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Authentication protocol based on elliptic curve cryptography

Nicolae Constantinescu

Abstract. The authentication protocols based on classic cryptography use public-key cryp-
tosystems for establishing the common key. Some of them have been proven to be secure but
they require high amount of resources and they need large keys. Applying an elliptic curve au-
thentication protocol the memory and the power consumption are lower. Another advantage
is that this kind of protocols are secure enough even if a small key is used. In this paper we
present an authentication protocol based on elliptic curve cryptography and zero knowledge.
The protocol is developed for group communication. Every member of the group has a secret
information and the communication starts when all this information is put together. So, if
one member is not online, the others cannot communicate. We, also, present some situations
where this kind of protocol is needed.
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1. Introduction

Victor Miller and Neal Koblitz have, independently, proposed using elliptic curve
in cryptography in 1985 [13]. In the past years, using elliptic curves in cryptogra-
phy has become more and more popular. They are mainly used in coding theory,
pseudorandom bit generation and number theory [12].

Definition 1.1. An elliptic curve E over the field F is given by:y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6

The cryptographic elliptic curves are defined over a finite field Fp and have an
easier equation:

y2 = x3 + ax + b (1)
p is a prime number called the characteristic of F and pa = 0 ∀a ∈ F . The above
equation is given for p 6= 2, 3. If the discriminant ∆ = 4a3 + 27b2(mod p) 6= 0 the
curve E is defined as the set of points (x, y) satisfying the equation (1) including the
infinity point O. The addition and the multiplication are defined below:

Definition 1.2. Let P (x, y) be a point on E. The inverse will be −P (x,−y). Let
P (x1, y1) ∈ E and Q(x2, y2) ∈ E then P + Q = R(x3, y3) is given by:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where λ = y1−y2
x1−x2

. For doubling a point 2P (x3, y3) we use the formulas:

x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1
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where λ = 3x2
1+a

2y1
.

The elliptic curves over a binary field are given by the same equation (1). The
discriminant is ∆ = b, and for a point P (x, y) the inverse is −P (x, x + y). Addition
and doubling are computed in the same way as on the prime curves. An elliptic curve
cryptosystem performance depends the most on the scalar multiplication operation
kP = Q (a point P ∈ E is multiplied by an integer k resulting a point Q ∈ E). This
operation is computed through a combination of point-additions and point-doublings.
In [23, 17, 10] it is recommended to use successive doubling and binary expansion.
The method is efficient even if k is a large number. The points’ coordinates are
reduced modulo p, so the numbers involved are kept small. One of these methods is
the Montgomery’s Point Multiplication method presented below.
INPUT: An integer k and a point P ∈ E(Fq)
OUTPUT: Q = kP

Algorithm 1 Montgomery’s Point Multiplication Method

1: k ← (knk−1 . . . k1k0)2
2: P1 ← P
3: P2 ← 2P1

4: for i = nk − 2 downto 0 do
5: if ki = 1 then
6: P1 ← P1 + P2

7: P2 ← 2P2

8: else
9: P2 ← P2 + P1

10: P1 ← 2P1

11: end if
12: end for
13: q ← P1

14: return Q

Also, performant algorithms have been developed for computing scalar multipli-
cation for elliptic curves with special properties. Most of them use the Frobenius
map to represent k. Koblitz [14] and Muller [15], also, proposed the Frobenius map
representation. Like some classic cryptosystems’ security is based on the DLP (Dis-
crete Logarithm Problem), the elliptic curve cryptosystems’ security is based on the
ECDLP (Elliptic Curve Discrete Logarithm Problem). This states that given P ∈ E
and Q = kP ∈ E, k is very hard to find (almost impossible). For some curves the
ECDLP has been solved efficiently [20]. To avoid this problem the elliptic curve
must be chosen carefully. NIST recommends fifteen elliptic curves. Specifically,
FIPS 186-3 has ten recommended finite fields. There are five prime fields Fp for
p = 192, 224, 256, 384, 521. For each of the prime fields one elliptic curve is recom-
mended. There are five binary fields F2m for 2163, 2223, 2283, 2409, 2571. For each of
the binary fields one elliptic curve and one Koblitz curve was selected. The curves
were chosen for optimal security and implementation efficiency [8, 3]. The table below
shows NIST’s recommendation on choosing equivalent symmetric and public key sizes
[16].
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Symmetric ECC RSA/DH/DSA MIPS Yrs to attack Protection Lifetime
80 160 1024 1012 Until 2010
112 224 2048 1024 Until 2030
128 256 3072 1028 Beyond 2031
192 384 7680 1047 Beyond 2031
256 512 15360 1066 Beyond 2031

2. Related Work

In [4, 19] the authors present an authentication protocol for exchanging encrypted
messages via an authentication server based on elliptic curve cryptography using El
Gamal’s algorithm. They chose El Gamal’s algorithm for encryption/decryption and,
also, for the authentication. The authors motivated this by the fact that using two or
more algorithms in the same protocol makes it more vulnerable. They, also, pointed
out that using a digital signature algorithm is more secure, but they preferred not
to use one because the presented protocol has a big advantage: the receiver does
not need to know the senders public key [2]. A short description of the protocol is
presented below.

SendingProcess(From = Alice, To = Bob) :
A → S : CS(From, To, N1)
S → A : CA(CB , N1, N2, Id)

A → S : CB(M,N2), Id
ReceivingProcess(Bob receives the message) :

B → S : CS(To,N3)
S → B : CB(M,N2), CB(N2, N3)

First, the user A sends a request to the server S consisting in the nickname of the
sender (From), the nickname of the receiver (To) and a random message (N1). This
random message is used to verify the server. These elements are encrypted with the
server’s public key and sent to the server. After decryption, the server encrypts a mail
Id, N1, a new N2, the receiver’s (B) public key with A’s public key, and sends the result
to the sender (A). The sender verifies N1 to see if the message received from the server
is valid. Next, A encrypts the clear message M and N2 with B’s public key and sends
the encryption to S along with the Id. To download his message, B send his nickname
and a new random message N3 encrypted with S’s key. The server S sends back to
B M and N2 encrypted with B’s key along with N2 and N3, also encrypted with B’s
key. To verify if the encryption received is from the server S, B checks N3. In [1] are
introduced two authentication protocols which use two different algorithms: one for
encrypting the message and one for generating the key. In both cases, the encryption
algorithm is a symmetric one. The authors recommend the protocol presented in
the first paper to be use for controller-pilot data link communications, while the
one presented in the second paper is recommended for the wireless communication,
but it does not mean that they cannot be adapted for other communications. They
both use the Elliptic Curve Digital Signature Algorithm (ECDSA) for authentication.
This algorithm is briefly described below. In [5] it is presented an authentication rank
protocol based on elliptic curve infrastructure.
ECDSA. The communicating parties choose an elliptic curve E defined over Fp or
F2m with large group of order n and a point P . All this information are made public.
The algorithm, like all the digital signature algorithms, has three steps:
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(1) Key Generation
(a) The first user selects a random integer k1 ∈ [2, n− 2];
(b) Then the user computes Q = k1P ;
(c) The public and the private key of the first user are (E, P, n, Q) and k1,

respectively.
(2) Signature Generation

(a) The first user selects an integer k2 ∈ [2, n− 2];
(b) Then computes k2P = x1, y1 and r = x1 mod n, if r = 0 then return to

step (a).
(c) Compute k−1

2 mod n;
(d) Compute s = k−1

2 (SHA(m)+k1r) mod n, if s = 0 then return to step (a);
(e) The signature for the message m is (r, s).

(3) Signature Verification
(a) The second user, after receiving the signature (r, s) computes c = s−1 mod n

and SHA(m);
(b) Then computes u1 = H(m)c mod n and u2 = rc mod n;
(c) Then computes u1P + u2Q = (x0, y0) and v = x0 mod n;
(d) If v = r then the signature is valid.

The ECDSA advantages and disadvantages can be studied in [9]. After the verifica-
tion, the user and the server have to generate a secret key for the encryption. For
the protocol presented in [1], generating third key is made through a scalar addition,
while in others is used a public-key algorithm. Studying these two protocols we chose
a zero knowledge authentication for our protocol. We will motivate this choice in 3.
Aydos et al. proposed an elliptic curve authentication protocol in [1]. The protocol
uses ECDSA for the authentication and the Diffie-Hellman key exchange scheme to
establish session key.
ECDH. Let P (x, y) be a point of order n on the elliptic curve E defined over Fp.
The ECDH has the following steps:
(1) A generates a random number dA ∈ [2, n − 2], then computes DA = dAP and

sends it to B;
(2) B generates a random number dB ∈ [2, n − 2], then computes DB = dBP and

sends DB to A;
(3) A computes the key skA = dADB and B computes the key skB = dBDA;
(4) The two results represent the common key because skA = skB .

The entire protocol can be studied in [1]. The protocol has significant superiorities in
terms of speed, storage requirement and bandwidth requirement. In spite of all these
advantages, the protocol has be proven to be vulnerable to man-in-the-middle attack
[24]. A protocol based on Aydos’ protocol is the Mangipudi et al.’s protocol. In this
protocol the user needs to authenticate himself to the server. The protocol, like the
Aydos’ protocol, has two phases: the initialization phase and the user authentication
phase. Unlike the Aydos’ protocol where in the first phase the CA (Certificate Au-
thority) sends its own public key, in the Mangipudi’s protocol the CA sends servers
public key and expiration time. The Mangipudi et al.’s protocol is robust to man-
in-the-middle attack, but it’s vulnerable to the forging certificate attack launched
by attacker after he has forged the certificate. An example of such an attack was
demonstrated in [24].
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3. Our Method

In the section above we have presented several types of authentication protocols
based on elliptic curve cryptography. Some of them are suitable for special situations,
while others have been proven to be vulnerable to various attacks. We propose an
authentication protocol suitable for group communication. Suppose that maximum 30
persons want to communicate simultaneously. They have to validate a very important
document. Being an important decision it can be taken only if all the communicating
parties agree. If one person disagrees, the document will not be validated, even if all
the others want to validate it. In such cases it is very important to communicate in
real time. If one of the parties is not on-line, the server will not allow the others to
take any decision. To avoid an impersonation attack, the server will stop transmitting
any kind of messages (even if they are not about the decision that the group has to
take) if one of the parties is not on-line. The server will allow the users to stay on-
line (but not to communicate) as long as they want. Along with every attempt to
communicate the users will receive a denial message from the server. This message
will, also, contain the nickname of the missing person (or persons). This will allow
the others to find a solution faster. When all the users are logged the server will
send a message to every user to announce that they can start the communication.
If the communication is started and during it, one of the users signs off, the process
will be stopped immediately. This kind of protocol is very useful for big companies
where shareholders are very busy and cannot attend all the meetings. Some of these
meetings can be delayed depending on the shareholders’ schedules. But, the meetings’
whose delaying may cause great loss of money, must be avoided. An efficient solution
to this problem is using communicating technology in real time. This technology
must have a high level of security because the transmitted information must be kept
secret. Using an authentication protocol is the easier and the cheaper way to solve
the problem.

3.1. Preliminaries. Most of the authentication protocols based on elliptic curve
cryptography use the ECDSA. This is because it provides a high level of security.
For our protocol, we chose not to use the Elliptic Curve Digital Signature Algorithm
because the communication starts after all the parties are authenticated, and au-
thenticating 30 persons can take several minutes. We chose to use zero knowledge
to authenticate the users. The purpose of zero knowledge protocols is to prove the
knowledge of a secret without revealing it. A zero knowledge protocol must satisfy
the followings:
(1) Completeness if the statement is true, the verifier will be convinced of this fact

by an honest prover.
(2) Soundness if the statement is false, no cheating prover can convince the verifier

that it is true.
(3) Zero-knowledge if the statement is true, no cheating verifier learns anything

other than this fact.
Every user from the group has a secret information. Each one has to prove that

he knows the information (without revealing it) to the server. So, the prover is the
user and the verifier is the server. Of course, the secret information of each user is
different. The server will identify each user through a demonstration of his knowledge.
Our protocol does not reveal any detail about the secret information. So, neither the
server nor an eavesdropper will not obtain the user’s secret, avoiding an impersonation
of the user. The main idea of the zero knowledge authentication is that the verifier
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asks the prover a question (or questions) related to the secret information, but in a
manner that the answer does not reveal the secret or even a part of it. So, the verifier
and the prover exchange messages which will convince the verifier if the prover is or
is not who he pretends to be.

One of the most popular zero knowledge protocols is Schnorr’s protocol. The
protocol proves the knowledge of a discrete logarithm and it is defined over a cyclic
group Gq of order q with generator g. To prove that x = logg y the steps below will
be followed:
(1) The prover choses a random number r and computes t = gr and sends it to the

verifier;
(2) The verifier choses a random number c and sends it to the prover;
(3) The prover sends s = r + cx;
(4) The verifier accepts the prover if gs = tyc.

Schnorr’s protocol can be studied in [21]. Our protocol uses elliptic curve version
of Schnorr’s zero knowledge protocol [22]. Schnorr’s protocol with elliptic curve is
described below.

Before the protocol is started we set the parameters: (q, a, b, P, n, h) where q spec-
ifies the finite field Fq, a and b define the elliptic curve, P is a point on the curve of
order n, and h is the cofactor. We note the prover’s secret information with α and
the user makes public Z = αP .
(1) The prover choses a random number r, computes X = rP and sends X to the

verifier;
(2) The verifier choses a random number e and sends it to the prover;
(3) The prover computes y = (αe + r) mod n and sends y to the verifier;
(4) The verifier accepts the prover if yP + eZ = X.

3.2. Protocol. The proposed one is based on ECDH protocol principles and use
ECDSA in the signing phases. To implement this protocol we have to make some
assumptions first:
• every user is connected to a server;
• the public keys are saved in a public file;
• the server has a pair of keys, too;
• the server key is the only one that does not need to be verified.

Authentication.
(1) user −→ server : sendsserv(X,N1)
(2) server −→ user : sendsuser(e,N1)
(3) user −→ server : sendsserv(y)
(4) server −→ accept/reject

First the user sends X = rP and a random message N1, both encrypted with the
server’s key. The server decrypts the stream received and finds N1. Then, the server
sends the random number e and N1 encrypted with the user key. When the user
receives the stream, he will know that it is send from the server because only the
server knew the random message N1. He, then, computes y = (αe + r) mod n,
encrypts it with the server’s key and sends the result to the server. If yP + eZ = X
the server accepts the user, else a rejection is made. These steps are repeated for
every user.
Communication Process. When all the users are authenticated the communication
can start. All the users have the same key pair (Pub, Sec) where Pub is the public
key and Sec is the secret one. These keys along with the server’s ones are generated
every time a communication session is started. All the users use the same keys because
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they all have to know the messages sent from any user of the group. This will avoid
conflicts and plotting. Two users cannot communicate through this protocol without
the knowledge of the others. This is very important because, like we said earlier, they
all have to decide on the document. So, if one user receives a message it can be read
by all the others, because they all can decrypt it. On the other hand, if one user’s key
is found by an intruder all the users are affected. The keys can be established using
an elliptic curve protocol which keeps the point from the elliptic curve private, for
example the one proposed in [7], based on the elliptic curves computations described
in [6]. Such a protocol is described in [11]. By keeping the point P ∈ E private,
the security level is increased. The only public parameters are the prime number n,
and a, b defining the curve En(a, b) : y2 = x3 + ax + b where gcd(4a3 + 27b2, n) = 1.
The key pair (e, d) is established by following the RSA algorithm [18]. Suppose the
two communicating parties are Alice and Bob. Alice choses XA a random number in
Fn, RA another random number in Fn and PA a point on the curve. All these three
values are secret. Similarly, Bob choses XB , RB and PB . The steps of the algorithm
are:
(1) Alice computes GA = XAPA and send it to Bob;
(2) Bob computes GB = XBPB and send it to Alice;
(3) Alice computes SA = RAGB and send it to Bob;
(4) Bob computes SB = RBGA and send it to Alice;
(5) Alice computes the session key Pub = e(SA + SB);
(6) Bob computes the session key Pub = e(SA + SB).

Multiplying by e gives the protocol public key characteristics. So, the private key will
be Sec = d(SA + SB). In the same time, the multiplication provides an increased
security, so that the protocol will not suffer from the man-in-the-middle attack. As we
can see, the method has only two pass key agreements, which mean no communication
overhead will be added.

3.3. Comparison. You have probably already noticed that the authentication phase
is the most important one. This is because the messages have to be known by all
the group’s members and so if an intruder succeeds to sign in all the information is
compromised. We did not use a digital signature algorithm because there were much
more operations. The secret knowledge provides an authentication with three times
fewer steps and at least the same level of security. We applied an encryption to the
result obtained through Schnorr’s protocol to increase the security. To compute the
scalar multiplication we recommend the Montgomery’s Point Multiplication Method
where is used a combination of point-additions and point-doublings. This protocol
can be implemented without using elliptic curve cryptography. In this case we will use
the classic Schnorr’s protocol for authentication and for encryption the most efficient
method is RSA. But, the keys used for encrypting and decrypting the messages must
be significantly larger to reach the same level of security. To avoid a high complex-
ity the proposed protocol uses elliptic curve cryptography. Also, the elliptic curve
cryptography provides the security needed in such a sensitive situation. We call it a
sensitive situation because all the users have the same keys for one session. If one key
is compromised all the other users are compromised, too. We can avoid this situation
by using different keys for each user. We did not choose to do that because it is more
important that all messages can be read by any member of the group.
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4. Conclusions

We presented a relatively simple protocol for a group communication based on
elliptic curve cryptography. The protocol has a low complexity mainly because the
group’s members have the same key pairs, but also because the authentication is made
through zero knowledge. Using elliptic curve cryptography provides a methodology
for obtaining high-speed implementations of authentication protocols and encrypted
message techniques while using fewer bits for the keys. For establishing the encryp-
tion/decryption keys we chose a method were no point on the elliptic curve is made
public. Keeping the elliptic curve point private increases the security of the algo-
rithm. This method is also easy to implement, being based on the characteristics
elliptic curves and RSA encryption systems.

References

[1] M. Aydos, B. Sunar and C. K. Koc, An Elliptic Curve Cryptography based Authentication and
Key Agreement Protocol for Wireless Communication, Proceedings of the 2nd International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications,
Dallas (1998), 1–12.

[2] C. Boyd and A. Mathuria, Protocols for authentication and Key Establishment, Springer-Verlag,
2003.

[3] Certicom Research, SEC 2: Recommended Elliptic Curve Domain Parameters, Standards for
efficient Cryptography, Version 1.0, Sept. (2000).

[4] K. Chalkias, G. Filiadis and G. Stephanides, Implementing Authentication Protocol for Ex-
changing Encrypted Messages via an Authentication Server based on Elliptic Curve Cryptogra-
phy with the El Gamals Algorithm, IEC (Prague), (2005), 137–142.

[5] N. Constantinescu, Authentication ranks with identities based on elliptic curves, Annals of the
University of Craiova, Mathematics and Computer Sciences Series 34 (2007), 94–99.

[6] N. Constantinescu, Elliptic curve cryptosystems and scalar multiplication, Annals of the Uni-
versity of Craiova, Mathematics and Computer Sciences Series 37 (2010), no. 1, 27–34.

[7] N. Constantinescu, The GN-authenticated key agreement, Journal of Applied Mathematics and
Computation, Elsevier 170 (2005), no. 1, 531–544.

[8] U.S. Dept of Commerce/NIST, Digital Signature Standard (DSS), FIPS PUB 186-2, Jan. (2000).
[9] IEEE P1363. Standard specifications for public-key cryptography. Draft version 7, Sept. (1998).

[10] D. Hankerson, A. Menezes and S. Vastone, Guide to Elliptic curve cryptography, Springer-
Verlag, 2003.

[11] K. Kaabneh and H. Al-Bdour, Key Exchange Protocol in Elliptic Curve Cryptography with No
Public Point, American Journal of Applied Sciences 2 (2005), no. 8, 1232–1235.

[12] N. Koblitz, A. Menezes and S. Vanstone, The state of elliptic curve cryptography, Designs,
Codes and Cryptography 19 (2000), no. 2-3, 173–193.

[13] N.Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48 (1987), no. 1, 203–
209.

[14] N. Koblitz, CM Curves with Good Cryptographic Properties, Proc. Crypto’91, Springer-Verlag
(1992), 279–287.

[15] V. Muller, Fast Multiplication on Elliptic Curve over Small Field of Characteristic Two, Journal
of Cryptology 11 (1998), no. 2, 219-234.

[16] NIST, Special Publication 800-57: Recommendation for Key Management. Part 1: General
Guideline, Draft Jan. (2003).

[17] M. Rosing, Implementing Elliptic Curve Cryptography, Manning, 1999.
[18] W. Sallings, Cryptography and Network Security, Prentice Hall, Third Ed, 2003.
[19] A. Saxena and B. Soh, An Authentication Protocol For Mobile Agents Using Bilinear Pairings,

Dept. of Computer Science and Computer Engineering La Trobe University, Bundoora, VIC,
Australia 3086, 1 Sept. (2005).

[20] N. Smart, How secure are elliptic curves over composite extension fields?, EUROCRYPT 2001,
LNCS 2045 Springer-Verlag (2001), 30–39.



AUTHENTICATION PROTOCOL BASED ON ELLIPTIC CURVE CRYPTOGRAPHY 91

[21] C. P. Schnorr, Efficient identification and signatures for smart cards, G Brassard, ed. Advances
in Cryptology - Crypto ’89, Springer-Verlag (1990), 239–252.

[22] C. P. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology 4 (1991),
no. 3, 161–174.

[23] L. C. Washington, Elliptic curves Number Theory and Cryptography, Chapman&Hall /CRC,
2003.

[24] L. Yongliang, W. Gao, H. Yao, and X. Yu, Elliptic Curve Cryptography Based Wireless Au-
thentication Protocol, International Journal of Network Security 5 (2007), no. 3, 327-337.

(Nicolae Constantinescu) Faculty of Mathematics and Computer Science, University of
Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. & Fax:
40-251412673
E-mail address: nikyc@central.ucv.ro


