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Folding theory applied to Rl-monoid

MASOUD HAVESHKI AND MAHBOOBEH MOHAMADHASANI

ABSTRACT. In this paper we define n-fold (positive) implicative Rl-monoid. Also we introduce
n-fold (positive) implicative filter in Ri-monoid and we prove some relations between these
filters and construct quotient algebras via these filters.
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1. Introduction

B L-algebras have been introduced by P. Hajek as an algebraic counterpart of the
basic fuzzy logic BL [2]. Omitting the requirement of pre-linearity in the definition
of a BL-algebra, one obtains the definition of a bounded commutative residuated
lattice ordered monoid (RI-monoid). Nevertheless, bounded commutative Rl-monoid
are a generalization not only of BL-algebra but also of Heyting algebras which are
an algebraic counterpart of the intuitionistic propositional logic. Theorefore, bounded
commutative Rl-monoid could be taken as an algebraic semantics of a more general
logic than Hajek’s fuzzy logic. In both BL-algebra and bounded commutative RI-
monoid, filters coincide with deductive systems of those algebras and are exactly the
kernel of their congruences. Various types of filters of BL-algebras were studied in
[3]. In this paper we further develop the theory of filters of bounded commutative
Ri-monoids and among others, we generalize some results of [4].

2. Preliminiaries

Definition 2.1. [4] A bounded commutative Rl-monoid is an algebra A = (A, \,V, %, —
0,1) with four binary operations A, V, *, — and two constant 0,1 such that:

(Rl1) A= (A,V,A,0,1) is a bounded lattice,

(RI2) A= (A, *,1) is a commutative monoid,

(RI3) x and — form a adjoint pair, i.e,a x ¢ < b if and only if ¢ < a — b, for all
a,b,ce A,

(Rl}) aNb=ax(a—D), for all a,b € A.

In the sequel, by a Rl-monoid we will mean a bounded commutative RI-monoid.
Bounded commutative Rl-monoids are special cases of residuated lattices, more pre-
cisely (see for instance [1]).

An Rl-monoids A is a BL-algebra iff A satisfies the identity of pre-linearly (z —
y)V (y — z) =1 an MV-algebra iff A fulfills the doube negation (x~)~ = x where
x~ = x — 0 a Heyting algebra iff the operation * is idempotent.
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Lemma 2.1. [4, 5] In any Rl-monoid A, the following relations hold for all x,y, z €
A:
(1) 2+ (a—y) <y,
(2 < (y — (1)),
(8)r <y if and only if vt -y =1,
U =y —2) =y — (z— 2),
(G)f x <y, theny —z<zx—zand z -2 <z >y,
(6)y < (y—z)—>w,
(N —y<(y—2)—(r—2z
(8)r—y<(z—wz)—(z—y
(9) (xxy) = z=2— (y— 2),
(10) 1l -z =z —ax=1

)
)

7

Definition 2.2. [1, 4] A nonempty subset F of Rl-monoid A is called a filter of A
if:

(1) axbeF, forall a,b € F,

(2)a<banda€F implybe F.

Definition 2.3. [1, 4] A nonempty subset D of Rl-monoid A is called a deductive
system of A if:

(1) 1€ D,

(2) Ifr €D and x —y € D, theny € D.

Proposition 2.1. [1] A nonempty subset F' of Rl-monoid A is a deductive system if
and only if is a filter of Rl-monoid A.

By [6], filters of commutative Rl-monoid are exactly the kernels of their congru-
ences. If F' is a filter of A, then F is the kernel of the unique congruence 6(F’) such
that (z,y) € 0(F) iff (x — y) A (y — z) € F for any z,y € A. Hence we will consider
quotient Rl-monoid A/F of Rl-monoid A by their filters.

Definition 2.4. [4] A non-empty subset F' of Rl-monoid A is called an implicative
filter of A if it satisfies:

(1)1 € F,

(2)x— (y—z)eFande—yeF implyr —z€F, forallz,y,z€ A

Theorem 2.1. [4] Let F be a filter of Rl-monoid A. Then F is an implicative filter
if and only if A/F is a Heyting algebra.

Definition 2.5. [4] A non-empty subset F of Rl-monoid A is called an positive
implicative filter of A if it satisfies:

(1)1 € F,

(2)z— (y—2) —y)€F andx € F implyy € F, for all x,y,z € A.

Theorem 2.2. [4] Let F be a filter of Rl-monoid A. Then F is a positive implicative
filter if and only if (x — y) — x € F implies x € F, for all x,y € A.

Theorem 2.3. [4] In any Rl-monoid A, the following conditions are equivalent:
(a) {1} is a positive implicative filter,
(b) Every filter of A is a positive implicative filter,
(c) Ala) ={x € A| x> a} is a positive implicative filter,
(d) (x = y) = x ==z forall z,y € A,
(e) A is Boolean algebra.
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3. n-fold implicative RI-monoid

Definition 3.1. An n-fold implicative Rl-monoid is a Rl-monoid (A, A, V,*,—,0,1)
if it satisfies: x"t = 2", for all x € A where 2" = x * T * ... x x( n-times).

Theorem 3.1. If A is an n-fold implicative Rl-monoid then A is an (n + 1)-fold
implicative Rl-monoid.

Proof. Since A is n-fold implicative Rl-monoid, z"T1 = 2", for all x € A. But
a2 = 2"l v = 2" x 2 = 2" and hence A is (n + 1)-fold implicative RI-
monoid. 0

By the following example we show that the converse is not true:

Example 3.1. Let B ={0,a,b,1}. Define x and — as follows:
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Then (B, A, V,*x,—,0,1) is a Rl-monoid and it is clear that B is a 3-implicative
Ri-monoid but since b3 # b2, B is not 2-fold implicative Rl-monoid.

4. n-fold implicative filters

Definition 4.1. A non-empty subset F' of a Rl-monoid A is called an n-fold implica-
tive filter of A if it satisfies:

(1)1eF

(2) " — (y—z2)€F, 2" -y F implya™ — z€F, forallz,y,z€ A

Theorem 4.1. Any n-fold implicative filter of A is a filter of A.

Proof. Let z,x -y € F. Hencel -z € Fand 1 — (z — y) € F. But 1 = 1", thus
y=1—y € F, that is, F is a filter of A. O

The following example shows that the converse of theorem 4.1 is not true.

Example 4.1. Let B ={0,a,b,1}. Define x and — as follows:

— oo o]
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* 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Then (B, A, V,*,—,0,1) is a Rl-monoid and it is clear that F' = {b, 1} is a filter,
while it is not a 1-implicative filter since a — (a — 0) € F and a — a € F but
a—0¢gF.

Theorem 4.2. For any a € A, A(a) = {z € Ala < z} is a filter if and only if a <z
wherever a <y — x and a <y for all x,y € A.

Proof. Let A(a) be afilteranda <y — xand a < ytheny — x € A(a) and y € A(a).
Since A(a) is a filter, z € A(a), that is, a < x. Conversely, since a < 1, 1 € A(a).
If 2,2 — y € A(a), then a < z and a < y — 2. By assumption a < y and hence
y € A(a). Hence A(a) is a filter. O

Theorem 4.3. Let a be an element of A. If A(a) is an n-fold implicative filter of A,
then for all z,y € A, a"*! — (x —y) =1, a" — 2 =1 imply a"* — y = 1.

Proof. Let A(a) be an n-fold implicative filter and a"™t — (z — y) = 1, a" ™! —
x=1. Sincea — (a" — (z = y)) =a"" - (x - y) =1, a" — (v — y) € A(a).
Similarly ™ — = € A(a). Since A(a) is n-fold implicative filter, a™ — y € A(a), that
is, a < a® — y. Thus a"t! -y =1. O

Theorem 4.4. Let F be a filter of A. Then for all the following conditions are
equivalent:

(a) F is an n-fold implicative filter of A,

(b) ™ — 2" € F, for all x € A,

(c) 2"t — y € F implies 2™ — y € F,

(d) ™ — (y — z) € F implies (2" — y) — (2™ — 2z) € F.

Proof. (a=b): Let & € A hence by lemma 2.1, 2™ — (2" — 2?") = 22" - 22" =1¢€
F and 2™ — 2™ =1 € F. Since F is n-fold implicative filter, we get ™ — 22" € F.

(b = a): Let x,y,z € A be such that 2" — (y — 2) € F, 2" — y € F. Since
(27 = (y — 2))+(a" — g)ramsa™ = (T Aly — 2)) K@ Ay) < (y — 2)ky = YAz < 2
then (2" — (y — 2)) * (2" — y) < 2? — 2. Since 2™ — (y > 2) € F, 2" -y € F
we get (2" — (y — 2))* (2" — y) € F and so 2’ — 2z € F. By lemma 2.1
" — 2" < (2 — 2) — (2™ — z). On the other hand 2°" — 2 € F and
" — 22" € F, then 2" — z € F. Hence F is an n-fold implicative filter of A.

(b = c¢): Since (b) holds, F'is an n-fold implicative filter of A. On the other hand
2"t sy =a" - (r—y) € Fand 2" — o =1¢€ F hence 2" — y € F.

(c = b): We have 2" — (2771 — 22") = 22" — 22" = 1 € F hence by (c) 2™ —
(xn—l . xZn) c F. But xn+l s (l,n—2 s xQn) — xn—2 s 372” = " - (xn—l s
z?") € F, that is, 2" — (272 — 2*") € F and so 2™ — ("2 — 2*") € F. By
repeating the process n times we get 2" — (2% — z) =2" — (1 —» 2) = 2" — 2" €
F.

(b= d): Let 2™ — (y — z) € F, by lemma 2.1, 2" — (y — z) < z" — ((z" —
y) = (@" —z)) =2" = (2" = (2" - y) = 2) =2 = ((@" = y) = 2).

Hence 22" — ((z™ — y) — 2) € F. By (b), we have 2" — 2" € F, now by lemma
2.1, 22" — ((2" — y) — 2) < (2" — 22") — (2" — ((2™ — y) — 2)). Then we get
(2" = y) = (2" = 2) = 2" = (" — y) = 2)) € F.
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(d = b): Since 2" — (2" — 2?") = 2" — 22" = 1 € F, by (d) we have
" =2 = (2" - a") — (2" - ™) e F O

Theorem 4.5. et F' be a filter of a Rl-monoid A. If F is an n-fold implicative filter,
then F is an (n + 1)-fold implicative filter.

Proof. Let x,y € A be such that 2""2 — y € F. By lemma 2.1, 2" — (z — y) =
"2 — gy and since F is n-fold implicative filter by theorem 4.4, 2™ — (z — y) € F.
Hence 2" — y € F, that is, F is (n + 1)-fold implicative filter. O

By the following example we show that the converse is not true.

Example 4.2. In ezample 3.1, {1} is a 3-fold implicative filter but since b> — 0 =
1e{l} and v¥> - 0=0b# 1, {1} is not a 2-fold implicative filter.

Corollary 4.1. In an n-fold implicative Rl-monoid, the concept of filters and n-fold
implicative filters coincide.

Proof. Tt follows from theorem 4.4 and the definition of an n-fold implicative RI-
monoid. d

Theorem 4.6. A is an n-fold implicative Rl-monoid if and only if {1} is an n-fold
implicative filter of A.

Proof. If A is an n-fold implicative RI-monoid, then z"*! = 2", for all z € A and
so "2 = 2"l x x = 2" v = 2" = z". By the similar way 2" = z", for all
x € A, that is, 2" — 2?" = 1 € {1}, for all x € A. By condition (b) of theorem
4.4, {1} is an n-fold implicative filter of A. Conversely, let the filter {1} of A be an
n-fold implicative filter. Since z" — (2" — z"*1) = 22" — 2"+l =1 € {1} and
2" — 2" =1 € {1} we get 2" — z"*1 € {1}, that is, 2"*! = z". Hence A is an
n-fold implicative RIl-monoid. O

Theorem 4.7. Let F and G be filters of A such that F C G. If F is an n-fold
implicative filter then G is also an n-fold implicative filter.

Proof. LetF be an n-fold implicative filter of A. Then by theorem 4.4, ™ — 22" € F,
for all x € A, and so 2™ — z2" € G, for all x € A. Hence G is an n-fold implicative
filter. O

Theorem 4.8. In any Rl-monoid A, the following conditions are equivalent:
(a) A is an n-fold implicative Rl-monoid,
(b) Every filter of A is an n-fold implicative filter,
(c) {1} is an n-fold implicative filter,
(d) 2" = x®", for all x € A.

Proof. (a = b): Tt is clear by the Definition of an n-fold implicative Ri-monoid and
theorem 4.4.

(b= ¢): is clear.

(¢ = a): By theorem 4.6 is clear.

(a = d): Let A is an n-fold implicative Rl-monoid, hence 2" 1 = z™ for all x € A.
We have 2" 12 = 2"t x z = 2" x £ = 2"*! = 2. By repeating the process n times,
we get " = 22", for all x € A.

(d = a): If 2™ = 2?", for all x € A.Then 2™ — 2?" = 1 € {1}, for all z € A. By
theorem 4.4, {1} is an n-fold implicative filter. Since (a) and (c) are equivalent, A is
an n-fold implicative RI-monoid. (]
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Theorem 4.9. Let F be a filter of A. Then F is an n-fold implicative filter if and
only if A/F is an n-fold implicative Rl-monoid.

Proof. Let F be an n-fold implicative filter, by theorem 4.4, z* — 22" € F, for
all z € A. Then [z]" — [2]*® = [2" — 2?"] = [1] and so [z]" < [z]?", that is,
[z]" = [z]?", for all z € A. Hence by theorem 4.8, A/F is an n-fold implicative RI-
monoid. Conversely, let A/F be an n-fold implicative RI-monoid, then [z]" = [2]*",
for all z € A. Hence [z" — 22| = [z]" — [2]*" = [1], that is, 2™ — 2?" € F, for all
x € A. Therefore by theorem 4.4, F' is an n-fold implicative filter. O

Corollary 4.2. Let F be a filter of A. Then F is a 1-fold implicative filter if and
only if A/F is a Heyling algebra.

Proof. By theorem 2.1 is clear. O

5. n-fold positive implicative Rl-monoid

Definition 5.1. An n-fold positive implicative Rl-monoid is a Rl-monoid A =
(A, N,V %, — 0,1) if it satisfies (2™ — 0) — x =z, for all x € A.

Theorem 5.1. Every n-fold positive implicative Rl-monoid is an (n+1)-fold positive
implicative Rl-monoid.

Proof. Let A be an n-fold positive implicative Rl-monoid. Then (z™ — 0) — z = z,
for all # € A. Since 2"*! < 2" then 2" — 0 < 2"t — 0 and so (z"t! — 0) — 0 <
(z" — 0) — 0 = 2. But by lemma 2.1 z < (2""! — 0) — 0. Hence x = (2" —
0) — 0, that is, A is an (n + 1)-fold positive implicative Rl-monoid. O

The following example shows that the converse of theorem 5.1 is not true.

Example 5.1. In ezample 5.1, B is a 3-fold positive Rl-monoid but since (b*> —
0) — b # b, B is not a 2-fold positive implicative Rl-monoid.

6. n-fold positive implicative filters

Definition 6.1. A non-empty subset F' of A is called a n-fold positive implicative
filter if it satisfies:

(1)1€F,

(2)x— (y* —2) —y) €F andx € F implyy € F, foe all x,y,z € A

Theorem 6.1. Every n-fold positive implicative filter of A is a filter of A.

Proof. Let I be a n-fold positive implicative filter and z,y € A be such that z,x —
yeEF. Btz — (" —>1) —y) =2 —yandsoz — ((y" — 1) — y) € F. Since
x € F and F is n-fold positive implicative filter of A we get y € F. Hence F is a
filter. O

Theorem 6.2. Let F be a filter of A. Then the following conditions are equivalent:
(a) F is an n-fold positive implicative filter,
(b) (2" = 0) - x € F impliesx € F, for allz € A,
(c) (" = y) — x € F impliesx € F, for allxz € A
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Proof. (a=>c): Let F be a n-fold positive implicative filter of A and (2" — y) — x €
F. Since 1 = ((2" —y) »z)= (2" - y) —»z, weget 1l —» ((z" —y) —»z) €F.
We have 1 € F, thus x € F.

(¢ = b): is clear.

(b= a) Let x — ((y — 2) —» y) € F and x € F. Since F is filter, we
get (Y — z) — y € F. Since 0 < z, by lemma 2.1, y" — 0 < y™ — 2z and so
(y" — 2) -y < (y"* — 0) — y. Hence (y™ — 0) — y € F and so by assumption we
get y € F. Therefore F is an n-fold positive implicative filter. O

Theorem 6.3. Let F' be a filter of Rl-monoid A. If F is an n-fold positive implicative
filter then F is an (n + 1)-fold positive implicative filter

Proof. Let F be an n-fold positive implicative filter and = € A be such that (z"+! —
0) — x € F. Since 2" < 2", we have 2" — 0 < z"*! — 0 and so (z""! —
0) - 0 < (z™ — 0) — 0. Since F is a filter, (z™ — 0) — 0 € F. Since F is an
n-fold positive implicative filter, we have © € F' and so F' is an (n + 1)-fold positive
implicative filter. O

By the following example we show that the converse is not true.

Example 6.1. In example 3.1, {1} is a 3-fold positive implicative filter, but (b*> —
0) = b=1 and b # 1, hence {1} is not a 2-fold positive implicative filter.

Theorem 6.4. Fvery n-fold positive implicative filter is an n-fold implicative filter.

Proof. Let F be an n-fold positive implicative filter of A. By theorem 6.1, F'is a filter
of A. Let ,y € A be such that 2"*t! — y € F. Then by lemma 2.1:

(
= (@ =yt = (@ o y) = (2" - y))
=@ -yt = (@ - y) = (@ - (2 — )
=@t -yt - @ = (@ ) - (2 — )
=@t -yt - @ = (2 - (2" —y) = (=)
> (" syt = (@ = (2" — ) — )
— (xn+1 N y)n—l s ( xn s y) N (xn—l N y))
=(@" —y) = (@ -yt = @ =)

‘We show that

(anrl )n72

e e o LI (e gy

Now consider

(2" = y)(@" T =y la T = (2" = y) (@ y)" P (@ - y)az
= (2" — ) (@™ — )22 (2" — y)

Since 2"t — y < 2"t — y =2 — (2" — y) then z(z"! — y) < 2" — y, we get
" — y)(xn—i-l N y)n—lxn—l < (xn N y)2<xn+1 N y)n—an—Q. Hence

n—2,.n—2 n—1,n—1

(
E(xn — ) (et = y)" a2 -y < ((@" — y) (@™ — y)" 12" ) — g and so
(

n—2

" — y)Q — ((anrl — y)n72 — (In72 — y)) < (In — y) — ((anrl — y)nfl N

n—1 -

)
But we had

(@ =)t — @ —y) > @ —y) = (@ =y o (@
Then

(27 = )" = (@ = ) > (" — ) — (@ = )2 = (@
Hence by repeating the process n times we get

@™ =y = (@ - y) = @ = y)? = (@ )" (@ o) >

v
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(a7 — )" — (@ = )0 — (2 > y))
=@ -y —-1-0-y)=0a"—-y" —y
Hence ((z" — )" —y) — (""" - y)" — (2" — y)) =1 and so
("t — )" — (((a™ — y)" — y) — (2" — y)) = 1. Since F is a filter and
" — y e F,we get (z""! — y)" € Fand so ((2" — y)" — y) — (2" — y) € F.
Since F' is an n-fold positive implicative filter by theorem 6.2 we have 2" — y € F.
Hence by theorem 4.4, F' is an n-fold implicative filter. O

The following example shows that the converse of theorem 6.4 is not true.

Example 6.2. Let B ={0,a,b,¢,1}. Define * and — as follow:

* 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1
— 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

Then (B, A, V,*,—,0,1) is a Rl-monoid and it is clear that F = {b,1} is a 2-fold
implicative filter but it is not a 2-fold positive implicative filter, since (a* — 0) — a =
leFanda g F.

Lemma 6.1. In the n-fold positive implicative Rl-monoid, the notion of an n-fold
positive implicative filter and a filter is coincide.

Proof. By definition of an n-fold positive implicative RI-monoid and theorem 6.2 is
clear. (]

Theorem 6.5. Let A be a Rl-monoid. Then the following conditions are equivalent:
(a) A is an n-fold positive implicative Rl-monoid
(b) Every filter of A is an n-fold positive implicative filter,
(c){1} is an n-fold positive implicative filter.

Proof. (a = b): By lemma 6.1, is clear.

(b = ¢): is clear.

(¢ = d): Let {1} be an n-fold positive implicative filter of A. Consider x € A and
let ¢ = ((#™ — 0) — x) — . Then by lemma 2.1 we have
(1" — 0) = t = (I — 0) — (2" — 0) — 2) — 2)
=((a" —-0)—2)—=(t"—=0) -z>@{t"—0) — (2" —0)>a" >t"=1

The last equality follows from = < ((2#™ — 0) — z) — « = t. Then z™ < t", that
is, 2™ — t" = 1. Hence (" — 0) — ¢t =1 € {1} and since {1} is an n-fold positive
implicative filter, t = ((z™ — 0) — z) — x = 1, that is, (z" — 0) - z < z.
On the other hand by lemma 2.1 we have (2" — 0) — x > z. Hence we get
(z™ — 0) —» = = z, for all x € A, that is, A is an n-fold positive implicative RI-
monoid. g
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Theorem 6.6. Let F' be a filter of A. Then A/F is an n-fold positive implicative
Rl-monoid if and only if F is an n-fold positive implicative filter.

Proof. Let F be an n-fold positive implicative filter and « € A be such that
([z]" = [0]) — [«] = [1]. Then [(z" — 0) — z] = ([«]" — [0]) — [z] = [1] and
so (2™ — 0) — x € F. Since F is n-fold positive implicative filter by theorem 6.2,
x € F, hence [z] = [1] and so {[1]} is a n-fold positive implicative filter of A/F. Then
by theorem 6.5, A/F' is an n-fold positive implicative Rl-monoid

Conversely, let A/F be an n-fold positive implicative Rl-monoid and z € A be
such that (2™ — 0) — « € F. Then [z] = ([z]" — [0]) — [z] = [(2™ — 0) — ] = [1]
and so [z] = [1], that is, x € F. It follows from theorem 6.2 that F' is an n-fold
positive implicative filter. O

Corollary 6.1. Let F be a filter of a Rl-monoid A. Then A/F is a Boolean algebra
if and only if F is a 1-fold positive implicative filter.

Proof. Assume that F'is a 1-fold positive implicative filter and x,y € A be such that
([x] = [y]) — [z] = [1], then (x — y) — = € F. By theorem 2.2, x € F. Hence
[z] = [1] which proves that {[1]} is a positive implicative filter. By theorem 2.3, A/F'
is a Boolean algebra.

Conversely, let (x — y) — z € F, for z,y € F. Then ([z] — [y]) — [z] = [(z —
y) — z] = [1]. Since A/F is a Boolean algebra, by theorem 2.3 {[1]} is a positive
implicative filter, then [x] = [1], i.e, z € F. Hence F is a 1-fold positive implicative
filter. O

Theorem 6.7. Let F and G be filters of a Rl-monoid A such that F C G. If F is
an n-fold positive implicative filter, then G is an n-fold positive implicative filter.

Proof. Let A be such that (z™ — 0) — z € G. Since F is an n-fold positive implicative
filter, by theorem 6.6, A/F is an n-fold positive implicative Rl-monoid. Then [(z" —
0) — z] = (([z]* — [0]) — [z] = [z] and so ((z™ — 0) — z) — 2 € F C G. Since G is
filter and (2™ — 0) — = € G, ¢ € G. Hence by theorem 6.2, G is an n-fold positive
implicative filter. (I
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