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Algebraic properties of ω-trees (II)

Nicolae Ţăndăreanu and Cristina Zamfir

Abstract. In [16] we defined the concept of ω-labeled tree as a binary, ordered and labeled
tree with several features concerning the labels and order between the direct descendants of
a node. This paper includes several further results concerning these structures. The main
results presented in this paper are the following: we introduce an equivalence relation ' on
the set OBT (ω) of ω-trees and a partial order on the factor set OBT (ω)/'.
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1. Introduction

Various implications of new algebraic structures into computer science area were
established in the recent years. The Peano algebras and graph theory were applied
successfully in knowledge representation ([2], [3], [7], [9], [10], [11], [12], [13]). Several
properties of pseudo-BCK algebras show their connection with fuzzy structures and
the class of pseudo-BCK algebras with pseudo-double negation generalizes some par-
ticular structures with applications in mathematical logic ([4]). The labeled ordered
trees were implied successfully in theoretical and applied computer science. A Tree
Algebra for XML, named TAX, was developed as a natural extension of relational
algebra for manipulating XML data, modeled as forests of labeled ordered trees([6]).
An algebra for manipulating collections with ordering specifications was developed
in [8]. The Peano Count Tree (P-tree) gives a tree representation of spatial data.
The algebra and properties of P-tree structure as well as fast algorithms for P-tree
generation and P-tree operations are treated in [5].
The concept of ω-tree was introduced in [16]. This structure is a binary tree whose
nodes are labeled by means of a mapping ω that specifies the labeling process. There
are two kinds of labels: terminal and non-terminal labels. Only the nodes labeled by
non-terminal labels may contain direct descendants. On the set OBT (ω) of ω-trees
we introduced a binary relation, which is not a partial order. In the present paper we
develop the idea introduced in [16].

This paper is organized as follows: Section 2 contains the basic notions and results
obtained in [16]; in Section 3 we define and study an equivalence relation ' on the
set OBT (ω); in Section 4 a partial order on the factor set OBT (ω)/ ' is defined and
studied. The last section contains conclusions and future work.
The purpose of this research is to apply these results to obtain algebraic structures use-
ful to describe the computations in cooperating structures based on semantic schemas
([14], [15]).
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2. Basic notions and notations

A directed ordered graph ([1]) is a pair G = (A,D), where A is a finite set of elements
called nodes, D is a finite set of elements of the form [(i, i1), . . . , (i, in)], where n ≥ 1
and i, i1, . . .,in ∈ A and D satisfies the following condition: if [(i, i1), . . . , (i, in)] ∈ D
and [(j, j1), . . . , (j, js)] ∈ D then i 6= j. We observe that for an element [(i, i1), . . . ,
(i, in)] ∈ D we may have ij = ik for some j 6= k. On the other hand, an element of
D is a list and the order of its elements are taken into consideration. An element of
a list is a directed arc and simply is named arc.
We can represent a directed ordered graph as follows. We represent, as usual, a
node of the graph by a point. If [(i, i1), . . . , (i, in)] ∈ D then we draw an arc from
node i to node ij for every j ∈ {1, . . . n}. The elements i1, . . . , in are called the direct
descendants of i. We shall consider that all direct descendants of i are ordered linearly
and the order is given by the place of ij in the element [(i, i1), . . . , (i, in)].

If G = (A,D) is a directed ordered graph then we can associate to G a directed
graph G′ = (A,D′), where

D′ = {(i, j) | ∃[(i, i1), . . . , (i, in)] ∈ D, ∃r ∈ {1, . . . , n} : j = ir}
An ordered tree is a directed ordered graph G = (A, D) such that D′ is a tree and the
following property is satisfied:

[(i, i1), . . . , (i, in)] ∈ D, j, r ∈ {1, . . . , n}, j 6= r ⇒ ij 6= ir (1)

A path in a directed ordered graph is a sequence d = (n0, n1, . . . , nk) of nodes such
that for every i ∈ {0, . . . , k− 1} we have an arc from ni to ni+1. The number k is the
length of d. We denote by Path(G) the set of all paths in G.

A binary tree is a tree such that every node has exactly zero or two direct descen-
dants. The root is a node that is not a direct descendant of any other node. A tree
has a single root. Every node that is not the root in the binary tree is reachable from
the root node by a unique path. A node with neither a left descendant nor a right
descendant is called a leaf. By an abuse of language we shall use the concepts of arc
and path in an ordered tree t and in this case we suppose that these concepts are
applied to the graph associated to t. Moreover, for an ordered tree t we denote by
Path(t) the set of all paths of t.

We consider a finite set L and a decomposition L = LN ∪LT , where LN ∩LT = ∅.
The elements of LN are called nonterminal labels and those of LT are called terminal
labels. The elements of L are called labels. A split mapping on L ([16]) is a function
ω : LN −→ L × L. For each x ∈ LN we denote ω(x) = (ω1(x), ω2(x)). The entity
ω1(x) is named the left component and ω2(x) is the right component of ω(x).

Let ω : LN −→ L × L be a split mapping on L. An ω-tree ([16]) is a tuple
t = (A,D, h), where
• (A,D) is an ordered tree and every element of D is of the form [(i, i1), (i, i2)];
• h : A −→ L is a mapping such that

[(i, i1), (i, i2)] ∈ D ⇒ h(i) ∈ LN & ω(h(i)) = (h(i1), h(i2)) (2)

For each i ∈ A the element h(i) is called the label of the node i. The mapping h is
named the labeling mapping of t. By OBT (ω) we denote the set of all ω-trees.

Let t1 = (A1, D1, h1) and t2 = (A2, D2, h2) be two elements of OBT (ω) and an
arbitrary mapping α : A1 −→ A2. For every u = [(i, i1), (i, i2)] ∈ D1 we denote

α(u) = [(α(i), α(i1)), (α(i), α(i2))]
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Figure 1. Two ω-trees

If t = (A,D, h) is an ω-tree then we denote by root(t) the element of A designated
by the root of t.

Definition 2.1. ([16]) If t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈
OBT (ω) then we define the relation t1 ¹ t2 if there is a mapping α : A1 −→ A2 such
that:

u ∈ D1 ⇒ α(u) ∈ D2 (3)

h1(root(t1)) = h2(α(root(t1))) (4)

Such a mapping α is an embedding mapping of t1 into t2.

Remark 2.1. In an ω-tree we have the following property: if a node n has direct
descendants then the label h(n) of n is an element of LN . Moreover, in this case the
left (right) descendant of n is labeled by the left (right) component of ω(h(n)). A leaf
of an ω-labeled tree may be labeled by an element of LN , but a node labeled by an
element of LT is a leaf.

In order to exemplify these concepts we consider the following case:
• L = {ai, bi, ci}i≥1, LN = {bi, ci}i≥1, LT = {ai}i≥1

• ω(bi) = (ai, ci) and ω(ci) = (bi, bi) for i ≥ 1
In Figure 1 we represented the following two ω-trees t1 = (A1, D1, h1) and t2 =
(A2, D2, h2), where:

• A1 = {nj}j=1,...,7; A2 = {mj}j=1,...,11

• h1(ni) = b1 for i ∈ {1, 4, 5}; h1(n2) = h(n6) = a1; h1(n3) = h1(n7) = c1;
• h2(m4) = h2(m8) = a1; h2(mi) = b1 for i ∈ {2, 3, 6, 7, 10, 11}; h2(m1) =

h2(m5) = h2(m9) = c1;
• D1 = {[(n1, n2), (n1, n3)], [(n3, n4), (n3, n5)], [(n4, n6), (n4, n7)]}
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• D2 = {[(m1,m2), (m1,m3)], [(m2,m4), (m2,m5)], [(m5,m6), (m5,m7)],
[(m6,m8), (m6,m9)], [(m9,m10), (m9,m11)]}

Remark 2.2. We observe the following property of t1 and t2 from Figure 1: if we
make abstraction of node names and translate t1 such that n1 overlaps m2 then t1
becomes a part of t2. This part can be viewed as an ”image” of t1 into t2. We see that
the image of t1 is not a subtree of t2 because the nodes m10 and m11 do not belong to
this image. Obviously a tree t1 can have multiple images into t2.

The following properties are proved in [16]:
P1: Let be t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈ OBT (ω). If
t1 ¹ t2 then h1(i) = h2(α(i)) for every i ∈ A1, where α is an embedding mapping.
P2: Let us denote by α : A1 −→ A2 an embedding mapping of t1 into t2. If (m,n)
is an arc in t1 then (α(m), α(n)) is an arc in t2. If d = (n0, n1, . . . , nk) ∈ Path(t1)
then α(d) = (α(n0), α(n1), . . . , α(nk)) ∈ Path(t2).
P3: An embedding mapping is injective.
P4: The relation ¹ is reflexive and transitive, but is not antisymmetric.

3. An equivalence relation on OBT (ω)

Based on the relation ¹ we introduce an equivalence relation on the set OBT (ω).
In this section we study this relation.

Definition 3.1. We consider t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈
OBT (ω). We define t1 ' t2 if t1 ¹ t2 and t2 ¹ t1.

Proposition 3.1. The relation ' is an equivalence relation.

Proof. The reflexivity and transitivity of the relation ' are obtained from property
P4. If t1 ' t2 then obviously t2 ' t1 and thus ' is a symmetric relation. ¤

Remark 3.1.
• If t ∈ OBT (ω) then we denote by [t] the equivalence class of t with respect to '.
• For a finite set A we denote by Card(A) the cardinal number of A.

Proposition 3.2. If t1 = (A1, D1, h1) ∈ OBT (ω), t2 = (A2, D2, h2) ∈ OBT (ω)
and t1 ' t2 then every embedding mapping α : A1 −→ A2 of t1 into t2 satisfies the
following conditions:
(1) α is a bijective mapping and α−1 is an embedding mapping of t2 into t1;
(2) The image by α of the root of t1 is the root of t2:

α(root(t1)) = root(t2) (5)

Proof. We suppose that t1 ' t2. We consider an embedding mapping α : A1 −→ A2

of t1 into t2 and an embedding mapping β : A2 −→ A1 of t2 into t1. From property P3
we deduce that α : A1 −→ A2 and β : A2 −→ A1 are injective mappings. Moreover,
the following conditions are satisfied:

u ∈ D1 ⇒ α(u) ∈ D2 (6)

u ∈ D2 ⇒ β(u) ∈ D1 (7)

We have Card(A1) ≤ Card(A2) because α : A1 −→ A2 is an injective mapping.
Similarly by means of the mapping β we deduce that Card(A2) ≤ Card(A1). It
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follows that Card(A1) = Card(A2) and thus α and β are bijective mappings.
Let us prove first that the following properties are fulfilled:

α(root(t1)) = root(t2), β(root(t2)) = root(t1), α(β(root(t2))) = root(t2) (8)

Suppose that
β(root(t2)) 6= root(t1) (9)

We denote β(root(t2)) = i and suppose that [(root(t2), j1), (root(t2), j2)] ∈ D2. If we
denote β(j1) = i1 and β(j2) = i2 then by (7) we have

[(i, i1), (i, i2)] ∈ D1 (10)

There is a direct predecessor and only one r of i in t1 because i 6= root(t1). Without
loss of generality we can suppose that i is a right direct descendant of r. In other
words we find an element

[(r, p), (r, i)] ∈ D1 (11)
But β is a surjective mapping, therefore there is q ∈ A2 such that β(q) = r. We have
q 6= root(t2). Really, if we suppose q = root(t2) then r = β(q) = β(root(t2)) = i,
which is not true by (11). We have q 6= j1 and q 6= j2. Really, if q = j1 then r = β(q) =
β(j1) = i1. From (11) and (10) we deduce now that (r, i, i1) is a circuit in the tree
t1, which is not true because a tree does not contain any circuit. In a similar manner
we deduce that q 6= j2. It follows that there is (root(t2), j2, . . . , jk, q) ∈ Path(t2) or
(root(t2), j1, . . . , jk, q) ∈ Path(t2). Without loss of generality we can suppose that
(root(t2), j2, . . . , jk, q) ∈ Path(t2). We have in this case (j2, . . . , jk, q) ∈ Path(t2) and
by property P2 we deduce that (β(j2), . . . , β(jk), β(q)) ∈ Path(t1). But β(j2) = i2
and β(q) = r therefore

(i2, . . . , β(jk), r) ∈ Path(t1) (12)
On the other hand from (11) and (10) we deduce that

(r, i, i2) ∈ Path(t1) (13)

From (12) and (13) we deduce that (i2, . . . , β(jk), r, i, i2) ∈ Path(t1) and this property
is not true because t1 is a tree.
It follows that the assumption (9) is not true, therefore

β(root(t2)) = root(t1) (14)

By symmetry we have also
α(root(t1)) = root(t2) (15)

therefore (5) is true. Now from (14) and (15) we obtain

α(β(toot(t2))) = root(t2) (16)

and (8) is proved.
Let us prove that (16) can be extended to all nodes of t2:

α(β(j)) = j for every j ∈ A2 (17)

In order to do this we denote M0 = {root(t2)} and for k ≥ 1 we denote by Mk the
set of all nodes j ∈ A2 such that there is a path of length k from root(t2) to j. We
prove the following property for every k ≥ 0:

j ∈ Mk ⇒ α(β(j)) = j (18)

From this property and the relation A2 =
⋃

k≥0 Mk we deduce (17).
For k = 0 we have to verify that α(β(root(t2))) = root(t2) because M0 contains only
one element, namely root(t2). But this property is true in virtue of (16), therefore
(18) is true for k = 0.
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We suppose that (18) is true for some k and we verify the same relation for k +
1. Let j ∈ Mk+1. From the definition of Mk+1 we deduce that there is a path
(r0, r1, . . . , rk, j) in t2, where r0 = root(t2). The sequence (r0, r1, . . . , rk) is also a
path in t2, therefore rk ∈ Mk. By the inductive assumption we have

α(β(rk)) = rk (19)

The node rk is a direct predecessor of the node j and we may suppose that j is the
left direct descendant of rk. This means that there is a pair

[(rk, j), (rk, p)] ∈ D2 (20)

From (7) we deduce that

[(β(rk), β(j)), (β(rk), β(p))] ∈ D1

Using (6) we can say that

[(α(β(rk)), α(β(j))), (α(β(rk)), α(β(p)))] ∈ D2 (21)

Taking into account the relation (19), the condition (21) becomes

[(rk, α(β(j))), (rk, α(β(p)))] ∈ D2 (22)

If we compare now (20) and (22) then we obtain α(β(j)) = j. Thus (18) is true for
k + 1.
We can conclude that (17) is true. This relation shows that β = α−1 because α and
β are bijective mappings. It follows that α−1 is an embedding mapping of t2 into t1
because β was also such a mapping and β = α−1. ¤
Proposition 3.3. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω), t2 = (A2, D2, h2) ∈
OBT (ω) and t1 ' t2. If α1 : A1 −→ A2 and α2 : A1 −→ A2 are two embedding
mappings of t1 into t2 then α1 = α2.

Proof. From Proposition 3.2 we obtain α1(root(t1)) = root(t2) and α2(root(t1)) =
root(t2). It follows that

α1(root(t1)) = α2(root(t1)) (23)
As we have done in other cases we denote M0 = {root(t2)} and for k ≥ 1 we denote
by Mk the set of all nodes j ∈ A1 such that there is a path of length k from root(t1)
to j. We prove the following property P (k) by induction on k ≥ 0:

i ∈ Mk ⇒ α1(i) = α2(i) (24)

Using this property and the relation A1 =
⋃

k≥0 Mk we deduce that α1 = α2.
From (23) we see that (24) is true for k = 0. Suppose this relation is true for k
and we verify (24) for k + 1. Let us consider an element i ∈ Mk+1. There is a
sequence (root(t1), p1, . . . , pk, i) ∈ Path(t1). It follows that pk ∈ Mk therefore from
the inductive assumption we have

α1(pk) = α2(pk) (25)

Without loss of generality we can suppose that i is the left direct descendant of pk.
This means that there is j ∈ A1 such that [(pk, i), (pk, j)] ∈ D1. But α1 and α2 are
two embedding mappings of t1 into t2 therefore

[(α1(pk), α1(i)), (α1(pk), α1(j))] ∈ D2 (26)

[(α2(pk), α2(i)), (α2(pk), α2(j))] ∈ D2 (27)
Taking into account (25) from (26) and (27) we obtain α1(i) = α2(i). Thus (24) is
true for k + 1. In conclusion we have α1 = α2. ¤
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Corollary 3.1. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω), t2 = (A2, D2, h2) ∈
OBT (ω) and t1 ' t2. There is one and only one embedding mapping α of t1 into t2,
α is bijective and α−1 is the unique embedding mapping of t2 into t1. Moreover, the
mapping α satisfies the following conditions:

α(root(t1)) = root(t2)

u ∈ D1 ⇔ α(u) ∈ D2

h1(root(t1)) = h2(α(root(t1)))

Proof. Immediate from Proposition 3.2 and Proposition 3.3. ¤

Proposition 3.4. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈
OBT (ω). If there is a bijective mapping α : A1 −→ A2 such that the following three
conditions are satisfied:
(1) The image by α of the root of t1 is the root of t2:

α(root(t1)) = root(t2) (28)

(2) For every i, i1, i2 ∈ A1 we have

[(i, i1), (i, i2)] ∈ D1 ⇔ [(α(i), α(i1)), (α(i), α(i2))] ∈ D2 (29)

(3) The roots of t1 and t2 have the same label:

h1(root(t1)) = h2(α(root(t1))) (30)

then t1 ' t2.

Proof. We suppose that there is a bijective mapping α : A1 −→ A2 such that the
conditions (28), (29) and (30) are satisfied. Directly from (29) and (30) we deduce
that

t1 ¹ t2 (31)

We take β = α−1. From (28) we deduce

β(root(t2)) = root(t1) (32)

Let us prove the implication

v ∈ D2 ⇒ β(v) ∈ D1 (33)

We suppose that v = [(j, j1), (j, j2)] ∈ D2, where j, j1, j2 ∈ A2. The mapping α is a
surjective mapping, therefore there are i, i1, i2 ∈ A1 such that α(i) = j, α(i1) = j1 and
α(i2) = j2. Using these notations, the condition v ∈ D2 can be written equivalently
[(α(i), α(i1)), (α(i), α(i2))] ∈ D2. From (29) we deduce that [(i, i1), (i, i2)] ∈ D1. But
β(j) = i, β(j1) = i1 and β(j2) = i2, therefore [(β(j), β(j1)), (β(j), β(j2))] ∈ D1. But
[(β(j), β(j1)), (β(j), β(j2))] = β(v) and thus (33) is proved.
Now we prove that the following relation is true:

h2(root(t2)) = h1(β(root(t2))) (34)

Using (32) we obtain from (30) the following sequence of computations:

h1(β(root(t2))) = h2(α(β(root(t2)))) = h2(root(t2))

because β = α−1. Thus (34) is true. From (33) and (34) we deduce that

t2 ¹ t1 (35)

From (31) and (35) we have t1 ' t2. ¤
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Figure 2. The intuitive visualization of t1 ¹ t2
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Figure 3. Equivalent ordered trees

The relation ¹ can be visualized in an intuitive manner as in Figure 1. If we ignore
the nodes name and we translate the tree t1 so as we overlap the root of t1 with some
node of t2 then the structure of t1 overlaps with some part of t2. We see this image
in Figure 2.

In Figure 3 we represented two equivalent trees. If we denote by t1 = (A1, D1, h1)
the left tree and t2 = (A2, D2, h2) the right tree then these trees are equivalent if we
take into consideration the following relations:

A1 = A2 = {a, b, c, d, f}
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Figure 4. Images by eliminating the node names

α(a) = a, α(b) = b, α(c) = c, α(d) = f, α(f) = d
h1(a) = m1, h1(b) = m2, h1(c) = m3, h1(d) = m4, h1(f) = m6

h2(a) = m1, h2(b) = m2, h2(c) = m3, h2(d) = m6, h2(f) = m4

We observe that two trees are equivalent if they have the same structure less nodes
name. If we ignore these names then we obtain the same structure as we can view in
Figure 4.

4. A partial order on OBT (ω)/ '

In this section we introduce a partial order on the factor set OBT (ω)/'. We recall
that an element of the set OBT (ω)/' is denoted by [t].

Definition 4.1. Let us consider [t1] ∈ OBT (ω)/' and [t2] ∈ OBT (ω)/'. We define
the relation [t1] . [t2] if and only if t1 ¹ t2.

Proposition 4.1. The relation . does not depend on representatives.

Proof. Let us consider the elements ti = (Ai, Di, hi) ∈ OBT (ω) for i ∈ {1, 2, 3, 4}
such that t1 ¹ t2, t3 ' t1 and t4 ' t2. We have to prove that t3 ¹ t4. Taking
the embedding mapping α of t3 into t1, the embedding mapping β of t2 into t4 and
applying Corollary 3.1 we obtain:

α(root(t3)) = root(t1) (36)

u ∈ D3 ⇔ α(u) ∈ D1 (37)

h3(root(t3)) = h1(α(root(t3))) (38)

u ∈ D2 ⇔ β(u) ∈ D4 (39)
and from Definition 2.1 we deduce that there is a mapping γ : A1 −→ A2 such that

u ∈ D1 ⇒ γ(u) ∈ D2 (40)
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Let us verify the following properties:

u ∈ D3 ⇒ α ◦ γ ◦ β(u) ∈ D4 (41)

h3(root(t3)) = h4((α ◦ γ ◦ β)(root(t3))) (42)
Relation (41) is obtained if we use (37), (40) and (39):

u ∈ D3 ⇒ α(u) ∈ D1 ⇒ γ(α(u)) ∈ D2 ⇒ β(γ(α(u))) = α ◦ γ ◦ β(u) ∈ D4

In what concerns the relation (42) we observe that:
• if we use the relations (38) and (36) then we obtain

h3(root(t3)) = h1(α(root(t3))) = h1(root(t1))

• if we apply property P1 then we have h4(β(i)) = h2(i) for every i ∈ A2, h1(i) =
h2(γ(i)) for every i ∈ A1; as a consequence we obtain

h4(α ◦ γ ◦ β(root(t3))) = h4(β(γ(α(root(t3))))) = h2(γ(α(root(t3)))) =

h1(α(root(t3))) = h1(root(t1))
from which we obtain (42). ¤

Proposition 4.2. The pair (OBT (ω)/', .) is a partial ordered set.

Proof. Obviously the relation . is reflexive. The transitivity of . is obtained from
the transitivity of ¹. If [t1] . [t2] and [t2] . [t1] then t1 ¹ t2 and t2 ¹ t1. This shows
that [t1] = [t2]. Thus the relation . is antisymmetric. ¤

5. Conclusions

In this paper the research work initiated in [16] is continued and new results are
presented. An equivalence relation is defined on the set OBT (ω) of the ω-trees and a
partial order on the factor set of equivalence classes is studied. The results presented
in this paper allow to introduce the concept of ω-templates by means of which we
can characterize the formal computations in a master-slave system based on semantic
schemas. This aspect is treated in a forthcoming paper.
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[15] N. Ţăndăreanu, An Extension of Semantic Schemas to Represent Multiple Meanings, Inter-
national Multi-Conference on Engineering and Technological Innovation–(IMETI 2008), June
29th- July 2nd 2008, USA, Vol. I (2008), 143–148.
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