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Degree preservation for the p-Laplace operator and
applications

Lotfi Lassoued and Ali Maalaoui

Abstract. We try to investigate in this paper the behaviour of a non-linear perturbation of
the p-Laplace operator, under a variation of p. Where we can show conservation of the degree
under suitable assumption on the non-linearity.
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1. Introduction

In this paper we try to prove some existence results and the behaviour of a type of
equations involving the p−laplacian when we try to vary p. In fact all the proofs are
based on a homotopy invariance argument of the Leray-Schauder degree. In the first
part we will try to generalize the result of of Del Pino in [5] for higher dimensions, also
among the proof we will see the behaviour of the p−laplacian when we perturb p, so
the proof consists of moving the p to 2 which is the linear case, and by a topological
degree argument, we show the existence of solutions. In the second part we try to see
the behaviour of a curve of solutions of a Dirichlet problem involving an exponential
non-linearity. In fact the problem was treated in [11] where we show the existence
of solution under some assumption on the weight of the non-linearity, here we prove
existence and stability by moving p to 2 and the case p = 2 was deeply studied by
Lassoued in [10]. The last part consist of a proof of a conservation of the degree
when dealing with a Dirichlet problem without assumptions on the growth, actually
in almost all the paper we do not assume polynomial growth in the non-linearity but
some splitting property in the blow-up case, also we prove an existence result for those
kind of problem if we add in this case a growth condition on the non-linearity.

2. Main results

In all this paper Ω is a bounded smooth domain of Rn where n ≥ 3 and p ≥ 1. Also
C0(Ω) denote the space of continuous functions on Ω that vanish on the boundary
∂Ω.
The first result deals with Dirichlet problems having the following form :

{ −∆pu = f(x, u) in Ω
u = 0 in ∂Ω , (1)
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Theorem 2.1. Let f : Ω× R −→ R be a Caratheodory function such that

λ1,p < lim inf
s−→∞

f(x, s)
s |s|p−2 ≤ lim sup

s−→∞
f(x, s)
s |s|p−2 < λ2,p (2)

Then Problem (1) has at least one solution.

The second result deals with Dirichlet problems with a strong non-linearity in the
right-hand side, mainly an exponential non-linearity. So if we consider the following
problem : { −∆pu = V (x)f(u) in Ω

u = 0 in ∂Ω , (3)

Finding a solution to this problem is equivalent to find a fixed point to the operator
Tp defined by, Tp(v) = u if and only if

{ −∆pu = V (x)f(v) in Ω
u = 0 in ∂Ω , (4)

According to this definition we have the following Theorem :

Theorem 2.2. Consider V ∈ Lq (Ω) where q > fracp0n, then there exists c =
c(n, p0, p1, Ω) > 0 so that if

‖V ‖Lq ≤ min
p∈[p0,p1]

{
1

cp−1

(p1 − 1)p−1

ep1−1

}
(5)

we have

1 = deg (id− Tp, 0, B(0, p1 − 1)) = deg (id− Tp1 , 0, B(0, p1 − 1)),∀p ∈ [p0, p1] (6)

Corollary 2.1. If u(p) denote the minimal solution of (3) in B(0, p1− 1) then p −→
u(p) is upper semi-continuous.

Theorem 2.3. Let f be a continuous Lipschitz function such that,
i) limp−→p0

s−→∞
f(x,st)

|s|p−1 = Vp0(x)g(t) uniformly in x. Where Vp0 ∈ Lq (Ω) and g monotone
non-decreasing.
ii) There exist ψ ∈ Lq (Ω) and Ω′ ⊂ Ω such that Vp0

‖Vp0‖Lq

∈ Hψ(Ω′).

Then deg(id− Tp, 0, B(0, R)) = deg(id− T2, 0, B(0, R)) for R > 0 large enough.

Corollary 2.2. If in addition we have

sup( lim inf
s−→−∞

f(x, s)
s

, lim sup
s−→+∞

f(x, s)
s

) < λ1,2 (7)

then deg(id− Tp, 0, B(0, R)) = 1.

3. Preliminary Results

First let us recall some regularity theorem about the p− Laplace operator :

Proposition 3.1. Let u be a solution of
{ −∆pu = f in Ω

u = 0 in ∂Ω (8)

Where f ∈ Lq (Ω). Then If q > p
n Then there exist C = C(n, p, Ω) > 0 such that

u ∈ L∞ (Ω) and
‖u‖L∞ ≤ C ‖f‖Lq . (9)
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This result is proved using the classical Stampachia technique (see [12],[2],[11])

Remark 3.1. If we take a closer look to the proof, one can see that it is possible to
take C independent of p ∈ [p0, p1] ⊂ ]1,+∞[ .

Now we know from the result of Di Benedetto [7] that in fact that the last inequality
holds for the C1,α (Ω) norm in stead of the L∞ norm, and same for the constant C,
α could be chosen independently of p in the same range.
Also it is well known that the p−Laplacian has a sequence of eigenvalues (λk,p)k≥1

such that λk,p −→∞ when k −→∞. In fact, If we take

Γk (p) = {A ⊂ SLp (0, 1) ; A is symmetric and γ (A) = k} (10)

where γ and SLp (0, 1) denote respectively the genus and the unit sphere of Lp (Ω) ,
then

Proposition 3.2. There exists u(k, p) ∈ W 1,p
0 (Ω) and λk,p such that

i)

λk,p =
∫

Ω

|∇u(k, p)|p = sup
A∈Γk(p)

min
u∈A

∫

Ω

|∇u|p (11)

ii) {
−∆pu(k, p) = λk,p |u(k, p)|p−2

u(k, p) in Ω
u = 0 in ∂Ω

. (12)

In particular the first eigenvalue is obtained by minimization i.e.

λ1,p = min∫
Ω|u|p=1

u∈W 1,p
0

∫

Ω

|∇u|p . (13)

The first eigenvalue of the p−Laplacian is very special since that the non-linear op-
erator −∆p behaves like a linear one near that eigenvalue.

Proposition 3.3. The first eigenvalue of the p−Laplacian is the only one with posi-
tive eigenfunction, furthermore it is simple and isolated.

Those results cannot be extended to the other eigenvalues and we do not know if
they are the only eigenvalues, although, we know due to Huang [9] that λ2,p is the
second eigenvalue, that is, there is no eigenvalues in ]λ1,p, λ2,p[ .
Also we will use the following non existence result of [11], about problems of this type
:

{ −∆pu = V (x)f(u) in Ω
u = 0 in ∂Ω (14)

Proposition 3.4. Assume that Ṽ = V
‖V ‖Lq

∈ Hψ(Ω′) = {v ∈ E; v > ψ on Ω′} ,

where ψ ∈ Lq (Ω) is a positive function, then there exist λ∗ ∈ [0, +∞] such that
if ‖V ‖E > λ∗, problem have no positive solution. Moreover, we have the following
estimation :

c(p, d, Ω) sup
α>0

αp−1

f(α)
≤ λ∗ ≤ λ1,p(Ω′, ψ) sup

α>0

αp−1

f(α)
. (15)

Where f in here is monotone non-decreasing and q > n
p and

λ1,p(Ω′, ψ) = inf
{∫

Ω′
|∇u|p ;

∫

Ω′
|u|p ψ = 1, u ∈ W 1,p

0 (Ω′)
}

. (16)
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4. Proof of Theorem 2.1

Define the function Φ : [1, +∞[×C0 (Ω) −→ C0 (Ω) by Φ (p, u) = |u|p−2
u and the

operator T : ]1, +∞[× C0 (Ω) −→ C0 (Ω) by T (p, v) = u if and only if
{ −∆pu = v in Ω

u = 0 in ∂Ω (17)

Lemma 4.1. T is a completely continuous operator.

Proof. Let q > n
p1

, then T : [p0, p1] × Lq (Ω) −→ C0 (Ω) is completely continuous.
Take hk ⇀ h in Lq (Ω) and pk −→ p as k −→∞, then we have

{ −∆pk
uk = hk in Ω
uk = 0 in ∂Ω , (18)

where uk = T (pk, hk). Therefore, using Proposition (3.1) and the remark that follows,
there exist C and α independent of k so that

‖uk‖C1,α ≤ C ‖hk‖Lq (19)

Thus (uk) is uniformly bounded in C1,α (Ω) so there exist a subsequence of (uk) which
we will denote it also (uk) that converges to u ∈ C1, α

2 (Ω) in the C1, α
2 (Ω) norm. So

we have ∫

Ω

|∇uk|pk−2∇uk∇ϕ =
∫

Ω

hkϕ, ∀ϕ ∈ C∞0 (Ω) , (20)

after passing to the limit we get
∫

Ω

|∇u|p−2∇u∇ϕ =
∫

Ω

hϕ,∀ϕ ∈ C∞0 (Ω) , (21)

That yields to u = T (p, h) using the previous regularity theorems. ¤

Lemma 4.2. The function p 7−→ λ1 (p) is continuous in [p0, p1] .

This was already been proved in [6] and [9] in the general case but here we are
giving a simpler proof.

Proof of Lemma. Let pk −→ p, then we have

T (pk, Φ(pk, ϕ1,pk
)) =

(
1

λ1 (pk)

) 1
pk−1

ϕ1,pk
(22)

Since (ϕ1,pk
) is bounded in C1,α (Ω) we have T (pk, Φ(pk, ϕ1,pk

)) converges to

T (p, Φ(p, u)), which is equal to
(

1

λ̃

) 1
p−1

u. Therefore we have

{
−∆pu = λ̃ |u|p−2

u in Ω
u = 0 in ∂Ω

(23)

And since u ≥ 0 by the characterization of the first eigenvalue of the p−Laplacian,
we get u = ϕ1,p and λ̃ = λ1 (p) . ¤

Lemma 4.3. The function p 7−→ λ2 (p) is continuous in [p0, p1] .
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The proof here is not as simple as the previous one, since we do not have such
characterization of the second eigenvalue though it can be found in [9].

Now if we consider the operator H(p, u) = T (p, (λ1 (p) + t(p))Φ (p, u)) then it is a
completely continuous operator. Where t(p) = 1

2 (λ2 (p)− λ1 (p))

Proposition 4.1. For every p > 1,

deg(Id−H, 0, B (0, r)) = −1, (24)

and
d(Id− T (p, (λ1 (p)− t) Φ (p, u)), 0, B (0, r)) = 1, (25)

for every t > 0 and r > 0.

Proof of Proposition. The proof follows from the invariance under homotopy of the
degree by taking p to 2.

Now consider the following homotopy

K(s, u) = (−∆p)
−1

[
s (λ1 (p) + t(p)) |u|p−2

u + (1− s)f(x, u)
]
, (26)

Then we have deg(u −K(s, u), 0, B(0, R)) = −1 for R large enough. In fact K is
admissible because if we have a sequence (uk)k in C0 such that ‖uk‖L∞ −→ ∞ and
K(sk, uk) = uk, then after rescaling by ‖uk‖1−p

L∞ we get
{
−∆pvk = sk (λ1 (p) + t(p)) |vk|p−2

vk + (1− sk) f(x,uk)

‖uk‖p−1
L∞

in Ω

vk = 0 in ∂Ω
, (27)

where vk = uk

‖uk‖L∞
, using Lemma(4.1) we can extract a convergent subsequence of

(vk) that converges to v in C1(Ω), therefore, passing to the limit in (27) we find that
v satisfies the following equation

{
−∆pv = s (λ1 (p) + t(p)) |v|p−2

v + (1− s)λ |v|p−2
v in Ω

v = 0 in ∂Ω
(28)

where λ ∈ ]λ1 (p) , λ2 (p)[ therefore v = 0 which is impossible since ‖v‖L∞ = 1. ¤

If f(x, 0) = 0 then we can add the following assumption on f so we can get a non
trivial solution lim

s−→0

f(x,s)
sp−1 < λ1 (p) . In fact consider ε > 0 small enough so that

f(x, s) ≤ (λ1 (p)− δ) |s|p−2
s, for 0 < s < ε (29)

and take
f̃(x, s) = min(f(x, s), (λ1 (p)− δ) |s|p−2

s). (30)

Now if we define T̃ by T̃ v = u iff
{
−∆pu = f̃(x, v) in Ω

u = 0 in ∂Ω
(31)

then one can notice that T̃ stabilizes B(0, ε) therefore T is just the operator defined
by Tv = u iff { −∆pu = f(x, v) in Ω

u = 0 in ∂Ω (32)

then
deg (id− T, 0, B(0, ε)) = deg

(
id− T̃ , 0, B(0, ε)

)
(33)
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and using Proposition (4.4) and the same procedure of the previous proof, we get

deg (id− T, 0, B(0, ε)) = deg
(
id− T̃ , 0, B(0, ε)

)
= 1. (34)

Using the excision property of the degree we get the existence of a non-trivial
solution.

5. Proof of Theorem 2.2

Here we fix p ∈ [p0, p1] ⊂ ]1,+∞[ . Let us take V ∈ Lq (Ω) so that

‖V ‖Lq ≤ min
p∈[p0,p1]

{
1

cp−1

(p1 − 1)p−1

ep1−1

}
(35)

where c is the uniform constant in the interval [p0, p1] in Proposition(3.1) and the
remark that follows. And consider the problem

{ −∆pu = V (x)eu

u = 0 (36)

This problem was deeply studied in [11] where we can find theorems about existence
and non-existence of solutions but here we will see the link between them, in fact we
will show that there are curves of solutions and that the curve of minimal solutions
has some regularity.

Let T : [p0, p1]× C0 −→ C0, be the operator defined by T (p, v) = u if and only if
{ −∆pu = V (x)ev in Ω

u = 0 in ∂Ω (37)

Claim : B(0, p1 − 1) is stabilized by T,
In fact if u ∈ B(0, p1 − 1) is a solution of (36) then according to Proposition (3.1)

‖u‖∞ ≤ c ‖V ‖
1

p−1
Lq e

p1−1
p−1 ≤ p1 − 1 (38)

because of the assumption maid on the norm of V.
Now using Lemma(4.1) we know that the operator is continuous with respect to

p therefore we can take a homotopy from p to 2 and recall that the case p = 2 was
treated by [10], where we can easily compute the degree, (using linearisation or by a
homotopy to Id) we get

deg(id− Tp0 , 0, B(0, p1 − 1)) = deg(id− T2, 0, B(0, p1 − 1)) = 1. (39)

This proves the existence.
Now to prove the corollary one can simply again use Lemma(4.1), and after noticing
that the operator R(u) = eu is continuous from C0(Ω) to C(Ω) and by the regularity
in Proposition(3.1), one can see that if we take a sequence u(p) of solution of problem
(34) in B(0, p1 − 1) then limp−→p0 u(p) is a solution of the problem at p0, Now if
we start with the sequence of minimal solutions that we know already its existence
according to [11] then after passing to the limit one finds that

lim
p−→p0

u(p) = u(p0) ≥ u(p0) (40)

therefore the curve of minimal solutions is upper semi-continuous.
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Remark 5.1. The same procedure can be done for problems having a monotone
increasing right hand side and by slightly modifying the assumption on V . Also one
can see that it works also for equation of this form

{ −∆pu = V (x)f(p, u) in Ω
u = 0 in ∂Ω (41)

where f is continuous in p and if we adjust the assumption on V, Then the previous
results hold.

6. Proof of Theorem 3

Here we will use the notation of [11], so first take

Hψ(Ω′) = {v ∈ Lq (Ω) ; v > ψ on Ω′ ⊂ Ω} . (42)

Let f be a continuous Lipschitz function such that,

lim
p−→p0
s−→∞

f(x, st)
|s|p−1 = Vp0(x)g(t) uniformly in x. (43)

Where Vp is in Lq and g is monotone increasing.
Assume that

‖Vp0‖Lq ≥ λ1,p(Ω′, ψ) sup
α>0

αp−1

g (α)
. (44)

Where λ1,p(Ω′, ψ) is the first eigenvalue of the weighted resonance problem
{
−∆pu = λψ |u|p−2

u in Ω′

u = 0 in ∂Ω′
(45)

Let us consider the following homotopy

H(p, u) = u− (−∆p)
−1 (f(x, u)) (46)

Lemma 6.1. There exist R > 0 large enough so that B(0, R) is admissible.

Proof of lemma. Assume that there exist a blowing-up sequence uk ∈ C0 (Ω) so that
{ −∆pk

uk = f(x, uk) in Ω
uk = 0 in ∂Ω (47)

and take vk =
uk

‖uk‖pk−1
∞

, then we have vk satisfies




−∆pk

vk =
f(x, ‖uk‖pk−1

∞ vk)

‖uk‖pk−1
∞

in Ω

uk = 0 in Ω
(48)

taking pk to p̃ we have, after passing to a subsequence that,
{ −∆p̃v = Vp̃(x)g(u) in Ω

v = 0 in ∂Ω (49)

where Vp̃ ∈ Hψ(Ω′) and satisfies inequality (44), which is impossible, and this com-
pletes the proof of the Lemma. ¤
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Therefore using the continuity proved in Lemma(4.1) and Proposition(3.1) we have

deg (id− T2, 0, B(0, R)) = deg (id− Tp, 0, B(0, R)) (50)

For the proof of the Corollary let us assume that f satisfies in addition

b = sup( lim inf
s−→−∞

f(x, s)
s

, lim sup
s−→+∞

f(x, s)
s

) < λ1,2 (51)

Let us give a lemma that will be used in the proof of the previous corollary

Lemma 6.2. Let M be a bounded open set which contains 0, of a Banach space and
let T : M 7−→ E be a compact operator, If

Tu 6= λu, ∀u ∈ ∂M, ∀λ ≥ 1 (52)

Then deg(I − T,M, 0) = 1.

Proof of Lemma. Let H be the homotopy defined by H(t, u) = u − tTu ; by the
assumption imposed on ∂M we have the compatibility hypothesis of H so we have

deg(H(1, .),M, 0) = deg(H(0, .),M, 0) = deg(id,M, 0) = 1. (53)

¤

Proof of Corollary. If we consider the partial order induced by R in C0 (Ω) we know
that the operator (−∆)−1 is positive linear, and thus we have

|T2u| ≤ B |u|+ u0, ∀u ∈ C0 (Ω) (54)

Where B = b (−∆)−1
, and remark that id − B is invertible, also if we take K ={

u ∈ C0 (Ω) ; T2u = λu for λ ≥ 1
}

, then K is bounded, in fact,

T2u = λu ⇐⇒ λ |u| ≤ B |u|+ u0 (55)

Therefore
(id−B) |u| ≤ u0 (56)

so we have |u| ≤ (id−B)−1
u0.

Now take R large enough so that K ⊂ B (0, R), with that we have T2u 6= λu for
every λ ≥ 1 and u ∈ ∂B (0, R) , Using Lemma(6.2) we have

deg (id− T2, 0, B(0, R)) = 1. (57)

¤

Remark 6.1. One can see that the same result hold if the function g in the assumption
made on f , depends continuously on p.
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