Annals of the University of Craiova, Mathematics and Computer Science Series Volume 37(2), 2010, Pages 38–46 ISSN: 1223-6934

On a weaker form of ω -continuity

ERDAL EKICI, SAEID JAFARI, AND SEITHUTI P. MOSHOKOA

ABSTRACT. In [5], Hdeib introduced and investigated a new type of continuity called ω continuity. In [1], Al-Omari and Noorani have introduced the notion of almost weak ω continuity. It is the objective of this paper to study almost weak ω -continuity and present some of its basic properties.

2010 Mathematics Subject Classification. Primary 54B05; Secondary 54C08. Key words and phrases. ω -open set, condensation point, topology, weakly continuity.

1. Introduction

In this paper, a space will always mean a topological space on which no separation axioms assumed unless explicitly stated.

A subset A of a space (X, τ) is called ω -closed [4] if it contains all its condensation points. The complement of an ω -closed set is called ω -open, or equivalently, if for each $x \in A$ there exists an open set U containing x such that $|U \setminus A| \leq \aleph_0$ (see [8]). The family of all ω -open subsets of a space (X, τ) , denoted by $\omega O(X)$, forms a topology on X finer than τ .

 ω -closure and ω -interior of a subset A of a space X, that were defined in an analogous manner to cl(A) and int(A), respectively, will be denoted by ω -cl(A) and ω -int(A), respectively.

Definition 1.1. A subset A is said to be

(1) regular open [9] if A = int(cl(A)),

(2) regular closed [9] if A = cl(int(A)),

(3) preopen [7] if $A \subset int(cl(A))$.

A point $x \in X$ is said to be in the θ -closure [10] of a subset A of X, denoted by θ -cl(A), if $cl(G) \cap A \neq \emptyset$ for each open set G of X containing x. A subset A of a space X is called θ -closed if $A = \theta$ -cl(A). The complement of a θ -closed set is called θ -open.

Lemma 1.1. ([4]) Let A be a subset of a space X. Then

(1) A is ω -closed in X if and only if $A = \omega$ -cl(A).

(2) ω -cl(X\A) = X\ ω -int(A).

(3) ω -cl(A) is ω -closed in X.

(4) $x \in \omega$ -cl(A) if and only if $A \cap G \neq \emptyset$ for each ω -open set G containing x.

Definition 1.2. A function $f : X \to Y$ is said to be ω -continuous [5] if $f^{-1}(A) \in \omega O(X)$ for each open set A of Y.

Received March 18, 2010. Revision received May 03, 2010.

2. Almost weakly ω -continuous functions

Definition 2.1. A function $f: X \to Y$ is said to be

(1) almost weakly ω -continuous at $x \in X$ [1] if for each open set A of Y containing f(x), there exists an ω -open set B containing x such that $f(B) \subset cl(A)$.

(2) almost weakly ω -continuous [1] if for each $x \in X$, f is almost weakly ω -continuous at $x \in X$.

Remark 2.1. (1) Every weakly continuous function is almost weakly ω -continuous [1].

(2) Every ω -continuous function is almost weakly ω -continuous.

(3) None of the above implications is reversible as shown in the following example and in [1].

Example 2.1. Let $X = \{a, b, c, d\}$ and $\sigma = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Consider the set of real numbers R with the standard topology τ . Then the function $f : (R, \tau) \to (X, \sigma)$ defined by $f(x) = \begin{cases} a & x \in R \setminus Q \\ c & x \in Q \end{cases}$, where Q is the rational numbers is almost weakly ω -continuous but it is not ω -continuous.

Theorem 2.1. The following are equivalent for a function $f: X \to Y$: (1) f is almost weakly ω -continuous, (2) ω -cl $(f^{-1}(int(cl(A)))) \subset f^{-1}(cl(A))$ for every subset A of Y, (3) ω -cl $(f^{-1}(int(K))) \subset f^{-1}(K)$ for every regular closed set K of Y, (4) ω -cl $(f^{-1}(B)) \subset f^{-1}(cl(B))$ for every open set B of Y, (5) $f^{-1}(B) \subset \omega$ -int $(f^{-1}(cl(B)))$ for every open set B of Y, (6) ω -cl $(f^{-1}(B)) \subset f^{-1}(cl(B))$ for each preopen set B of Y,

(7) $f^{-1}(B) \subset \omega$ -int $(f^{-1}(cl(B)))$ for each preopen set B of Y.

Proof. (1) \Rightarrow (2) : Let $A \subset Y$ and $x \in X \setminus f^{-1}(cl(A))$. We have $f(x) \in Y \setminus cl(A)$. This implies that there exists an open set B containing f(x) such that $B \cap A = \emptyset$. Also, $cl(B) \cap int(cl(A)) = \emptyset$. Since f is almost weakly ω -continuous, then there exists an ω -open set S containing x such that $f(S) \subset cl(B)$. We have $S \cap f^{-1}(int(cl(A))) = \emptyset$ and hence $x \in X \setminus \omega - cl(f^{-1}(int(cl(A))))$. Thus, $\omega - cl(f^{-1}(int(cl(A)))) \subset f^{-1}(cl(A))$. (2) \Rightarrow (3) : Let K be any regular closed set in Y. We have

$$\omega - cl(f^{-1}(int(K))) = \omega - cl(f^{-1}(int(cl(int(K))))) \subset f^{-1}(cl(int(K))) = f^{-1}(K).$$

$$(1)$$

 $(3) \Rightarrow (4)$: Let B be an open subset of Y. Since cl(B) is regular closed in Y, $\omega - cl(f^{-1}(B)) \subset \omega - cl(f^{-1}(int(cl(B)))) \subset f^{-1}(cl(B)).$

 $(4) \Rightarrow (5)$: Let B be any open set of Y. Since $Y \setminus cl(B)$ is open in Y, by Lemma 1.1,

$$X \setminus \omega - int(f^{-1}(cl(B))) = \omega - cl(f^{-1}(Y \setminus cl(B))) \subset f^{-1}(cl(Y \setminus cl(B))) \subset X \setminus f^{-1}(B).$$
(2)

Thus, $f^{-1}(B) \subset \omega$ -int $(f^{-1}(cl(B)))$.

 $(5) \Rightarrow (1)$: Let $x \in X$ and B be any open subset of Y containing f(x). We have $x \in f^{-1}(B) \subset \omega$ -int $(f^{-1}(cl(B)))$. Take $S = \omega$ -int $(f^{-1}(cl(B)))$. This implies that $f(S) \subset cl(B)$ and hence f is almost weakly ω -continuous at x in X.

 $(1) \Rightarrow (6)$: Let B be any preopen set of Y and $x \in X \setminus f^{-1}(cl(B))$. Then there exists an open set R containing f(x) such that $R \cap B = \emptyset$. We have $cl(R \cap B) = \emptyset$.

Since B is preopen, then

$$B \cap cl(R) \subset int(cl(B)) \cap cl(R) \qquad \subset cl(int(cl(B)) \cap R) \\ \subset cl(int(cl(B) \cap R)) \\ \subset cl(int(cl(B \cap R))) \\ \subset cl(B \cap R) = \emptyset.$$

$$(3)$$

Since f is almost weakly ω -continuous and R is an open set containing f(x), there exists an ω -open set S in X containing x such that $f(S) \subset cl(R)$. We have $f(S) \cap B = \emptyset$ and hence $S \cap f^{-1}(B) = \emptyset$. This implies that $x \in X \setminus \omega - cl(f^{-1}(B))$ and hence $\omega - cl(f^{-1}(B)) \subset f^{-1}(cl(B))$.

 $(6) \Rightarrow (7):$ Let B be any preopen set of Y. Since $Y \backslash cl(B)$ is open in Y, by Lemma 1.1,

$$X \setminus \omega - int(f^{-1}(cl(B))) = \omega - cl(f^{-1}(Y \setminus cl(B))) \subset f^{-1}(cl(Y \setminus cl(B))) \subset X \setminus f^{-1}(B).$$

$$(4)$$

Thus, $f^{-1}(B) \subset \omega$ -int $(f^{-1}(cl(B)))$.

 $(7) \Rightarrow (1)$: Let $x \in X$ and B any open set of Y containing f(x). Then $x \in f^{-1}(B) \subset \omega$ -int $(f^{-1}(cl(B)))$. Take $S = \omega$ -int $(f^{-1}(cl(B)))$. Then $f(S) \subset cl(B)$ and hence f is almost weakly ω -continuous at x in X.

Definition 2.2. A function $f : X \to Y$ is said to be (ω, s) -open if $f(B) \in SO(Y)$ for every ω -open set B of X.

Definition 2.3. A function $f : X \to Y$ is said to be neatly weak ω -continuous if for each $x \in X$ and each open set A of X containing f(x), there exists an ω -open set Bcontaining x such that $Int(f(B)) \subset Cl(A)$.

Theorem 2.2. If a function $f : X \to Y$ is neatly weak ω -continuous and (ω, s) -open, then f is almost weakly ω -continuous.

Proof. Let $x \in X$ and $A \in SO(Y, f(x))$. Since f is neatly weak ω -continuous, there exists an ω -open set B of X containing x such that $Int(f(B)) \subset Cl(A)$. Since f is (ω, s) -open, then $f(B) \in SO(Y)$. This implies that $f(B) \subset Cl(Int(f(B))) \subset Cl(A)$. Therefore f is almost weakly ω -continuous.

Definition 2.4. A function $f : X \to Y$ is relatively weak ω -continuous if for each open set A of Y, the set $f^{-1}(A)$ is ω -open in the subspace $f^{-1}(Cl(A))$.

Theorem 2.3. A function $f : X \to Y$ is ω -continuous if and only if f is almost weakly ω -continuous and relatively weak ω -continuous.

Proof. "Necessity". Obvious.

"Sufficiency". Suppose that A is an open set of Y. Since f is relatively weak ω continuous, there exists an ω -open set B of X such that $f^{-1}(A) = B \cap f^{-1}(Cl(A))$. We have $f^{-1}(A) \subset \omega$ -int $(f^{-1}(cl(A)))$. Therefore, $f^{-1}(A) = B \cap \omega$ -int $(f^{-1}(cl(A)))$. This shows that $f^{-1}(A)$ is ω -open in X and hence f is ω -continuous.

Definition 2.5. A function $f : X \to Y$ is said to be (ω, p) -continuous if $f^{-1}(A) \in \omega O(X)$ for each preopen set A of Y.

Definition 2.6. A function $f: X \to Y$ is relatively weak ωp -continuous if for each preopen set A of Y, the set $f^{-1}(A)$ is ω -open in the subspace $f^{-1}(Cl(A))$.

Observe that relatively weak ω -continuous and relatively weak ω p-continuous are equivalent with each other.

Theorem 2.4. A function $f : X \to Y$ is (ω, p) -continuous if and only if f is almost weakly ω -continuous and relatively weak ω p-continuous.

Proof. Similar to the proof of Theorem 2.3.

Theorem 2.5. The following are equivalent for a function $f: X \to Y$:

(1) f is almost weakly ω -continuous,

(2) $f(\omega - cl(A)) \subset \theta - cl(f(A))$ for each subset A of X,

(3) ω -cl(f⁻¹(B)) \subset f⁻¹(θ -cl(B)) for each subset B of Y,

(4) ω -cl(f⁻¹(int(θ -cl(B)))) \subset f⁻¹(θ -cl(B)) for every subset B of Y.

Proof. (1) \Rightarrow (2) : Let $A \subset X$ and $x \in \omega$ -cl(A). Suppose that U is any open set of Y containing f(x). Then there exists an ω -open set S containing x such that $f(S) \subset cl(U)$. Since $x \in \omega$ -cl(A), by Lemma 1.1, $S \cap A \neq \emptyset$. Thus, $\emptyset \neq f(S) \cap f(A) \subset cl(U) \cap f(A)$ and hence $f(x) \in \theta$ -cl(f(A)). Thus, $f(\omega$ - $cl(A)) \subset \theta$ -cl(f(A)).

 $(2) \Rightarrow (3)$: Let $B \subset Y$. We have $f(\omega - cl(f^{-1}(B))) \subset \theta - cl(B)$. Thus, $\omega - cl(f^{-1}(B)) \subset f^{-1}(\theta - cl(B))$.

 $(3) \Rightarrow (4)$: Let $B \subset Y$. Since θ -cl(B) is closed in Y, then

$$\omega - cl(f^{-1}(int(\theta - cl(B)))) \subset f^{-1}(\theta - cl(int(\theta - cl(B)))))
= f^{-1}(cl(int(\theta - cl(B)))))
\subset f^{-1}(\theta - cl(B)).$$
(5)

 $(4) \Rightarrow (1)$: Let U be any open set of Y. Then $U \subset int(cl(U)) = int(\theta - cl(U))$. Thus,

$$\omega - cl(f^{-1}(U)) \subset \omega - cl(f^{-1}(int(\theta - cl(U)))) \subset f^{-1}(\theta - cl(U)) = f^{-1}(cl(U)).$$
(6)

By Theorem 2.1, f is almost weakly ω -continuous.

Theorem 2.6. The following hold for a function $f: X \to Y$:

(1) If f is almost weakly ω -continuous, then $f^{-1}(A)$ is ω -closed in X for every θ -closed set A of Y.

(2) If f is almost weakly ω -continuous, then $f^{-1}(A)$ is ω -open in X for every θ -open set A of Y.

(3) If $f^{-1}(\theta - cl(A))$ is ω -closed in X for every subset A of Y, then f is almost weakly ω -continuous.

Proof. (1) and (2) follows from Theorem 2.5.

(3) Let $A \subset Y$. Since $f^{-1}(\theta \cdot cl(A))$ is ω -closed in X, then $\omega \cdot cl(f^{-1}(A)) \subset \omega \cdot cl(f^{-1}(\theta \cdot cl(A))) = f^{-1}(\theta \cdot cl(A))$. By Theorem 2.5, f is almost weakly ω -continuous.

A space X is called p-space if countable intersections of open subsets are open.

Theorem 2.7. The following are equivalent for a function $f : X \to Y$ where X is a *p*-space:

(1) f is almost weakly ω -continuous,

(2) f is weakly continuous.

Proof. It follows from the fact that $\tau = \omega O(X)$ [2].

Lemma 2.1. If $f : X \to Y$ is almost weakly ω -continuous and $g : Y \to Z$ is continuous, then the composition $gof : X \to Z$ is almost weakly ω -continuous.

Proof. Let $x \in X$ and A be an open set of Z containing g(f(x)). Then $g^{-1}(A)$ is an open set of Y containing f(x). This implies that there exists an ω -open set B containing x such that $f(B) \subset cl(g^{-1}(A))$. Since g is continuous, then $(gof)(B) \subset g(cl(g^{-1}(A))) \subset cl(A)$. Hence, gof is almost weakly ω -continuous.

Theorem 2.8. Let $\{A_i : i \in I\}$ be an ω -open cover of a space X. The following are equivalent for a function $f : X \to Y$:

(1) f is almost weakly ω -continuous,

(2) for each $i \in I$, the restriction $f_{A_i} : A_i \to Y$ is almost weakly ω -continuous.

Proof. (1) \Rightarrow (2) : Let $i \in I$ and A_i be an ω -open set of X. Suppose that $x \in A_i$ and U is an open set of Y containing $f_{A_i}(x) = f(x)$. Since f is almost weakly ω -continuous, then there exists an ω -open set B containing x such that $f(B) \subset cl(U)$. On the other hand, $B \cap A_i$ is ω -open in A_i containing x and $f_{A_i}(B \cap A_i) = f(B \cap A_i) \subset f(B) \subset cl(U)$. Thus, f_{A_i} is almost weakly ω -continuous.

 $(2) \Rightarrow (1)$: Let $x \in X$ and U be an open set containing f(x). There exists $i \in I$ such that $x \in A_i$. Since $f_{A_i} : A_i \to Y$ is almost weakly ω -continuous, there exists an ω -open set B in A_i containing x such that $f_{A_i}(B) \subset cl(U)$. Since A_i is ω -open in X, then B is ω -open in X containing x and $f(B) \subset cl(U)$. Thus, f is almost weakly ω -continuous.

Definition 2.7. A function $f: X \to Y$ is said to be faintly ω -continuous if for each $x \in X$ and each θ -open set V of Y containing f(x), there exists an ω -open set U containing x such that $f(U) \subset V$.

Theorem 2.9. Let $f : X \to Y$ be a function. The following are equivalent:

(1) f is faintly ω -continuous,

(2) $f^{-1}(A)$ is ω -open in X for every θ -open set A of Y,

(3) $f^{-1}(B)$ is ω -closed in X for every θ -closed set B of Y.

Theorem 2.10. Let $f : X \to Y$ be a function. If Y is regular, then the following are equivalent. Otherwise, the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold:

(1) f is ω -continuous,

(2) $f^{-1}(\theta \text{-}cl(A))$ is $\omega \text{-}closed$ in X for every subset A of Y,

(3) f is almost weakly ω -continuous,

(4) f is faintly ω -continuous.

Proof. (1) \Rightarrow (2) : Let $A \subset Y$. Since θ -cl(A) is closed, then $f^{-1}(\theta$ -cl(A)) is ω -closed in X.

 $(2) \Rightarrow (3)$: It follows from Theorem 2.6.

 $(3) \Rightarrow (4)$: Let A be a θ -closed subset of Y. By Theorem 2.5, ω -cl $(f^{-1}(A)) \subset f^{-1}(\theta$ -cl $(A)) = f^{-1}(A)$. Hence, f(A) is ω -closed. Thus, f is faintly ω -continuous.

Let Y be regular and let A be any open set of Y. Since Y is regular, A is θ -open in Y. Since f is faintly ω -continuous, then $f^{-1}(A)$ is ω -open in X. Hence, f is ω -continuous. Thus, the implication $(4) \Rightarrow (1)$ holds.

Theorem 2.11. The following properties equivalent for a function $f: X \to Y$:

(1) $f: X \to Y$ is almost weakly ω -continuous at $x \in X$.

(2) $x \in \omega$ -int $(f^{-1}(cl(A)))$ for each neighborhood A of f(x).

Proof. (1) \Rightarrow (2) : Let A be any neighborhood of f(x). There exists an ω -open set B containing x such that $f(B) \subset cl(A)$. We have $B \subset f^{-1}(cl(A))$. Since B is ω -open, then $x \in B \subset \omega$ -int $(B) \subset \omega$ -int $(f^{-1}(cl(A)))$.

 $(2) \Rightarrow (1)$: Let $x \in \omega$ -int $(f^{-1}(cl(A)))$ for each neighborhood A of f(x). Take $U = \omega$ -int $(f^{-1}(cl(A)))$. Then $f(U) \subset cl(A)$. Moreover, U is ω -open. Thus, f is almost weakly ω -continuous at $x \in X$.

Definition 2.8. A subset A is said to be ω -semi-open if there exists ω -open set U such that $U \subset A \subset cl(U)$.

Theorem 2.12. Let $f : X \to Y$ be almost weakly ω -continuous at $x \in X$. The following properties hold:

(1) For each neighborhood A of f(x) and each ω -neighborhood B of x, there exists a nonempty ω -open set $U \subset B$ such that $U \subset \omega$ -cl $(f^{-1}(cl(A)))$.

(2) For each neighborhood A of f(x), there exists a ω -semi-open set B containing x such that $B \subset \omega$ -cl $(f^{-1}(cl(A)))$.

Proof. (1) : Let A be any neighborhood of f(x) and B be an open set of X containing x. Since $x \in \omega$ -int $(f^{-1}(cl(A)))$, then $B \cap \omega$ -int $(f^{-1}(cl(A))) \neq \emptyset$. Take $U = B \cap \omega$ -int $(f^{-1}(cl(A)))$. Thus, U is a nonempty ω -open set and hence $U \subset B$ and $U \subset \omega$ -int $(f^{-1}(cl(A))) \subset \omega$ -cl $(f^{-1}(cl(A)))$.

(2) : Suppose that (1) holds. Let B be ω -open containing x and A be any neighborhood of f(x). There exists a nonempty ω -open set U_B such that $U_B \subset \omega$ - $cl(f^{-1}(cl(A)))$. Take $U = \bigcup \{U_B : B \text{ is } \omega$ -open in X containing x}. Then U is ω -open, $x \in \omega$ -cl(U) and $U \subset \omega$ - $cl(f^{-1}(cl(A)))$. Take $S = U \cup \{x\}$. Then $U \subset S \subset \omega$ -cl(U). Thus, S is ω -semi-open set containing x and $S \subset \omega$ - $cl(f^{-1}(cl(A)))$.

3. Further properties

Recall that a space is rim-compact [6] if it has a basis of open sets with compact boundaries. The graph of a function $f: X \to Y$, denoted by G(f), is the subset $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$.

Theorem 3.1. Let $f : X \to Y$ be a function with the closed graph. If Y is a rimcompact space, then the following are equivalent:

(1) f is almost weakly ω -continuous,

(2) f is ω -continuous.

Proof. $(2) \Rightarrow (1)$: Obvious.

 $(1) \Rightarrow (2)$: Let $x \in X$ and A be any open set of Y containing f(x). Since Y is rim-compact, there exists an open set B of Y such that $x \in B \subset A$ and ∂B is compact. For each $y \in \partial B$, $(x, y) \in X \times Y \setminus G(f)$. This implies that there exist open sets $U_y \subset X$ and $V_y \subset Y$ such that $x \in U_y$, $y \in V_y$. Since G(f) is closed, then $f(U_y) \cap V_y = \emptyset$. The family $\{V_y\}_{y \in \partial B}$ is an open cover of ∂B . This implies that there exist a finite number of points of ∂B , say, $y_1, y_2, ..., y_n$ such that $\partial B \subset \cup \{V_{y_i}\}_{i=1}^n$. Take

$$S = \cap \{U_{y_i}\}_{i=1}^n \quad and \quad R = \cup \{V_{y_i}\}_{i=1}^n.$$
(7)

Then S and R are open sets such that $x \in S$, $\partial B \subset R$ and $f(S) \cap \partial B \subset f(S) \cap R = \emptyset$. Since f is almost weakly ω -continuous, there exists an ω -open set N containing x such that $f(N) \subset cl(B)$. Take $U = S \cap N$. Then, U is ω -open containing x, $f(U) \subset cl(B)$ and $f(U) \cap \partial B = \emptyset$. Thus, $f(U) \subset B \subset A$ and hence f is ω -continuous.

Theorem 3.2. Let $f : X \to Y$ be a function where Y is a rim-compact Hausdorff space. Then the following are equivalent:

(1) f is ω -continuous,

(2) f is almost weakly ω -continuous.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (1)$: Since a rim-compact Hausdorff space is regular, by Theorem 2.10, f is ω -continuous.

Definition 3.1. ([1]) If a space X can not be written as the union of two nonempty disjoint ω -open sets, then X is said to be ω -connected.

Theorem 3.3. If $f : X \to Y$ is an almost weakly ω -continuous surjection and X is ω -connected, then Y is connected.

Proof. Suppose that Y is not connected. Then there exist nonempty open sets A and B of Y such that $Y = A \cup B$ and $A \cap B = \emptyset$. This implies that A and B are clopen in Y. By Theorem 2.1, $f^{-1}(A) \subset \omega$ -int $(f^{-1}(cl(A))) = \omega$ -int $(f^{-1}(A))$. Hence $f^{-1}(A)$ is ω -open in X. Similarly, $f^{-1}(B)$ is ω -open in X. We have $f^{-1}(A) \cap f^{-1}(B) = \emptyset$, $X = f^{-1}(A) \cup f^{-1}(B)$. Also, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Thus, X is not ω -connected.

Corollary 3.1. If $f : X \to Y$ is a ω -continuous surjection and X is ω -connected, then Y is connected.

For a function $f: X \to Y$, the graph function $g: X \to X \times Y$ of f is defined by g(x) = (x, f(x)) for each $x \in X$.

Theorem 3.4. The following are equivalent for a function $f: X \to Y$:

(1) f is almost weakly ω -continuous,

(2) the graph function g is almost weakly ω -continuous.

Proof. $(1) \Rightarrow (2)$: Let f be almost weakly ω -continuous and $x \in X$. Suppose that A is an open set containing g(x). There exist open sets $B \subset X$ and $C \subset Y$ such that $g(x) = (x, f(x)) \in B \times C \subset A$. Since f is almost weakly ω -continuous, there exists ω -open set D containing x such that $f(D) \subset cl(C)$. Take $S = B \cap D$. Then S is an ω -open set containing x and $g(S) \subset cl(A)$. Thus, g is almost weakly ω -continuous.

 $(2) \Rightarrow (1)$: Let g be almost weakly ω -continuous and $x \in X$ and A be an open set of X containing f(x). Then $X \times A$ is an open set containing g(x). Then there exists an ω -open set B containing x such that $g(B) \subset cl(X \times A) = X \times cl(A)$. Thus, $f(B) \subset cl(A)$ and hence f is almost weakly ω -continuous.

Theorem 3.5. If $f, g: X \to Y$ is almost weakly ω -continuous and Y is Urysohn, then the set $A = \{x \in X : f(x) = g(x)\}$ is ω -closed in X.

Proof. Let $x \in X \setminus A$. Then $f(x) \neq g(x)$. Since Y is Urysohn, then there exist open sets S and R of Y such that $f(x) \in S$, $g(x) \in R$ and $cl(S) \cap cl(R) = \emptyset$. Since f is almost weakly ω -continuous, there exists ω -open set U in X containing x such that $f(U) \subset cl(S)$. Since g is almost weakly ω -continuous, there exists an ω -open set B of X containing x such that $g(B) \subset cl(R)$. Take $H = U \cap B$. Then H is ω -open containing x and $f(H) \cap g(H) \subset cl(S) \cap cl(R) = \emptyset$. Thus, $H \cap A = \emptyset$ and hence A is ω -closed in X.

Theorem 3.6. Let $f : X \to Y$ be an almost weakly ω -continuous function and A be a θ -closed set of $X \times Y$. Then $p(A \cap G(f))$ is ω -closed in X where p is the projection of $X \times Y$ onto X and $G(f) = \{(x, f(x)) : x \in X\}$.

44

Proof. Let $x \in \omega$ -cl($p(A \cap G(f))$). Suppose that U is an open set of X containing xand V is an open set of Y containing f(x). Since f is almost weakly ω -continuous, by Theorem 2.1, $x \in f^{-1}(V) \subset \omega$ -int($f^{-1}(cl(V))$). We have $U \cap \omega$ -int($f^{-1}(cl(V))$) and $x \in U \cap \omega$ -int($f^{-1}(cl(V))$). Since $x \in \omega$ -cl($p(A \cap G(f))$), then ($U \cap \omega$ -int($f^{-1}(cl(V))$)) \cap $p(A \cap G(f))$ contains a $a \in X$. Then $(a, f(a)) \in A$ and $f(a) \in cl(V)$. Therefore

$$\emptyset \neq (U \times cl(V)) \cap A \subset cl(U \times V) \cap A \tag{8}$$

and $(x, f(x)) \in \theta$ -cl(A). Since A is θ -closed, $(x, f(x)) \in A \cap G(f)$ and $x \in p(A \cap G(f))$. Thus, $p(A \cap G(f))$ is ω -closed in X.

Corollary 3.2. If $f : X \to Y$ has the θ -closed graph and $g : X \to Y$ is almost weakly ω -continuous, then the set $A = \{x \in X : f(x) = g(x)\}$ is ω -closed in X.

Proof. Let G(f) be θ -closed. We have $p(G(f) \cap G(g)) = \{x \in X : f(x) = g(x)\}$. By Theorem 3.6, $A = \{x \in X : f(x) = g(x)\}$ is ω -closed in X.

Theorem 3.7. If $f : X \to Y$ is almost weakly ω -continuous and Y is Hausdorff, then for each $(x, y) \notin G(f)$, there exist an ω -open set $A \subset X$ and an open set $B \subset Y$ containing x and y, respectively, such that $f(A) \cap int(cl(B)) = \emptyset$.

Proof. Let $(x, y) \notin G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff, there exist disjoint open sets B and C containing y and f(x), respectively. Thus, $int(cl(B)) \cap cl(C) = \emptyset$. Since f is almost weakly ω -continuous, there exists an ω -open set A containing x such that $f(A) \subset cl(C)$. Hence, $f(A) \cap int(cl(B)) = \emptyset$.

Definition 3.2. A subset S of a space X is said to be N-closed relative to X [3] if for each cover $\{A_i : i \in I\}$ of S by open sets of X, there exists a finite subfamily $I_0 \subset I$ such that $S \subset \bigcup_{i \in I_0} cl(A_i)$.

Theorem 3.8. Let $f : X \to Y$ be a function. Suppose that for each $(x, y) \notin G(f)$, there exist an ω -open set $A \subset X$ and an open set $B \subset Y$ containing x and y, respectively, such that $f(A) \cap int(cl(B)) = \emptyset$. Then inverse image of each N-closed set of Y is ω -closed in X.

Proof. Suppose that there exists a N-closed set $S \subset Y$ such that $f^{-1}(S)$ is not ω closed in X. Then, there exists a point $x \in \omega$ - $cl(f^{-1}(S)) \setminus f^{-1}(S)$. Since $f(x) \notin f^{-1}(S)$, then $(x, y) \notin G(f)$ for each $y \in S$. This implies that there exist ω -open sets $A_y(x) \subset X$ and an open set $B(y) \subset Y$ containing x and y, respectively, such that $f(A_y(x)) \cap int(cl(B(y))) = \emptyset$. The family $\{B(y) : y \in S\}$ is a cover of S by open sets of Y. Since S is N-closed, there exist a finite number of points $y_1, y_2, ..., y_n$ in S such that $S \subset \bigcup_{j=1}^n int(cl(B(y_j)))$. Take $A = \bigcap_{j=1}^n A_{y_j}(x)$. Then $f(A) \cap S = \emptyset$. Since $x \in \omega$ - $cl(f^{-1}(S))$, then $f(A) \cap S \neq \emptyset$. This is a contradiction.

Corollary 3.3. Let Y be Hausdorff such that every closed set is N-closed. Then the following are equivalent:

(1) f is ω -continuous,

(2) f is almost weakly ω -continuous.

Let $\{X_i\}_{i\in I}$ and $\{Y_i\}_{i\in I}$ be any two families of topological spaces. The product space of $\{X_i\}_{i\in I}$ and $\{Y_i\}_{i\in I}$ is denoted by $\prod X_i$ and $\prod Y_i$, respectively. Let $f_i :$ $X_i \to Y_i$ be a function for each $i \in I$. Let $f : \prod X_i \to \prod Y_i$ be the product function defined as follows: $f(\{x_i\}) = (f_i(x_i))$ for each $(x_i) \in \prod X_i$. The projection of $\prod X_i$ and $\prod Y_i$ onto X_i and Y_i , respectively is denoted by p_i and q_i . **Theorem 3.9.** If $f_i : X_i \to Y_i$ is almost weakly ω -continuous for each $i \in I$, then a function $f : \prod X_i \to \prod Y_i$ is almost weakly ω -continuous.

Proof. Let $x = (x_i) \in \prod X_i$. Suppose that A is an open set containing f(x). Then there exists an open set $\prod B_i$ such that $f(x) \in \prod_{i=1}^n B_i \times \prod_{i \neq j} Y_j \subset A$, where B_i is open in Y_i . Since f_i is almost weakly ω -continuous, there exists ω -open sets S_i in X_i containing x_i such that $f_i(S_i) \subset cl(B_i)$ for each i = 1, 2, ..., n. Take $S = \prod_{i=1}^n S_i \times \prod_{i \neq j} X_j$, then S is ω -open in $\prod X_i$ containing x and

$$f(S) \subset \prod_{i=1}^{n} f_i(S_i) \times \prod_{i \neq j} Y_j \subset \prod_{i=1}^{n} cl(B_i) \times \prod_{i \neq j} Y_j \subset cl(A).$$
(9)

Thus, f is almost weakly ω -continuous.

References

- A. Al-Omari and M.S.M. Noorani, Contra-ω-continuous and almost contra-ω-continuous, Int. J. Math. Math. Sci. (2007), ID 40469.
- [2] K. Al-Zoubi and B. Al-Nashef, The topology of ω -open subsets, Al-Manareh IX (2003), no. 2, 169–179.
- [3] D. Corhan, Locally nearly compact spaces, Boll. UMI 4 (1972), no. 6, 146–153.
- [4] H. Z. Hdeib, ω-closed mappings, Rev. Colombiana Mat. 16 (1982), no. 1-2, 65–78.
- [5] H. Z. Hdeib, ω -continuous functions, *Dirasat* **XVI** (1989), 136–142.
- [6] J. R. Isbell, Uniform spaces, Amer. Math. Soc. Math. Surveys (1962), no. 12.
- [7] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* **53** (1982), 47–53.
- [8] M. S. Sarsak, ω-almost Lindelöf spasces, Q and A in General Topology 21 (2003), 27–35.
- [9] M. H. Stone, Applications of the theory of Boolean rings to general topology, TAMS 41 (1937), 375–381.
- [10] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 102–118.

(Erdal Ekici) Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale / TURKEY *E-mail address*: eekici@comu.edu.tr

E-man adaress. eekici@comu.edu.ti

(Saeid Jafari) COLLEGE OF VESTSJAELLAND SOUTH, HERRESTRAEDE 11, 4 200 SLAGELSE, DENMARK *E-mail address*: jafari@stofanet.dk

(Seithuti P. Moshokoa) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF SOUTH AFRICA, P. O. Box 392, Pretoria, 0003, SOUTH AFRICA *E-mail address*: moshosp@unisa.ac.za