Annals of the University of Craiova, Mathematics and Computer Science Series Volume 37(4), 2010, Pages 9–17 ISSN: 1223-6934

Folding theory applied to *Rl-monoid*

Masoud Haveshki and Mahboobeh Mohamadhasani

ABSTRACT. In this paper we define n-fold (positive) implicative Rl-monoid. Also we introduce n-fold (positive) implicative filter in Rl-monoid and we prove some relations between these filters and construct quotient algebras via these filters.

2010 Mathematics Subject Classification. Primary 06D35; Secondary 03G25,06F05. Key words and phrases. Rl-monoid, BL-algebra, Heyting algebra, filter.

1. Introduction

BL-algebras have been introduced by P. Hajek as an algebraic counterpart of the basic fuzzy logic BL [2]. Omitting the requirement of pre-linearity in the definition of a BL-algebra, one obtains the definition of a bounded commutative residuated lattice ordered monoid (Rl-monoid). Nevertheless, bounded commutative Rl-monoid are a generalization not only of BL-algebra but also of Heyting algebras which are an algebraic counterpart of the intuitionistic propositional logic. Theorefore, bounded commutative Rl-monoid could be taken as an algebraic semantics of a more general logic than Hajek's fuzzy logic. In both BL-algebra and bounded commutative Rlmonoid, filters coincide with deductive systems of those algebras and are exactly the kernel of their congruences. Various types of filters of BL-algebras were studied in [3]. In this paper we further develop the theory of filters of bounded commutative Rl-monoids and among others, we generalize some results of [4].

2. Preliminiaries

Definition 2.1. [4] A bounded commutative Rl-monoid is an algebra $A = (A, \land, \lor, *, \rightarrow 0, 1)$ with four binary operations $\land, \lor, *, \rightarrow$ and two constant 0,1 such that:

(Rl1) $A = (A, \lor, \land, 0, 1)$ is a bounded lattice,

(Rl2) A = (A, *, 1) is a commutative monoid,

(Rl3) * and \rightarrow form a adjoint pair, i.e, $a * c \leq b$ if and only if $c \leq a \rightarrow b$, for all $a, b, c \in A$,

(Rl4) $a \wedge b = a * (a \rightarrow b)$, for all $a, b \in A$.

In the sequel, by a Rl-monoid we will mean a bounded commutative Rl-monoid. Bounded commutative Rl-monoids are special cases of residuated lattices, more precisely (see for instance [1]).

An *Rl-monoids* A is a *BL*-algebra iff A satisfies the identity of pre-linearly $(x \to y) \lor (y \to x) = 1$ an *MV*-algebra iff A fulfills the doube negation $(x^-)^- = x$ where $x^- = x \to 0$ a Heyting algebra iff the operation * is idempotent.

Received April 06, 2010. Revision received September 19, 2010.

Lemma 2.1. [4, 5] In any Rl-monoid A, the following relations hold for all $x, y, z \in A$:

 $\begin{array}{l} (1) \ x*(x \rightarrow y) \leq y, \\ (2)x \leq (y \rightarrow (x*y)), \\ (3)x \leq y \ if \ and \ only \ if \ x \rightarrow y = 1, \\ (4)x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z), \\ (5)If \ x \leq y, \ then \ y \rightarrow z \leq x \rightarrow z \ and \ z \rightarrow x \leq z \rightarrow y, \\ (6)y \leq (y \rightarrow x) \rightarrow x, \\ (7)x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z), \\ (8)x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y), \\ (9) \ (x*y) \rightarrow z = x \rightarrow (y \rightarrow z), \\ (10) \ 1 \rightarrow x = x, x \rightarrow x = 1 \end{array}$

Definition 2.2. [1, 4] A nonempty subset F of Rl-monoid A is called a filter of A if:

(1) $a * b \in F$, for all $a, b \in F$, (2) $a \leq b$ and $a \in F$ imply $b \in F$.

Definition 2.3. [1, 4] A nonempty subset D of Rl-monoid A is called a deductive system of A if:

(1) $1 \in D$, (2) If $x \in D$ and $x \to y \in D$, then $y \in D$.

Proposition 2.1. [1] A nonempty subset F of Rl-monoid A is a deductive system if and only if is a filter of Rl-monoid A.

By [6], filters of commutative *Rl-monoid* are exactly the kernels of their congruences. If *F* is a filter of *A*, then *F* is the kernel of the unique congruence $\theta(F)$ such that $(x, y) \in \theta(F)$ iff $(x \to y) \land (y \to x) \in F$ for any $x, y \in A$. Hence we will consider quotient *Rl-monoid* A/F of *Rl-monoid* A by their filters.

Definition 2.4. [4] A non-empty subset F of Rl-monoid A is called an implicative filter of A if it satisfies:

 $(1) \ 1 \in F,$

(2) $x \to (y \to z) \in F$ and $x \to y \in F$ imply $x \to z \in F$, for all $x, y, z \in A$

Theorem 2.1. [4] Let F be a filter of Rl-monoid A. Then F is an implicative filter if and only if A/F is a Heyting algebra.

Definition 2.5. [4] A non-empty subset F of Rl-monoid A is called an positive implicative filter of A if it satisfies:

 $(1) \ 1 \in F,$

(2) $x \to ((y \to z) \to y) \in F$ and $x \in F$ imply $y \in F$, for all $x, y, z \in A$.

Theorem 2.2. [4] Let F be a filter of Rl-monoid A. Then F is a positive implicative filter if and only if $(x \to y) \to x \in F$ implies $x \in F$, for all $x, y \in A$.

Theorem 2.3. [4] In any Rl-monoid A, the following conditions are equivalent: (a) {1} is a positive implicative filter,

(b) Every filter of A is a positive implicative filter,

(c) $A(a) = \{x \in A \mid x \ge a\}$ is a positive implicative filter,

(d) $(x \to y) \to x = x$ for all $x, y \in A$,

(e) A is Boolean algebra.

10

3. *n*-fold implicative *Rl*-monoid

Definition 3.1. An *n*-fold implicative Rl-monoid is a Rl-monoid $(A, \land, \lor, *, \rightarrow, 0, 1)$ if it satisfies: $x^{n+1} = x^n$, for all $x \in A$ where $x^n = x * x * ... * x$ (*n*-times).

Theorem 3.1. If A is an n-fold implicative Rl-monoid then A is an (n + 1)-fold implicative Rl-monoid.

Proof. Since A is n-fold implicative Rl-monoid, $x^{n+1} = x^n$, for all $x \in A$. But $x^{n+2} = x^{n+1} * x = x^n * x = x^{n+1}$ and hence A is (n + 1)-fold implicative Rl-monoid.

By the following example we show that the converse is not true:

Example 3.1. Let $B = \{0, a, b, 1\}$. Define * and \rightarrow as follows:

\rightarrow	0	a	b	1
0	1	1	1	1
a	b	1	1	1
b	a	b	1	1
1	0	a	b	1
*	0	a	b	1
0	0	0	0	0
$\begin{bmatrix} a \\ b \end{bmatrix}$	0	0	0	a
b	0	0	a	b
1	0	a	b	1

Then $(B, \wedge, \vee, *, \rightarrow, 0, 1)$ is a Rl-monoid and it is clear that B is a 3-implicative Rl-monoid but since $b^3 \neq b^2$, B is not 2-fold implicative Rl-monoid.

4. *n*-fold implicative filters

Definition 4.1. A non-empty subset F of a Rl-monoid A is called an n-fold implicative filter of A if it satisfies:

(1) $1 \in F$

 $\stackrel{\frown}{(2)} x^n \to (y \to z) \in F, \ x^n \to y \in F \ imply \ x^n \to z \in F, \ for \ all \ x, y, z \in A$

Theorem 4.1. Any n-fold implicative filter of A is a filter of A.

Proof. Let $x, x \to y \in F$. Hence $1 \to x \in F$ and $1 \to (x \to y) \in F$. But $1 = 1^n$, thus $y = 1 \to y \in F$, that is, F is a filter of A. \Box

The following example shows that the converse of theorem 4.1 is not true.

Example 4.1. Let $B = \{0, a, b, 1\}$. Define * and \rightarrow as follows:

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	$\begin{array}{c} a \\ 0 \end{array}$	a	1	1
1	0	a	b	1

*	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

Then $(B, \wedge, \vee, *, \rightarrow, 0, 1)$ is a Rl-monoid and it is clear that $F = \{b, 1\}$ is a filter. while it is not a 1-implicative filter since $a \rightarrow (a \rightarrow 0) \in F$ and $a \rightarrow a \in F$ but $a \to 0 \notin F$.

Theorem 4.2. For any $a \in A$, $A(a) = \{x \in A | a \le x\}$ is a filter if and only if $a \le x$ wherever $a \leq y \rightarrow x$ and $a \leq y$ for all $x, y \in A$.

Proof. Let A(a) be a filter and $a \leq y \rightarrow x$ and $a \leq y$ then $y \rightarrow x \in A(a)$ and $y \in A(a)$. Since A(a) is a filter, $x \in A(a)$, that is, $a \leq x$. Conversely, since $a \leq 1, 1 \in A(a)$. If $x, x \to y \in A(a)$, then $a \leq x$ and $a \leq y \to x$. By assumption $a \leq y$ and hence $y \in A(a)$. Hence A(a) is a filter.

Theorem 4.3. Let a be an element of A. If A(a) is an n-fold implicative filter of A, then for all $x, y \in A$, $a^{n+1} \to (x \to y) = 1$, $a^{n+1} \to x = 1$ imply $a^{n+1} \to y = 1$.

Proof. Let A(a) be an *n*-fold implicative filter and $a^{n+1} \to (x \to y) = 1, a^{n+1} \to (x \to y) = 1$ x = 1. Since $a \to (a^n \to (x \to y)) = a^{n+1} \to (x \to y) = 1$, $a^n \to (x \to y) \in A(a)$. Similarly $a^n \to x \in A(a)$. Since A(a) is n-fold implicative filter, $a^n \to y \in A(a)$, that is, $a \leq a^n \rightarrow y$. Thus $a^{n+1} \rightarrow y = 1$. \square

Theorem 4.4. Let F be a filter of A. Then for all the following conditions are equivalent:

(a) F is an n-fold implicative filter of A,

(b) $x^n \to x^{2n} \in F$, for all $x \in A$,

(c) $x^{n+1} \to y \in F$ implies $x^n \to y \in F$,

(d) $x^n \to (y \to z) \in F$ implies $(x^n \to y) \to (x^n \to z) \in F$.

Proof. (a \Rightarrow b): Let $x \in A$ hence by lemma 2.1, $x^n \to (x^n \to x^{2n}) = x^{2n} \to x^{2n} = 1 \in$ F and $x^n \to x^n = 1 \in F$. Since F is n-fold implicative filter, we get $x^n \to x^{2n} \in F$. (b \Rightarrow a): Let $x, y, z \in A$ be such that $x^n \to (y \to z) \in F, x^n \to y \in F$. Since $(x^n \to (y \to z)) * (x^n \to y) * x^n * x^n = (x^n \land (y \to z)) * (x^n \land y) \le (y \to z) * y = y \land z \le z$ then $(x^n \to (y \to z)) * (x^n \to y) \le x^{2n} \to z$. Since $x^n \to (y \to z) \in F$, $x^n \to y \in F$ we get $(x^n \to (y \to z)) * (x^n \to y) \in F$ and so $x^{2n} \to z \in F$. By lemma 2.1 $x^n \to x^{2n} \leq (x^{2n} \to z) \to (x^n \to z)$. On the other hand $x^{2n} \to z \in F$ and $x^n \to x^{2n} \in F$, then $x^n \to z \in F$. Hence F is an n-fold implicative filter of A.

 $(b \Rightarrow c)$: Since (b) holds, F is an n-fold implicative filter of A. On the other hand

 $\begin{array}{l} (0 \Rightarrow c). \text{ Since (b) noids, } F \text{ is an } n \rightarrow ord implicative inter of <math>Th$. On the order hand $x^{n+1} \rightarrow y = x^n \rightarrow (x \rightarrow y) \in F$ and $x^n \rightarrow x = 1 \in F$ hence $x^n \rightarrow y \in F$. (c \Rightarrow b): We have $x^{n+1} \rightarrow (x^{n-1} \rightarrow x^{2n}) = x^{2n} \rightarrow x^{2n} = 1 \in F$ hence by (c) $x^n \rightarrow (x^{n-1} \rightarrow x^{2n}) \in F$. But $x^{n+1} \rightarrow (x^{n-2} \rightarrow x^{2n}) = x^{n-2} \rightarrow x^{2n} = x^n \rightarrow (x^{n-1} \rightarrow x^{2n}) \in F$, that is, $x^{n+1} \rightarrow (x^{n-2} \rightarrow x^{2n}) \in F$ and so $x^n \rightarrow (x^{n-2} \rightarrow x^{2n}) \in F$. By repeating the process n times we get $x^n \to (x^0 \to x) = x^n \to (1 \to x) = x^n \to x^{2n} \in \mathbb{C}$ F.

(b \Rightarrow d): Let $x^n \to (y \to z) \in F$, by lemma 2.1, $x^n \to (y \to z) \leq x^n \to ((x^n \to z) \leq x^n)$ $y) \to (x^n \to z)) = x^n \to (x^n \to ((x^n \to y) \to z) = x^{2n} \to ((x^n \to y) \to z).$

Hence $x^{2n} \to ((x^n \to y) \to z) \in F$. By (b), we have $x^n \to x^{2n} \in F$, now by lemma 2.1, $x^{2n} \to ((x^n \to y) \to z) \le (x^n \to x^{2n}) \to (x^n \to ((x^n \to y) \to z))$. Then we get $(x^n \to y) \to (x^n \to z) = x^n \to ((x^n \to y) \to z)) \in F.$

 $(\mathbf{d} \Rightarrow \mathbf{b})$: Since $x^n \to (x^n \to x^{2n}) = x^{2n} \to x^{2n} = 1 \in F$, by (d) we have $x^n \to x^{2n} = (x^n \to x^n) \to (x^n \to x^{2n}) \in F$

Theorem 4.5. et F be a filter of a Rl-monoid A. If F is an n-fold implicative filter, then F is an (n + 1)-fold implicative filter.

Proof. Let $x, y \in A$ be such that $x^{n+2} \to y \in F$. By lemma 2.1, $x^{n+1} \to (x \to y) = x^{n+2} \to y$ and since F is *n*-fold implicative filter by theorem 4.4, $x^n \to (x \to y) \in F$. Hence $x^{n+1} \to y \in F$, that is, F is (n+1)-fold implicative filter.

By the following example we show that the converse is not true.

Example 4.2. In example 3.1, $\{1\}$ is a 3-fold implicative filter but since $b^3 \rightarrow 0 = 1 \in \{1\}$ and $b^2 \rightarrow 0 = b \neq 1$, $\{1\}$ is not a 2-fold implicative filter.

Corollary 4.1. In an n-fold implicative Rl-monoid, the concept of filters and n-fold implicative filters coincide.

Proof. It follows from theorem 4.4 and the definition of an *n*-fold implicative Rl-monoid.

Theorem 4.6. A is an n-fold implicative Rl-monoid if and only if $\{1\}$ is an n-fold implicative filter of A.

Proof. If A is an n-fold implicative Rl-monoid, then $x^{n+1} = x^n$, for all $x \in A$ and so $x^{n+2} = x^{n+1} * x = x^n * x = x^{n+1} = x^n$. By the similar way $x^{2n} = x^n$, for all $x \in A$, that is, $x^n \to x^{2n} = 1 \in \{1\}$, for all $x \in A$. By condition (b) of theorem 4.4, $\{1\}$ is an n-fold implicative filter of A. Conversely, let the filter $\{1\}$ of A be an n-fold implicative filter. Since $x^n \to (x^n \to x^{n+1}) = x^{2n} \to x^{n+1} = 1 \in \{1\}$ and $x^n \to x^n = 1 \in \{1\}$ we get $x^n \to x^{n+1} \in \{1\}$, that is, $x^{n+1} = x^n$. Hence A is an n-fold implicative Rl-monoid.

Theorem 4.7. Let F and G be filters of A such that $F \subseteq G$. If F is an n-fold implicative filter then G is also an n-fold implicative filter.

Proof. Let F be an n-fold implicative filter of A. Then by theorem 4.4, $x^n \to x^{2n} \in F$, for all $x \in A$, and so $x^n \to x^{2n} \in G$, for all $x \in A$. Hence G is an n-fold implicative filter.

Theorem 4.8. In any Rl-monoid A, the following conditions are equivalent:

- (a) A is an n-fold implicative Rl-monoid,
- (b) Every filter of A is an n-fold implicative filter,
- (c) $\{1\}$ is an n-fold implicative filter,

(d) $x^n = x^{2n}$, for all $x \in A$.

Proof. $(a \Rightarrow b)$: It is clear by the Definition of an *n*-fold implicative *Rl-monoid* and theorem 4.4.

 $(b \Rightarrow c)$: is clear.

 $(c \Rightarrow a)$: By theorem 4.6 is clear.

 $(a \Rightarrow d)$: Let A is an *n*-fold implicative *Rl-monoid*, hence $x^{n+1} = x^n$, for all $x \in A$. We have $x^{n+2} = x^{n+1} * x = x^n * x = x^{n+1} = x^n$. By repeating the process n times, we get $x^n = x^{2n}$, for all $x \in A$.

 $(d \Rightarrow a)$: If $x^n = x^{2n}$, for all $x \in A$. Then $x^n \to x^{2n} = 1 \in \{1\}$, for all $x \in A$. By theorem 4.4, $\{1\}$ is an *n*-fold implicative filter. Since (a) and (c) are equivalent, A is an *n*-fold implicative *Rl*-monoid.

Theorem 4.9. Let F be a filter of A. Then F is an n-fold implicative filter if and only if A/F is an n-fold implicative Rl-monoid.

Proof. Let F be an *n*-fold implicative filter, by theorem 4.4, $x^n \to x^{2n} \in F$, for all $x \in A$. Then $[x]^n \to [x]^{2n} = [x^n \to x^{2n}] = [1]$ and so $[x]^n \leq [x]^{2n}$, that is, $[x]^n = [x]^{2n}$, for all $x \in A$. Hence by theorem 4.8, A/F is an *n*-fold implicative Rl-monoid. Conversely, let A/F be an *n*-fold implicative Rl-monoid, then $[x]^n = [x]^{2n}$, for all $x \in A$. Hence $[x^n \to x^{2n}] = [x]^n \to [x]^{2n} = [1]$, that is, $x^n \to x^{2n} \in F$, for all $x \in A$. Therefore by theorem 4.4, F is an *n*-fold implicative filter. \Box

Corollary 4.2. Let F be a filter of A. Then F is a 1-fold implicative filter if and only if A/F is a Heyting algebra.

Proof. By theorem 2.1 is clear.

5. *n*-fold positive implicative *Rl*-monoid

Definition 5.1. An n-fold positive implicative Rl-monoid is a Rl-monoid $A = (A, \land, \lor, *, \rightarrow 0, 1)$ if it satisfies $(x^n \to 0) \to x = x$, for all $x \in A$.

Theorem 5.1. Every n-fold positive implicative Rl-monoid is an (n+1)-fold positive implicative Rl-monoid.

Proof. Let A be an n-fold positive implicative Rl-monoid. Then $(x^n \to 0) \to x = x$, for all $x \in A$. Since $x^{n+1} \leq x^n$ then $x^n \to 0 \leq x^{n+1} \to 0$ and so $(x^{n+1} \to 0) \to 0 \leq (x^n \to 0) \to 0 = x$. But by lemma 2.1 $x \leq (x^{n+1} \to 0) \to 0$. Hence $x = (x^{n+1} \to 0) \to 0$, that is, A is an (n + 1)-fold positive implicative Rl-monoid.

The following example shows that the converse of theorem 5.1 is not true.

Example 5.1. In example 3.1, B is a 3-fold positive Rl-monoid but since $(b^2 \rightarrow 0) \rightarrow b \neq b$, B is not a 2-fold positive implicative Rl-monoid.

6. *n*-fold positive implicative filters

Definition 6.1. A non-empty subset F of A is called a n-fold positive implicative filter if it satisfies:

(1) $1 \in F$, (2) $x \to ((y^n \to z) \to y) \in F$ and $x \in F$ imply $y \in F$, for all $x, y, z \in A$

Theorem 6.1. Every *n*-fold positive implicative filter of A is a filter of A.

Proof. Let F be a n-fold positive implicative filter and $x, y \in A$ be such that $x, x \to y \in F$. But $x \to ((y^n \to 1) \to y) = x \to y$ and so $x \to ((y^n \to 1) \to y) \in F$. Since $x \in F$ and F is n-fold positive implicative filter of A we get $y \in F$. Hence F is a filter.

Theorem 6.2. Let F be a filter of A. Then the following conditions are equivalent: (a) F is an n-fold positive implicative filter,

(b) $(x^n \to 0) \to x \in F$ implies $x \in F$, for all $x \in A$,

(c) $(x^n \to y) \to x \in F$ implies $x \in F$, for all $x \in A$

Proof. (a \Rightarrow c): Let F be a n-fold positive implicative filter of A and $(x^n \to y) \to x \in F$. Since $1 \to ((x^n \to y) \to x) = (x^n \to y) \to x$, we get $1 \to ((x^n \to y) \to x) \in F$. We have $1 \in F$, thus $x \in F$.

 $(c \Rightarrow b)$: is clear.

 $(b \Rightarrow a)$: Let $x \to ((y^n \to z) \to y) \in F$ and $x \in F$. Since F is filter, we get $(y^n \to z) \to y \in F$. Since $0 \le z$, by lemma 2.1, $y^n \to 0 \le y^n \to z$ and so $(y^n \to z) \to y \le (y^n \to 0) \to y$. Hence $(y^n \to 0) \to y \in F$ and so by assumption we get $y \in F$. Therefore F is an *n*-fold positive implicative filter. \Box

Theorem 6.3. Let F be a filter of Rl-monoid A. If F is an n-fold positive implicative filter then F is an (n + 1)-fold positive implicative filter

Proof. Let F be an n-fold positive implicative filter and $x \in A$ be such that $(x^{n+1} \rightarrow 0) \rightarrow x \in F$. Since $x^{n+1} \leq x^n$, we have $x^n \rightarrow 0 \leq x^{n+1} \rightarrow 0$ and so $(x^{n+1} \rightarrow 0) \rightarrow 0 \leq (x^n \rightarrow 0) \rightarrow 0$. Since F is a filter, $(x^n \rightarrow 0) \rightarrow 0 \in F$. Since F is an n-fold positive implicative filter, we have $x \in F$ and so F is an (n+1)-fold positive implicative filter. \Box

By the following example we show that the converse is not true.

Example 6.1. In example 3.1, $\{1\}$ is a 3-fold positive implicative filter, but $(b^2 \rightarrow 0) \rightarrow b = 1$ and $b \neq 1$, hence $\{1\}$ is not a 2-fold positive implicative filter.

Theorem 6.4. Every n-fold positive implicative filter is an n-fold implicative filter.

Proof. Let F be an n-fold positive implicative filter of A. By theorem 6.1, F is a filter of A. Let $x, y \in A$ be such that $x^{n+1} \to y \in F$. Then by lemma 2.1:

 $(x^{n+1} \to y)^n \to (x^n \to y) = (x^{n+1} \to y)^{n-1}(x^{n+1} \to y) \to (x^n \to y)$ $= (x^{n+1} \to y)^{n-1} \to ((x^{n+1} \to y) \to (x^n \to y))$ $= (x^{n+1} \to y)^{n-1} \to ((x^{n+1} \to y) \to (x^{n-1} \to (x \to y)))$ $= (x^{n+1} \to y)^{n-1} \to (x^{n-1} \to ((x^{n+1} \to y) \to (x \to y)))$ $= (x^{n+1} \to y)^{n-1} \to (x^{n-1} \to ((x \to (x^n \to y)) \to (x \to y)))$ $\geq (x^{n+1} \to y)^{n-1} \to (x^{n-1} \to (x^n \to y)) \to y)$ $= (x^{n+1} \to y)^{n-1} \to ((x^n \to y) \to (x^{n-1} \to y))$ $= (x^n \to y) \to ((x^{n+1} \to y)^{n-1} \to (x^{n-1} \to y))$ We show that $(x^{n+1} \to y)^n \to (x^n \to y) \ge (x^n \to y)^2 \to ((x^{n+1} \to y)^{n-2} \to (x^{n-2} \to y))$ Now consider $(x^n \to y)(x^{n+1} \to y)^{n-1}x^{n-1} = (x^n \to y)(x^{n+1} \to y)^{n-2}(x^{n+1} \to y)xx^{n-2}$ $= (x^{n} \to y)(x^{n+1} \to y)^{n-2}x^{n-2}x(x^{n+1} \to y)$ Since $x^{n+1} \to y \leq x^{n+1} \to y = x \to (x^n \to y)$ then $x(x^{n+1} \to y) \leq x^n \to y$, we get $(x^n \to y)(x^{n+1} \to y)^{n-1}x^{n-1} \leq (x^n \to y)^2(x^{n+1} \to y)^{n-2}x^{n-2}$. Hence $\begin{array}{c} ((x^n \to y)^2 (x^{n+1} \to y)^{n-2} x^{n-2}) \to y \leq ((x^n \to y) (x^{n+1} \to y)^{n-1} x^{n-1}) \to y \text{ and so} \\ (x^n \to y)^2 \to ((x^{n+1} \to y)^{n-2} \to (x^{n-2} \to y)) \leq (x^n \to y) \to ((x^{n+1} \to y)^{n-1} \to y^{n-1}) \end{array}$ $(x^{n-1} \rightarrow y))$ But we had $(x^{n+1} \to y)^n \to (x^n \to y) \ge (x^n \to y) \to ((x^{n+1} \to y)^{n-1} \to (x^{n-1} \to y))$ Then $(x^{n+1} \to y)^n \to (x^n \to y) \ge (x^n \to y)^2 \to ((x^{n+1} \to y)^{n-2} \to (x^{n-2} \to y))$ Hence by repeating the process n times we get

 $\begin{array}{l} (x^n \to y)^n \to ((x^{n+1} \to y)^0 \to (x^0 \to y)) \\ = (x^n \to y)^n \to (1 \to (1 \to y)) = (x^n \to y)^n \to y \\ \text{Hence } ((x^n \to y)^n \to y) \to ((x^{n+1} \to y)^n \to (x^n \to y)) = 1 \text{ and so} \\ (x^{n+1} \to y)^n \to (((x^n \to y)^n \to y) \to (x^n \to y)) = 1. \text{ Since } F \text{ is a filter and} \\ x^{n+1} \to y \in F, \text{ we get } (x^{n+1} \to y)^n \in F \text{ and so } ((x^n \to y)^n \to y) \to (x^n \to y) \in F. \\ \text{Since } F \text{ is an } n\text{-fold positive implicative filter by theorem 6.2 we have } x^n \to y \in F. \\ \text{Hence by theorem 4.4, } F \text{ is an } n\text{-fold implicative filter.} \end{array}$

The following example shows that the converse of theorem 6.4 is not true.

Example 6.2. Let $B = \{0, a, b, c, 1\}$. Define * and \rightarrow as follow:

*	0	c	a	b	1
0	0	0	0	0	0
c	0	c	c	c	c
a	0	c	a	c	a
b	0	c	c	b	b
1	0	c	a	b	1
\rightarrow	0	c	a	b	1
$\frac{\longrightarrow}{0}$	0	$\frac{c}{1}$	$\frac{a}{1}$	$\frac{b}{1}$	1
$\frac{\longrightarrow}{0}$					
	1	1	1	1	1
c	1 0	1 1	1 1	1 1	1 1

Then $(B, \land, \lor, *, \rightarrow, 0, 1)$ is a Rl-monoid and it is clear that $F = \{b, 1\}$ is a 2-fold implicative filter but it is not a 2-fold positive implicative filter, since $(a^2 \rightarrow 0) \rightarrow a = 1 \in F$ and $a \notin F$.

Lemma 6.1. In the n-fold positive implicative Rl-monoid, the notion of an n-fold positive implicative filter and a filter is coincide.

Proof. By definition of an *n*-fold positive implicative Rl-monoid and theorem 6.2 is clear.

Theorem 6.5. Let A be a Rl-monoid. Then the following conditions are equivalent: (a) A is an n-fold positive implicative Rl-monoid

(b) Every filter of A is an n-fold positive implicative filter,

(c){1} is an n-fold positive implicative filter.

Proof. (a \Rightarrow b): By lemma 6.1, is clear. (b \Rightarrow c): is clear.

 $(c \Rightarrow d)$: Let $\{1\}$ be an *n*-fold positive implicative filter of A. Consider $x \in A$ and let $t = ((x^n \to 0) \to x) \to x$. Then by lemma 2.1 we have $(t^n \to 0) \to t = (t^n \to 0) \to (((x^n \to 0) \to x) \to x)$

 $= ((x^n \to 0) \to x) \to ((t^n \to 0) \to x \ge (t^n \to 0) \to (x^n \to 0) \ge x^n \to t^n = 1$

The last equality follows from $x \leq ((x^n \to 0) \to x) \to x = t$. Then $x^n \leq t^n$, that is, $x^n \to t^n = 1$. Hence $(t^n \to 0) \to t = 1 \in \{1\}$ and since $\{1\}$ is an *n*-fold positive implicative filter, $t = ((x^n \to 0) \to x) \to x = 1$, that is, $(x^n \to 0) \to x \leq x$. On the other hand by lemma 2.1 we have $(x^n \to 0) \to x \geq x$. Hence we get $(x^n \to 0) \to x = x$, for all $x \in A$, that is, A is an *n*-fold positive implicative *Rl*monoid. **Theorem 6.6.** Let F be a filter of A. Then A/F is an n-fold positive implicative Rl-monoid if and only if F is an n-fold positive implicative filter.

Proof. Let F be an *n*-fold positive implicative filter and $x \in A$ be such that $([x]^n \to [0]) \to [x] = [1]$. Then $[(x^n \to 0) \to x] = ([x]^n \to [0]) \to [x] = [1]$ and so $(x^n \to 0) \to x \in F$. Since F is *n*-fold positive implicative filter by theorem 6.2, $x \in F$, hence [x] = [1] and so $\{[1]\}$ is a n-fold positive implicative filter of A/F. Then by theorem 6.5, A/F is an *n*-fold positive implicative Rl-monoid

Conversely, let A/F be an *n*-fold positive implicative Rl-monoid and $x \in A$ be such that $(x^n \to 0) \to x \in F$. Then $[x] = ([x]^n \to [0]) \to [x] = [(x^n \to 0) \to x] = [1]$ and so [x] = [1], that is, $x \in F$. It follows from theorem 6.2 that F is an *n*-fold positive implicative filter.

Corollary 6.1. Let F be a filter of a Rl-monoid A. Then A/F is a Boolean algebra if and only if F is a 1-fold positive implicative filter.

Proof. Assume that F is a 1-fold positive implicative filter and $x, y \in A$ be such that $([x] \to [y]) \to [x] = [1]$, then $(x \to y) \to x \in F$. By theorem 2.2, $x \in F$. Hence [x] = [1] which proves that $\{[1]\}$ is a positive implicative filter. By theorem 2.3, A/F is a Boolean algebra.

Conversely, let $(x \to y) \to x \in F$, for $x, y \in F$. Then $([x] \to [y]) \to [x] = [(x \to y) \to x] = [1]$. Since A/F is a Boolean algebra, by theorem 2.3 $\{[1]\}$ is a positive implicative filter, then [x] = [1], i.e., $x \in F$. Hence F is a 1-fold positive implicative filter.

Theorem 6.7. Let F and G be filters of a Rl-monoid A such that $F \subseteq G$. If F is an n-fold positive implicative filter, then G is an n-fold positive implicative filter.

Proof. Let A be such that $(x^n \to 0) \to x \in G$. Since F is an n-fold positive implicative filter, by theorem 6.6, A/F is an n-fold positive implicative Rl-monoid. Then $[(x^n \to 0) \to x] = (([x]^n \to [0]) \to [x] = [x]$ and so $((x^n \to 0) \to x) \to x \in F \subseteq G$. Since G is filter and $(x^n \to 0) \to x \in G, x \in G$. Hence by theorem 6.2, G is an n-fold positive implicative filter.

References

- A. Dvurecenenskij and J. Rachunek, Probabilistic averaging in bounded commutative residuated l-monoids, *Discrete Mathematics* 306 (2006), 1317–1326.
- [2] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1988.
- [3] M. Haveshki and E. Eslami, n-fold filters in BL-algebras, Math. Logic. Quart. 54 (2008), no. 2, 176–186.
- [4] J. Rachunek and D. Salounova, Classes of filter in generalizations of commutative fuzzy structure, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48 (2009), no. 1, 93–107.
- [5] J. Rachunek and D. Slezak, Negation in bounded commutative DRI-monoids, Czechoslovak Math. J. 56 (2006), 755–763.
- [6] K.L.N. Swamy, Dually residuated lattice ordered semigroup III, Math. Ann. 167 (1966), 71-74.

(Masoud Haveshki and Mahboobeh Mohamadhasani) DEPARTMENT OF MATHEMATICS, HORMOZGAN UNIVERSITY, BANDARABAS, IRAN

E-mail address: ma.haveshki@gmail.com, ma.mohamadhasani@gmail.com