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Folding theory applied to Rl-monoid

Masoud Haveshki and Mahboobeh Mohamadhasani

Abstract. In this paper we define n-fold (positive) implicative Rl-monoid. Also we introduce
n-fold (positive) implicative filter in Rl-monoid and we prove some relations between these
filters and construct quotient algebras via these filters.
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1. Introduction

BL-algebras have been introduced by P. Hajek as an algebraic counterpart of the
basic fuzzy logic BL [2]. Omitting the requirement of pre-linearity in the definition
of a BL-algebra, one obtains the definition of a bounded commutative residuated
lattice ordered monoid (Rl-monoid). Nevertheless, bounded commutative Rl-monoid
are a generalization not only of BL-algebra but also of Heyting algebras which are
an algebraic counterpart of the intuitionistic propositional logic.Theorefore, bounded
commutative Rl-monoid could be taken as an algebraic semantics of a more general
logic than Hajek’s fuzzy logic. In both BL-algebra and bounded commutative Rl-
monoid, filters coincide with deductive systems of those algebras and are exactly the
kernel of their congruences. Various types of filters of BL-algebras were studied in
[3]. In this paper we further develop the theory of filters of bounded commutative
Rl-monoids and among others, we generalize some results of [4].

2. Preliminiaries

Definition 2.1. [4] A bounded commutative Rl-monoid is an algebra A = (A,∧,∨, ∗,→
0, 1) with four binary operations ∧, ∨, ∗, → and two constant 0,1 such that:

(Rl1) A = (A,∨,∧, 0, 1) is a bounded lattice,
(Rl2) A = (A, ∗, 1) is a commutative monoid,
(Rl3) ∗ and → form a adjoint pair, i.e,a ∗ c ≤ b if and only if c ≤ a → b, for all

a, b, c ∈ A,
(Rl4) a ∧ b = a ∗ (a → b), for all a, b ∈ A.

In the sequel, by a Rl-monoid we will mean a bounded commutative Rl-monoid.
Bounded commutative Rl-monoids are special cases of residuated lattices, more pre-
cisely (see for instance [1]).

An Rl-monoids A is a BL-algebra iff A satisfies the identity of pre-linearly (x →
y) ∨ (y → x) = 1 an MV -algebra iff A fulfills the doube negation (x−)− = x where
x− = x → 0 a Heyting algebra iff the operation ∗ is idempotent.
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Lemma 2.1. [4, 5] In any Rl-monoid A, the following relations hold for all x, y, z ∈
A:

(1) x ∗ (x → y) ≤ y,
(2)x ≤ (y → (x ∗ y)),
(3)x ≤ y if and only if x → y = 1,
(4)x → (y → z) = y → (x → z),
(5)If x ≤ y, then y → z ≤ x → z and z → x ≤ z → y,
(6)y ≤ (y → x) → x,
(7)x → y ≤ (y → z) → (x → z),
(8)x → y ≤ (z → x) → (z → y),
(9) (x ∗ y) → z = x → (y → z),
(10) 1 → x = x,x → x = 1

Definition 2.2. [1, 4] A nonempty subset F of Rl-monoid A is called a filter of A
if:

(1) a ∗ b ∈ F , for all a, b ∈ F ,
(2) a ≤ b and a ∈ F imply b ∈ F .

Definition 2.3. [1, 4] A nonempty subset D of Rl-monoid A is called a deductive
system of A if:

(1) 1 ∈ D,
(2) If x ∈ D and x → y ∈ D, then y ∈ D.

Proposition 2.1. [1] A nonempty subset F of Rl-monoid A is a deductive system if
and only if is a filter of Rl-monoid A.

By [6], filters of commutative Rl-monoid are exactly the kernels of their congru-
ences. If F is a filter of A, then F is the kernel of the unique congruence θ(F ) such
that (x, y) ∈ θ(F ) iff (x → y)∧ (y → x) ∈ F for any x, y ∈ A. Hence we will consider
quotient Rl-monoid A/F of Rl-monoid A by their filters.

Definition 2.4. [4] A non-empty subset F of Rl-monoid A is called an implicative
filter of A if it satisfies:

(1) 1 ∈ F ,
(2) x → (y → z) ∈ F and x → y ∈ F imply x → z ∈ F , for all x, y, z ∈ A

Theorem 2.1. [4] Let F be a filter of Rl-monoid A. Then F is an implicative filter
if and only if A/F is a Heyting algebra.

Definition 2.5. [4] A non-empty subset F of Rl-monoid A is called an positive
implicative filter of A if it satisfies:

(1) 1 ∈ F ,
(2) x → ((y → z) → y) ∈ F and x ∈ F imply y ∈ F , for all x, y, z ∈ A.

Theorem 2.2. [4] Let F be a filter of Rl-monoid A. Then F is a positive implicative
filter if and only if (x → y) → x ∈ F implies x ∈ F , for all x, y ∈ A.

Theorem 2.3. [4] In any Rl-monoid A, the following conditions are equivalent:
(a) {1} is a positive implicative filter,
(b) Every filter of A is a positive implicative filter,
(c) A(a) = {x ∈ A | x ≥ a} is a positive implicative filter,
(d) (x → y) → x = x for all x, y ∈ A,
(e) A is Boolean algebra.
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3. n-fold implicative Rl-monoid

Definition 3.1. An n-fold implicative Rl-monoid is a Rl-monoid (A,∧,∨, ∗,→, 0, 1)
if it satisfies: xn+1 = xn, for all x ∈ A where xn = x ∗ x ∗ ... ∗ x( n-times).

Theorem 3.1. If A is an n-fold implicative Rl-monoid then A is an (n + 1)-fold
implicative Rl-monoid.

Proof. Since A is n-fold implicative Rl-monoid, xn+1 = xn, for all x ∈ A. But
xn+2 = xn+1 ∗ x = xn ∗ x = xn+1 and hence A is (n + 1)-fold implicative Rl-
monoid. ¤

By the following example we show that the converse is not true:

Example 3.1. Let B = {0, a, b, 1}. Define ∗ and → as follows:

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

∗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

Then (B,∧,∨, ∗,→, 0, 1) is a Rl-monoid and it is clear that B is a 3-implicative
Rl-monoid but since b3 6= b2, B is not 2-fold implicative Rl-monoid.

4. n-fold implicative filters

Definition 4.1. A non-empty subset F of a Rl-monoid A is called an n-fold implica-
tive filter of A if it satisfies:

(1) 1 ∈ F
(2) xn → (y → z) ∈ F , xn → y ∈ F imply xn → z ∈ F , for all x, y, z ∈ A

Theorem 4.1. Any n-fold implicative filter of A is a filter of A.

Proof. Let x, x → y ∈ F . Hence 1 → x ∈ F and 1 → (x → y) ∈ F . But 1 = 1n, thus
y = 1 → y ∈ F , that is, F is a filter of A. ¤

The following example shows that the converse of theorem 4.1 is not true.

Example 4.1. Let B = {0, a, b, 1}. Define ∗ and → as follows:

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1



12 M. HAVESHKI AND M. MOHAMADHASANI

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Then (B,∧,∨, ∗,→, 0, 1) is a Rl-monoid and it is clear that F = {b, 1} is a filter,
while it is not a 1-implicative filter since a → (a → 0) ∈ F and a → a ∈ F but
a → 0 6∈ F .

Theorem 4.2. For any a ∈ A, A(a) = {x ∈ A|a ≤ x} is a filter if and only if a ≤ x
wherever a ≤ y → x and a ≤ y for all x, y ∈ A.

Proof. Let A(a) be a filter and a ≤ y → x and a ≤ y then y → x ∈ A(a) and y ∈ A(a).
Since A(a) is a filter, x ∈ A(a), that is, a ≤ x. Conversely, since a ≤ 1, 1 ∈ A(a).
If x, x → y ∈ A(a), then a ≤ x and a ≤ y → x. By assumption a ≤ y and hence
y ∈ A(a). Hence A(a) is a filter. ¤
Theorem 4.3. Let a be an element of A. If A(a) is an n-fold implicative filter of A,
then for all x, y ∈ A, an+1 → (x → y) = 1, an+1 → x = 1 imply an+1 → y = 1.

Proof. Let A(a) be an n-fold implicative filter and an+1 → (x → y) = 1, an+1 →
x = 1. Since a → (an → (x → y)) = an+1 → (x → y) = 1, an → (x → y) ∈ A(a).
Similarly an → x ∈ A(a). Since A(a) is n-fold implicative filter, an → y ∈ A(a), that
is, a ≤ an → y. Thus an+1 → y = 1. ¤
Theorem 4.4. Let F be a filter of A. Then for all the following conditions are
equivalent:

(a) F is an n-fold implicative filter of A,
(b) xn → x2n ∈ F , for all x ∈ A,
(c) xn+1 → y ∈ F implies xn → y ∈ F ,
(d) xn → (y → z) ∈ F implies (xn → y) → (xn → z) ∈ F .

Proof. (a⇒ b): Let x ∈ A hence by lemma 2.1, xn → (xn → x2n) = x2n → x2n = 1 ∈
F and xn → xn = 1 ∈ F . Since F is n-fold implicative filter, we get xn → x2n ∈ F .

(b ⇒ a): Let x, y, z ∈ A be such that xn → (y → z) ∈ F , xn → y ∈ F . Since
(xn → (y → z))∗(xn → y)∗xn∗xn = (xn∧(y → z))∗(xn∧y) ≤ (y → z)∗y = y∧z ≤ z
then (xn → (y → z)) ∗ (xn → y) ≤ x2n → z. Since xn → (y → z) ∈ F , xn → y ∈ F
we get (xn → (y → z)) ∗ (xn → y) ∈ F and so x2n → z ∈ F . By lemma 2.1
xn → x2n ≤ (x2n → z) → (xn → z). On the other hand x2n → z ∈ F and
xn → x2n ∈ F , then xn → z ∈ F . Hence F is an n-fold implicative filter of A.

(b ⇒ c): Since (b) holds, F is an n-fold implicative filter of A. On the other hand
xn+1 → y = xn → (x → y) ∈ F and xn → x = 1 ∈ F hence xn → y ∈ F .

(c ⇒ b): We have xn+1 → (xn−1 → x2n) = x2n → x2n = 1 ∈ F hence by (c) xn →
(xn−1 → x2n) ∈ F . But xn+1 → (xn−2 → x2n) = xn−2 → x2n = xn → (xn−1 →
x2n) ∈ F , that is, xn+1 → (xn−2 → x2n) ∈ F and so xn → (xn−2 → x2n) ∈ F . By
repeating the process n times we get xn → (x0 → x) = xn → (1 → x) = xn → x2n ∈
F .

(b ⇒ d): Let xn → (y → z) ∈ F , by lemma 2.1, xn → (y → z) ≤ xn → ((xn →
y) → (xn → z)) = xn → (xn → ((xn → y) → z) = x2n → ((xn → y) → z).

Hence x2n → ((xn → y) → z) ∈ F . By (b), we have xn → x2n ∈ F , now by lemma
2.1, x2n → ((xn → y) → z) ≤ (xn → x2n) → (xn → ((xn → y) → z)). Then we get
(xn → y) → (xn → z) = xn → ((xn → y) → z)) ∈ F.
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(d ⇒ b): Since xn → (xn → x2n) = x2n → x2n = 1 ∈ F , by (d) we have
xn → x2n = (xn → xn) → (xn → x2n) ∈ F ¤

Theorem 4.5. et F be a filter of a Rl-monoid A. If F is an n-fold implicative filter,
then F is an (n + 1)-fold implicative filter.

Proof. Let x, y ∈ A be such that xn+2 → y ∈ F . By lemma 2.1, xn+1 → (x → y) =
xn+2 → y and since F is n-fold implicative filter by theorem 4.4, xn → (x → y) ∈ F .
Hence xn+1 → y ∈ F , that is, F is (n + 1)-fold implicative filter. ¤

By the following example we show that the converse is not true.

Example 4.2. In example 3.1, {1} is a 3-fold implicative filter but since b3 → 0 =
1 ∈ {1} and b2 → 0 = b 6= 1, {1} is not a 2-fold implicative filter.

Corollary 4.1. In an n-fold implicative Rl-monoid, the concept of filters and n-fold
implicative filters coincide.

Proof. It follows from theorem 4.4 and the definition of an n-fold implicative Rl-
monoid. ¤

Theorem 4.6. A is an n-fold implicative Rl-monoid if and only if {1} is an n-fold
implicative filter of A.

Proof. If A is an n-fold implicative Rl-monoid, then xn+1 = xn, for all x ∈ A and
so xn+2 = xn+1 ∗ x = xn ∗ x = xn+1 = xn. By the similar way x2n = xn, for all
x ∈ A, that is, xn → x2n = 1 ∈ {1}, for all x ∈ A. By condition (b) of theorem
4.4, {1} is an n-fold implicative filter of A. Conversely, let the filter {1} of A be an
n-fold implicative filter. Since xn → (xn → xn+1) = x2n → xn+1 = 1 ∈ {1} and
xn → xn = 1 ∈ {1} we get xn → xn+1 ∈ {1}, that is, xn+1 = xn. Hence A is an
n-fold implicative Rl-monoid. ¤

Theorem 4.7. Let F and G be filters of A such that F ⊆ G. If F is an n-fold
implicative filter then G is also an n-fold implicative filter.

Proof. LetF be an n-fold implicative filter of A. Then by theorem 4.4, xn → x2n ∈ F ,
for all x ∈ A, and so xn → x2n ∈ G, for all x ∈ A. Hence G is an n-fold implicative
filter. ¤

Theorem 4.8. In any Rl-monoid A, the following conditions are equivalent:
(a) A is an n-fold implicative Rl-monoid,
(b) Every filter of A is an n-fold implicative filter,
(c) {1} is an n-fold implicative filter,
(d) xn = x2n, for all x ∈ A.

Proof. (a ⇒ b): It is clear by the Definition of an n-fold implicative Rl-monoid and
theorem 4.4.

(b ⇒ c): is clear.
(c ⇒ a): By theorem 4.6 is clear.
(a ⇒ d): Let A is an n-fold implicative Rl-monoid, hence xn+1 = xn, for all x ∈ A.

We have xn+2 = xn+1 ∗ x = xn ∗ x = xn+1 = xn. By repeating the process n times,
we get xn = x2n, for all x ∈ A.

(d ⇒ a): If xn = x2n, for all x ∈ A.Then xn → x2n = 1 ∈ {1}, for all x ∈ A. By
theorem 4.4, {1} is an n-fold implicative filter. Since (a) and (c) are equivalent, A is
an n-fold implicative Rl-monoid. ¤
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Theorem 4.9. Let F be a filter of A. Then F is an n-fold implicative filter if and
only if A/F is an n-fold implicative Rl-monoid.

Proof. Let F be an n-fold implicative filter, by theorem 4.4, xn → x2n ∈ F , for
all x ∈ A. Then [x]n → [x]2n = [xn → x2n] = [1] and so [x]n ≤ [x]2n, that is,
[x]n = [x]2n, for all x ∈ A. Hence by theorem 4.8, A/F is an n-fold implicative Rl-
monoid. Conversely, let A/F be an n-fold implicative Rl-monoid, then [x]n = [x]2n,
for all x ∈ A. Hence [xn → x2n] = [x]n → [x]2n = [1], that is, xn → x2n ∈ F , for all
x ∈ A. Therefore by theorem 4.4, F is an n-fold implicative filter. ¤

Corollary 4.2. Let F be a filter of A. Then F is a 1-fold implicative filter if and
only if A/F is a Heyting algebra.

Proof. By theorem 2.1 is clear. ¤

5. n-fold positive implicative Rl-monoid

Definition 5.1. An n-fold positive implicative Rl-monoid is a Rl-monoid A =
(A,∧,∨, ∗,→ 0, 1) if it satisfies (xn → 0) → x = x, for all x ∈ A.

Theorem 5.1. Every n-fold positive implicative Rl-monoid is an (n+1)-fold positive
implicative Rl-monoid.

Proof. Let A be an n-fold positive implicative Rl-monoid. Then (xn → 0) → x = x,
for all x ∈ A. Since xn+1 ≤ xn then xn → 0 ≤ xn+1 → 0 and so (xn+1 → 0) → 0 ≤
(xn → 0) → 0 = x. But by lemma 2.1 x ≤ (xn+1 → 0) → 0. Hence x = (xn+1 →
0) → 0, that is, A is an (n + 1)-fold positive implicative Rl-monoid. ¤

The following example shows that the converse of theorem 5.1 is not true.

Example 5.1. In example 3.1, B is a 3-fold positive Rl-monoid but since (b2 →
0) → b 6= b, B is not a 2-fold positive implicative Rl-monoid.

6. n-fold positive implicative filters

Definition 6.1. A non-empty subset F of A is called a n-fold positive implicative
filter if it satisfies:

(1) 1 ∈ F ,
(2) x → ((yn → z) → y) ∈ F and x ∈ F imply y ∈ F , foe all x, y, z ∈ A

Theorem 6.1. Every n-fold positive implicative filter of A is a filter of A.

Proof. Let F be a n-fold positive implicative filter and x, y ∈ A be such that x, x →
y ∈ F . But x → ((yn → 1) → y) = x → y and so x → ((yn → 1) → y) ∈ F . Since
x ∈ F and F is n-fold positive implicative filter of A we get y ∈ F . Hence F is a
filter. ¤

Theorem 6.2. Let F be a filter of A. Then the following conditions are equivalent:
(a) F is an n-fold positive implicative filter,
(b) (xn → 0) → x ∈ F implies x ∈ F , for all x ∈ A,
(c) (xn → y) → x ∈ F implies x ∈ F , for all x ∈ A
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Proof. (a ⇒ c): Let F be a n-fold positive implicative filter of A and (xn → y) → x ∈
F . Since 1 → ((xn → y) → x) = (xn → y) → x, we get 1 → ((xn → y) → x) ∈ F .
We have 1 ∈ F , thus x ∈ F .

(c ⇒ b): is clear.
(b ⇒ a): Let x → ((yn → z) → y) ∈ F and x ∈ F . Since F is filter, we

get (yn → z) → y ∈ F . Since 0 ≤ z, by lemma 2.1, yn → 0 ≤ yn → z and so
(yn → z) → y ≤ (yn → 0) → y. Hence (yn → 0) → y ∈ F and so by assumption we
get y ∈ F . Therefore F is an n-fold positive implicative filter. ¤

Theorem 6.3. Let F be a filter of Rl-monoid A. If F is an n-fold positive implicative
filter then F is an (n + 1)-fold positive implicative filter

Proof. Let F be an n-fold positive implicative filter and x ∈ A be such that (xn+1 →
0) → x ∈ F . Since xn+1 ≤ xn, we have xn → 0 ≤ xn+1 → 0 and so (xn+1 →
0) → 0 ≤ (xn → 0) → 0. Since F is a filter, (xn → 0) → 0 ∈ F . Since F is an
n-fold positive implicative filter, we have x ∈ F and so F is an (n + 1)-fold positive
implicative filter. ¤

By the following example we show that the converse is not true.

Example 6.1. In example 3.1, {1} is a 3-fold positive implicative filter, but (b2 →
0) → b = 1 and b 6= 1, hence {1} is not a 2-fold positive implicative filter.

Theorem 6.4. Every n-fold positive implicative filter is an n-fold implicative filter.

Proof. Let F be an n-fold positive implicative filter of A. By theorem 6.1, F is a filter
of A. Let x, y ∈ A be such that xn+1 → y ∈ F . Then by lemma 2.1:

(xn+1 → y)n → (xn → y) = (xn+1 → y)n−1(xn+1 → y) → (xn → y)
= (xn+1 → y)n−1 → ((xn+1 → y) → (xn → y))
= (xn+1 → y)n−1 → ((xn+1 → y) → (xn−1 → (x → y)))
= (xn+1 → y)n−1 → (xn−1 → ((xn+1 → y) → (x → y)))
= (xn+1 → y)n−1 → (xn−1 → ((x → (xn → y)) → (x → y)))
≥ (xn+1 → y)n−1 → (xn−1 → (xn → y)) → y)
= (xn+1 → y)n−1 → ((xn → y) → (xn−1 → y))
= (xn → y) → ((xn+1 → y)n−1 → (xn−1 → y))

We show that

(xn+1 → y)n → (xn → y) ≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y))

Now consider
(xn → y)(xn+1 → y)n−1xn−1 = (xn → y)(xn+1 → y)n−2(xn+1 → y)xxn−2

= (xn → y)(xn+1 → y)n−2xn−2x(xn+1 → y)
Since xn+1 → y ≤ xn+1 → y = x → (xn → y) then x(xn+1 → y) ≤ xn → y, we get

(xn → y)(xn+1 → y)n−1xn−1 ≤ (xn → y)2(xn+1 → y)n−2xn−2. Hence
((xn → y)2(xn+1 → y)n−2xn−2) → y ≤ ((xn → y)(xn+1 → y)n−1xn−1) → y and so
(xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y)) ≤ (xn → y) → ((xn+1 → y)n−1 →
(xn−1 → y))

But we had
(xn+1 → y)n → (xn → y) ≥ (xn → y) → ((xn+1 → y)n−1 → (xn−1 → y))
Then
(xn+1 → y)n → (xn → y) ≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y))
Hence by repeating the process n times we get
(xn+1 → y)n → (xn → y) ≥ (xn → y)2 → ((xn+1 → y)n−2 → (xn−2 → y)) ≥ ... ≥
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(xn → y)n → ((xn+1 → y)0 → (x0 → y))
= (xn → y)n → (1 → (1 → y)) = (xn → y)n → y

Hence ((xn → y)n → y) → ((xn+1 → y)n → (xn → y)) = 1 and so
(xn+1 → y)n → (((xn → y)n → y) → (xn → y)) = 1. Since F is a filter and
xn+1 → y ∈ F , we get (xn+1 → y)n ∈ F and so ((xn → y)n → y) → (xn → y) ∈ F .
Since F is an n-fold positive implicative filter by theorem 6.2 we have xn → y ∈ F .

Hence by theorem 4.4, F is an n-fold implicative filter. ¤

The following example shows that the converse of theorem 6.4 is not true.

Example 6.2. Let B = {0, a, b, c, 1}. Define ∗ and → as follow:

∗ 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

Then (B,∧,∨, ∗,→, 0, 1) is a Rl-monoid and it is clear that F = {b, 1} is a 2-fold
implicative filter but it is not a 2-fold positive implicative filter, since (a2 → 0) → a =
1 ∈ F and a 6∈ F .

Lemma 6.1. In the n-fold positive implicative Rl-monoid, the notion of an n-fold
positive implicative filter and a filter is coincide.

Proof. By definition of an n-fold positive implicative Rl-monoid and theorem 6.2 is
clear. ¤

Theorem 6.5. Let A be a Rl-monoid. Then the following conditions are equivalent:
(a) A is an n-fold positive implicative Rl-monoid
(b) Every filter of A is an n-fold positive implicative filter,
(c){1} is an n-fold positive implicative filter.

Proof. (a ⇒ b): By lemma 6.1, is clear.
(b ⇒ c): is clear.
(c ⇒ d): Let {1} be an n-fold positive implicative filter of A. Consider x ∈ A and

let t = ((xn → 0) → x) → x. Then by lemma 2.1 we have
(tn → 0) → t = (tn → 0) → (((xn → 0) → x) → x)
= ((xn → 0) → x) → ((tn → 0) → x ≥ (tn → 0) → (xn → 0) ≥ xn → tn = 1

The last equality follows from x ≤ ((xn → 0) → x) → x = t. Then xn ≤ tn, that
is, xn → tn = 1. Hence (tn → 0) → t = 1 ∈ {1} and since {1} is an n-fold positive
implicative filter, t = ((xn → 0) → x) → x = 1, that is, (xn → 0) → x ≤ x.
On the other hand by lemma 2.1 we have (xn → 0) → x ≥ x. Hence we get
(xn → 0) → x = x, for all x ∈ A, that is, A is an n-fold positive implicative Rl-
monoid. ¤
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Theorem 6.6. Let F be a filter of A. Then A/F is an n-fold positive implicative
Rl-monoid if and only if F is an n-fold positive implicative filter.

Proof. Let F be an n-fold positive implicative filter and x ∈ A be such that
([x]n → [0]) → [x] = [1]. Then [(xn → 0) → x] = ([x]n → [0]) → [x] = [1] and
so (xn → 0) → x ∈ F . Since F is n-fold positive implicative filter by theorem 6.2,
x ∈ F , hence [x] = [1] and so {[1]} is a n-fold positive implicative filter of A/F . Then
by theorem 6.5, A/F is an n-fold positive implicative Rl-monoid

Conversely, let A/F be an n-fold positive implicative Rl-monoid and x ∈ A be
such that (xn → 0) → x ∈ F . Then [x] = ([x]n → [0]) → [x] = [(xn → 0) → x] = [1]
and so [x] = [1], that is, x ∈ F . It follows from theorem 6.2 that F is an n-fold
positive implicative filter. ¤
Corollary 6.1. Let F be a filter of a Rl-monoid A. Then A/F is a Boolean algebra
if and only if F is a 1-fold positive implicative filter.

Proof. Assume that F is a 1-fold positive implicative filter and x, y ∈ A be such that
([x] → [y]) → [x] = [1], then (x → y) → x ∈ F . By theorem 2.2, x ∈ F . Hence
[x] = [1] which proves that {[1]} is a positive implicative filter. By theorem 2.3, A/F
is a Boolean algebra.

Conversely, let (x → y) → x ∈ F , for x, y ∈ F . Then ([x] → [y]) → [x] = [(x →
y) → x] = [1]. Since A/F is a Boolean algebra, by theorem 2.3 {[1]} is a positive
implicative filter, then [x] = [1], i.e, x ∈ F . Hence F is a 1-fold positive implicative
filter. ¤
Theorem 6.7. Let F and G be filters of a Rl-monoid A such that F ⊆ G. If F is
an n-fold positive implicative filter, then G is an n-fold positive implicative filter.

Proof. Let A be such that (xn → 0) → x ∈ G. Since F is an n-fold positive implicative
filter, by theorem 6.6, A/F is an n-fold positive implicative Rl-monoid. Then [(xn →
0) → x] = (([x]n → [0]) → [x] = [x] and so ((xn → 0) → x) → x ∈ F ⊆ G. Since G is
filter and (xn → 0) → x ∈ G, x ∈ G. Hence by theorem 6.2, G is an n-fold positive
implicative filter. ¤
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