(L). Hence

Aut(G) ⊆ Aut(L) · · · (b)
The converse of (b) is in Corollary 2 of Lemma 3.1. Thus Aut(G)= Aut(L) if and
only if β ◦ ψ = ψ ◦ β, for all β in Aut(G). ¤

Since inversion i : G → G on G defined by i(g) = g−1 commutes with every
automorphism of G, therefore

Theorem 3.2. [6] Let G be a group with inversion i : G → G as an automorphism
of G such that i(g) = g−1 for all g ∈ G. Then Aut(L)= Aut(G).

Example 3.1. In example (2.2) if ψ = (x y z) then the loop (L, ∗) is represented by
the following Cayley’s table:

* e x y z
e e y z x
x x z y e
y y e x z
z z x e y

is a proper loop since, (x ∗ z) ∗ y = z 6= x = x ∗ (z ∗ y).
It is easy to verify that α = (x y), β = (x z) and γ = (y z) in Aut(V4) are not in
Aut(L) as none of α, β and γ lies in the centralizer of ψ in V4.

Thus we characterize the class of loops (L, ∗) on an abelian group G in the following;

Theorem 3.3. Let G be a finite abelian group and not an elementary abelain p-group,
for a prime number p. Then Aut(G)=Aut(L) if and only if (L, ∗) is a loop on G by
any ψ in Aut(G).

Now we consider, if (L, ∗) is a loop on G by ψ in Aut(G) and α in Aut(G) which
is not in Aut(L), i.e. α /∈< ψ >, then we see that α ∈ Aut(α(L)), where, α(L) =
{α(x) : x ∈ L} and (α(L), ∗) is a loop on G by α−1ψα in Aut(G). We proceed to
prove it in the following theorem:

Theorem 3.4. Let (L, ∗) be a loop on a group G by ψ in Aut(G). If α in Aut(G)
is not in Aut(L) then α ∈ Aut(α(L)), where (α(L), ∗) is a loop on G by αψα−1 in
Aut(G).

Proof. Let α(L) = {α(x) : x ∈ L}. Then we prove that (α(L), ∗) is a loop on G.
Since α(x), α(y) ∈ G and α(x) ∗ α(y) = α(x)ψ(α(y)) ∈ α(L).Then, α(x) ∗ α(y) =
α(x)α(α−1ψα)(y) = α(xα−1ψα(y)) = α(x ∗ y), if (x ∗ y) = xα−1ψα(y). i.e. α ∈
Aut(L), if (L, ∗) is a loop on G by α−1ψα in Aut(G). ¤

Corollary 3.3. The structures of loops (L, ∗) and (α(L), ∗) on G by ψ and α−1ψα
in Aut(G) respectively commute the following diagram:



ON A CLASS OF AUTOMORPHIC LOOPS 5

G

ψ

²²

α−1ψα// (α(L), ∗)

(L, ∗)
α

99ttttttttt

Definition 3.1. If (L, ∗) is a loop on G by ψ in Aut(G) and α ∈< ψ > in Aut(G).
Then (α(L), ∗) is conjugate to (L, ∗) by α as (α(L), ∗) is a loop on G by α−1ψα. Thus
we conclude the following.

Theorem 3.5. Let G be a finite group with the group Aut(G) of all automorphisms
of G. If (L, ∗) is a loop on G by ψ in Aut(G) then there is one-to-one correspondence
between the conjugate classes of Aut(G) and the conjugate classes of the loops on G.

4. The duality (L̂, ◦) of (L, ∗)

Let M`(G) = {< Lx >: x ∈ G} be the left multiplicative group. If ψ is any
automorphism of M`(G), then the automorphic loop (L̂, ◦) on M`(G) by ψ is called
dual of (L, ∗). (L̂, ◦) is given as follows:
(L̂, ◦)= {< L̂x >: x ∈ M`(G)}
Remark 4.1. 1. Aut(M`(G)) ∼= Aut(G)

2. (L̂, ◦) ∼= (L, ∗)
Theorem 4.1. If (L, ∗) is a loop on a group G by ψ in Aut(G) then the set L̂ = {<
L̂x >: x ∈ L} consisting of all mappings of M`(L) forms a loop on M`(G) under the
binary operation of composition defined by L̂x ◦ L̂y = L̂x∗y.

Corollary 4.1. If (L, ∗) is a loop on a group G by ψ ∈ Aut(G) then (L̂, ◦)(⊆
(M`(L), ◦)) is a dual of (L, ∗).

Now we demonstrate the above by the following example.

Lemma 4.1. If (L, ∗) is a loop on G by ψ in Aut(G) then, α ∈ Aut(G) if and only
if, αL̂xα−1 = L̂α(x), for all L̂x ∈ M`(L).

Proposition 4.1. In a loop (L, ∗) on a group G by ψ in Aut(G), the following are
equivalent:
(i) (L, ∗) is a loop on a group G by ψ ∈ Aut(G).
(ii) ψ(x,y) = L̂−1

x∗y ◦ L̂x ◦ L̂y.
(iii) L̂x ◦ L̂y = L̂x∗y ◦ ψ(x,y).
(iv) L̂2

x = L̂x2 ◦ ψ.
(v) α ◦ ψ(x,y) ◦ α−1 = L̂α(x) ◦ L̂α(y).
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