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Two examples of weighted majorization

Anne-Marie Burtea

Abstract. In this paper we discuss two examples of weighted majorization. The first example
relates the spectrum of a normal matrix and the spectrum of its principal submatrix. We apply
Sherman’s theorem in order to deduce inequalities involving the elements in the two spectra.
The second example relates the diagonal elements of the Grassman product of a normal matrix
and the Grassman product of its principal submatrix.
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1. Introduction

The classical concept of majorization for pairs of n real numbers was studied by
many mathematicians. Initially it was used by Hardy, Littlewood and Pólya to outline
a class of convex inequalities and by Schur to relate the spectra of a Hermite matrix
to its diagonal. In recent years a number of remarkable applications were found in
combinatorics, statistics, information theory, quantum mechanics, wireless communi-
cation, etc. Weighted majorization is a useful generalization of classical majorization
which can be traced back to Sherman. Borcea [3] considered a very interesting illus-
tration of this concept relating the critical points and the poles of the potential of the
electrostatic force generated by a finite configuration of coplanar positive charges. In
this paper we will describe two other examples of weighted majorization and com-
ment on the inequalities derived via Sherman’s theorem. The first example relates
the spectrum of a normal matrix and the spectrum of its principal submatrix. The
second example is the extension of the previous one via the Grassman product.

We will use the following notation.
Let k ∈ N. For each n ∈ N we define

Kk
n =

{
(x1, x2, ..., xn) : xi ∈ Rk, 1 ≤ i ≤ n

}

An =

{
(a1, a2, ..., an) : ai ∈ (0, 1) , 1 ≤ i ≤ n,

n∑

i=1

ai = 1

}
(1)

kk
n = Kk

n ×An

and put
kn = ∪∞m=1kn

m. (2)

For x = (x1, x2, ..., xn) ∈ Kk
n we have

xT = (x1, x2, ..., xn)T ,
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which means the ordered pair of n vectors written in a row. We will identify xT with
a n × k-matrix in which the row of order i consists of the coordinates of vector xi

written in standard basis of Rn.
We will denote the set of row stochastic n× k-matrices by Ωrs

n×k.
The notion of weighted majorization has as starting point the following theorem

of Sherman[2]:

Theorem 1.1. Let x := {xi}l
1 be an l-couple and y := {yj}m

1 an m-couple of vectors
from Rk. Let {ai}l

1 and {bj}m
1 two collections of positive weights. The following

statements are equivalent:
1) There is a matrix S = (sij) ∈ Rl×m with positive elements such that (xi)l

i=1 =
S(y)m

j=1 and

m∑

j=1

sij = 1, i ∈ {1, 2, ..., l} ,

l∑

i=1

sijai = bj, j ∈ {1, 2, ..., m} . (3)

2) The weights {ai}l
1 ,{bj}m

1 satisfy
l∑

i=1

ai =
m∑

j=1

bj and the following inequality

occurs
l∑

i=1

aif(xi) ≤
m∑

j=1

bjf(yj) (4)

for any function f ∈ CV (Rk).

See [3] for a proof.
Theorem 1.1 leads to the following concept of majorization:

Definition 1.1. We say that the pair (x, a) ∈ kk
l is weightily majorized by (y, b) ∈

kk
m (and we denote this by (x, a) ≺ (y, b)), if the conditions of Theorem 1.1 are

satisfied.

In the following section we will see that the spectrum of the principal submatrix
of a normal matrix is weightily majorized by the spectrum of the given matrix.

2. A relation between the spectrum of a normal matrix and the spectrum
of its principal submatrix

In what follows A will denote a normal matrix (of order n× n) with the spectrum

Z = (z1, z2, ..., zn)

and the orthonormal basis of its eigenvectors (u1, u2, ..., un).
Our first goal is to comment on the notion of principal submatrix of A.
Cn×n will denote the set of all n × n-matrices with complex numbers (seen as

operators on the complex Euclidean Cn).

Let (p1, p2, ..., pn) be a collection of n positive weights with
n∑

k=1

pk = 1 and the

unitary vector

vn =
n∑

k=1

√
pkuk. (5)

We take the orthogonal projection P on v⊥n and call the matrix

B = PAP |P (Cn×n)
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the compression of A to P (Cn×n) ; this is the upper left-hand of the (n− 1)×(n− 1)-
principal submatrix of A when we consider a base in which the last vector is vn. See
[5]. By the adjoint formula for the inverse of a matrix, if A − zIn is invertible, then
the element of index (n, n) from (A− zIn)−1 is given by

〈
(A− zIn)−1

vn, vn

〉
=

det (B − zIn−1)
det (A− zIn)

. (6)

Lemma 2.1. Let A be a normal n× n-matrix and let B be the compression of A to
P (Cn×n), where P is the orthogonal projection on v⊥n as above. Then the eigenvalues
of B are the zeroes of the function

f (z) =
n∑

k=1

pk

zk − z
.

Proof. For a normal n×n-matrix A we have the orthonormal basis of its eigenvectors
(u1, u2, ..., un) .Using the relationship (5) and taking into account the expression (6)
for vn we have (for z 6= z1, ..., zn) :

det (B − zIn−1)
det (A− zIn)

=
〈
(A− zIn)−1

vn, vn

〉

=

〈
n∑

j=1

1
zj − z

√
pjuj ,

n∑

k=1

√
pkuk

〉
=

n∑

k=1

pk

zk − z
.

¤

Following this lemma and the fact that the function that represents the electro-
static force for a finite configuration of coplanar charges (zk)n

1 with positive weights
(pk)n

1 has the expression −f(z), the eigenvalues of B coincide with the zeroes of f .
Then we can state the following theorem.

Theorem 2.1. Between the spectra Z = (zk)n
1 and W = (wj)

n−1
1 of the two matrices

A and B described above we have the following relationship of weighted majorization
(
WT , a

) ≺ (
ZT , b

)
, (7)

where

a =
(

1
n− 1

,
1

n− 1
, ...,

1
n− 1

)
∈ An−1 (8)

and

b =
(

1− p1

n− 1
,
1− p2

n− 1
, ...,

1− pn

n− 1

)
∈ An. (9)

Proof. The argument is based on the theorem of Sherman. Let (vj)
n−1
1 be an

orthonormal base which makes B. Any vector vj with 1 ≤ j ≤ n− 1 is written in the
base (uk)n

1 as

vj =
n∑

k=1

〈vj , uk〉uk,

and

wj = 〈Bvj , vj〉 = 〈Avj , vj〉 =
n∑

k=1

zk |〈vj , uk〉|2 .
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We take the matrix S = (sjk) ∈ R(n−1)×n where sjk = |〈vj , uk〉|2 and we deduce
that S ∈ Ωrs

(n−1)×k because for any 1 ≤ j ≤ n− 1 and for any 1 ≤ k ≤ n we have

n∑

k=1

sjk =
n∑

k=1

|〈vj , uk〉|2 = ‖vj‖2 = 1

and
n−1∑

j=1

sjk =
n∑

j=1

|〈vj , uk〉|2 − |〈vn, uk〉|2 = ‖uk‖2 − pk = 1− pk.

Then the statement 1) in Sherman’s theorem is verified :

WT = SZT ,
l∑

i=1

sjkaj = bk, k ∈ {1, 2, ..., n} ,

a =
(

1
n− 1

,
1

n− 1
, ...,

1
n− 1

)
∈ An−1 ,

b =
(

1− p1

n− 1
,
1− p2

n− 1
, ...,

1− pn

n− 1

)
∈ An.

¤

Corollary 2.1. For any convex function Φ defined on C the eigenvalues Z = (zk)n
1 ,

W = (wj)
n−1
1 of a normal n×n-dimensional matrix A, and respectively of its principal

submatrix B verify the following inequalities
n−1∑

j=1

Φ(wj) ≤
n∑

k=1

(1− pk)Φ (zk) . (10)

If we consider the case of a Hermite matrix with its own real and positive values
and the spectre of the submatrix also formed of positive numbers and take for example
Φ (z) = − log z we obtain an inequality for the determinant of the submatrix B:

n∏

k=1

z1−pk

k ≤ detB.

In the next section we will describe other relation of weighted majorization which
can be ascribed to normal matrices (and extends the above discussion).

3. Weighted majorization and the Grassman product

We start with a short preparation about the Grassman product.
For m ∈ N and 1 ≤ k ≤ m we consider the set of multi-indices

Qk,m := {i = (i1, ..., ik) /1 ≤ i1 < ... < ik ≤ m}
endowed with the lexicographic ordering:

i ≥ j for i, j ∈ Qk,m

if the first term in the row
i1 − j1, ..., ik − jk

is positive.
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If B is a m×m-matrix and i, j ∈ Qk,m, then the k× k-submatrix situated at the
intersection of the rows i1, ..., ik and the columns j1, ..., jk will be denoted

B (i, j) = B

(
i1...ik
j1...jk

)
.

Given a normal n × n-matrix A, for each 1 ≤ k ≤ n − 1 we can attach to it a(
n
k

)× (
n
k

)
-matrix A(k), the Grassman k power of A:

A(k) = (detA (i, j))i,j∈Qk,n
.

For the principal submatrix B of matrix A the Grassman k power is a matrix(
n−1

k

)× (
n−1

k

)
-dimensional.

In the following
diag(z1, z2, ..., zn)

will denote the vector from Cn formed by the diagonal elements of a square n × n-
matrix, while

Diag(z1, z2, ..., zn),
will denote a diagonal n × n-matrix with z1, z2, ..., zn (in this order) on the main
diagonal.

When A is a normal matrix, the vectors diag
(
B(k)

)
and diag

(
A(k)

)
are related by

weighted majorization. This is based on the Cauchy-Binet formula,

(AB)(k) = A(k)B(k),

and the following properties of the Grassman k power:

Remark 3.1. (A∗)(k) = A∗(k).

Remark 3.2. If D = Diag (a1, ..., an) , then D(k) is also a diagonal matrix (
(
n
k

)×(
n
k

)
dimensional) and its elements on the diagonal are products aii ...aik

and

traceD(k) = Sk (a1, ..., an) ,

where Sk is the k− symmetric function of n symbols,

Sk (a1, ..., an) =
∑

1≤i1<...<ik≤n

aii · · · aik
.

Remark 3.3. If B is a upper triangular n × n matrix, then B(k) is also diagonal
matrix

(
n
k

)× (
n
k

)
and denoting by wj1 , ..., wjn the characteristic values of B, the char-

acteristic values of B(k) are products of the type wj1 · · ·wjk
, where (j1, ..., jk) ∈ Qk,n.

Remark 3.4. If U is a unitary n× n-matrix, then U (k) is also unitary.

Let us consider the matrix B the orthogonal projection of the normal n×n-matrix A
on v⊥n , where the unitary vector vn is given by n positive weights (p1, p2, ..., pn) with

n∑
k=1

pk = 1, vn =
n∑

k=1

√
pkuk,and (uk)n

1 is the orthonormal basis of the eigenvectors of

the matrix A. We say that B represents the principal submatrix of A and we have
(vj)

n−1
1 orthonormal bases which is triangular with the matrix B. Malamud [4] gave

a theorem in which he demonstrates the majorization between the vectors formed
with products of k eigenvalues of a normal matrix and the products of k eigenvalues
of the principal submatrix and we will see that between such vectors we have in fact
a weighted majorization. Moreover, these products represent the diagonal elements of
the Grassman k power of the normal matrix A and respectively the diagonal elements
of the Grassman k power for its main submatrix B.
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Theorem 3.1. For any k smaller than n a weighted majorization takes place between
the vectors given by the diagonal elements of the Grassman k powers of a normal
matrix A and its principal submatrix B:(

diag
(
B(k)

)
; a[k]

)
≺

(
diag

(
A(k)

)
; b[k]

)
,

where

a[k] =

(
1(

n−1
k

) , ...,
1(

n−1
k

)
)
∈ (0; 1)(

n−1
k ) ,

and

b[k] =




1−
k∑

l=1

pjl

(
n−1

k

) , ...,

1−
k∑

l=1

pjl

(
n−1

k

)


 ∈ (0; 1)(

n
k) .

Remark 3.5. For k = 1 we have the particular case of the previous theorem. The
proof is the same as the one given by Borcea for the case of the equilibrium points of
a finite configuration of electric charges , and the weights a[k],b[k] will be justified.

Proof. The idea is to determine a stochastic matrix on Rk rows such as to have a
condition in Sherman’s theorem verified, namely

b[k] = a[k]Rk, (11)

diag
(
B(k)

)T

= Rkdiag
(
A(k)

)T

.

If U is the unitary matrix of that maps (v1, ...vn) into (u1, ...un), then

A = UDiag (z1, ..., zn) U∗ =
(

B ∗
0 ζ

)
,

and based on the Cauchy-Binet formula and the previous remarks we have

A(k) = U (k)Diag (z1, ..., zn)(k)
U∗(k) =

(
B ∗
0 ζ

)(k)

.

As U (k) is unitary, Sk = U (k) ◦ U
∗(k) is unitary double stochastic. The diagonal

elements of A(k) are the main k×k minors of B and they have the form detB (i, i) , i ∈
Qk,n−1. In total we have

(
n−1

k

)
diagonal elements and they must coincide with the

coordinates of the vector diag
(
B(k)

)T
, because B is upper triangular. Let Rk be the

stochastic matrix on rows
(
n−1

k

)× (
n
k

)
obtained from Sk by erasing all the elements

Sk (i, j) where i ∈ Qk,n −Qk,n−1. To do this we show that for any j = (j1, ..., jk) ∈
Qk,n the following identity takes place

∑

1≤i1<...<ik−1≤n−1

Sk

(
i1 , ..., ik−1 n
j1 , .. .., jk

)
=

k∑

l=1

pjl
,

which is equivalent with

∑

1≤i1<...<ik−1≤n−1

∣∣∣∣detU

(
i1 , ..., ik−1 n
j1 , .. .., jk

)∣∣∣∣
2

=
k∑

l=1

pjl
, (12)

or
∑

i∈Qk,n−1

|detU (i, j)|2 = 1−
k∑

l=1

pjl
. (13)
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But unj = √
pj , 1 ≤ j ≤ n, therefore developing any determinant which appears

in the last line we have

detU

(
i1 , ..., ik−1 n
j1 , .. .., jk

)
=

k∑
m=1

(−1)n+jm √pjm det U

(
i1 , ..., ik−1

j1 , ..ĵm, .. jk

)
,

and thus∣∣∣∣det U

(
i1 , ..., ik−1 n
j1 , .. .., jk

)∣∣∣∣
2

=
k∑

r,s=1

(−1)r+s√
pjr

pjs
detU

(
i1 , ..., ik−1

j1 , ..ĵr, .. jk

)
det U

(
i1 , ..., ik−1

j1 , ..ĵs, .. jk

)

for 1 ≤ i1 < ... < ik−1 ≤ n− 1. Then

∑

1≤i1<...<ik−1≤n−1

∣∣∣∣det U

(
i1 , ..., ik−1 n
j1 , .. .., jk

)∣∣∣∣
2

=
k∑

r,s=1

(−1)r+s√
pjrpjsαr,s (j) ,

where

αr,s (j) =
∑

1≤i1<...<ik−1≤n−1

det U

(
i1 , ..., ik−1

j1 , ..ĵr, .. jk

)
det U

(
i1 , ..., ik−1

j1 , ..ĵs, .. jk

)
.

Let us consider the matrix k × (n− 1)

M = U

(
1 , ..., n− 1
j1 , ..., jk

)T

and the matrix k × k ,C = (cij) = MM∗ is also a k × k matrix given by the k − 1

Grassman power C(k−1) =
(
c
(k−1)
ij

)
. From

C(k−1) = M (k−1)M∗(k−1)

we deduce that
c
(k−1)
k+1−r,k+1−s = αr,s (j) , 1 ≤ r, s ≤ k.

So the left member from (12) is

∑

1≤i1<...<ik−1≤n−1

∣∣∣∣det U

(
i1 , ..., ik−1 n
j1 , .. .., jk

)∣∣∣∣
2

=
k∑

r,s=1

(−1)r+s√
pjrpjsc

(k−1)
k+1−r,k+1−s.

From this expression we obtain
∑

1≤i1<...<ik−1≤n−1

∣∣∣∣detU

(
i1 , ..., ik−1 n
j1 , .. .., jk

)∣∣∣∣
2

=
∑

i∈Qk−1,k

det C (i, i)− k det C

and ∑

i∈Qk−1,k

|det U (i, j)|2 = 1−
∑

i∈Qk−1,k

det C (i, i) + k detC.

In order to show that the right member of the identity is equal with the left one,
we define the vector u =

(√
pj1 , ...,

√
pjk

)
. Because C = Ik − uT u , it results that C

depends only on numbers pjl
,1 ≤ l ≤ k. We deduce that the expression

∑

1≤i1<...<ik≤n−1

∣∣∣∣detU

(
i1 , ..., ik
j1 , .. ..jk

)∣∣∣∣
2

=
∑

i∈Qk−1,k

|det U (i, j)|2
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depends exclusively on the numbers cjl
,1 ≤ l ≤ k and therefore is independent of

zi,1 ≤ i ≤ n. On the other hand adding to each term all the coordinates corresponding
to i ∈ Qk,n−1 we have

∑

1≤i1<...<ik≤n−1

k∏
r=1

wir (14)

=
∑

1≤s1<...<sk≤n


 ∑

1≤i1<...<ik≤n−1

∣∣∣∣det U

(
i1 , ..., ...ik
s1 , ..., ...sk

)∣∣∣∣
2



k∏

l=1

zsl

The vector diag
(
B(k)

)T
has

(
n−1

k

)
elements equal to

k∏
r=1

wir
, where i = (i1, ..., ik)

∈ Qk,n−1 and diag
(
A(k)

)T
has

(
n
k

)
elements equal to

k∏
i=1

zji
, where j = (j1, ..., jk)

∈ Qk,n−1. In fact we have

∑

1≤i1<...<ik≤n−1

1(
n
k

)− (
n−1
k−1

)
k∏

r=1

wir =
∑

1≤s1<...<sk≤n

1−
k∑

l=1

psl

(
n
k

)− (
n−1
k−1

)
k∏

l=1

zsl

which for

a[k] =

(
1(

n−1
k

) , ...,
1(

n−1
k

)
)

and

b[k] =




1−
k∑

l=1

pjl

(
n−1

k

) , ...,

1−
k∑

l=1

pjl

(
n−1

k

)




represents the first condition in Sherman’s theorem. ¤
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