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On strong IS-algebras

Ali H. Handam

Abstract. IS-algebras with additional condition, so called strong IS-algebras, are introduced,
and some properties are investigated. We introduced the notion of a strong IS-algebra endo-
morphisms. In addition, a congruence relation on a strong IS-algebras is defined. As well as
some properties of left and right mappings of strong IS-algebras are investigated.
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1. Introduction

Imai and Iséki [5] in 1966 introduced the notion of a BCK-algebra. In the same
year, Iséki introduced BCI-algebras [6] as a super class of the class of BCK-algebras.
In 1993, Jun et al. [7] introduced a new class of algebras related to BCI-algebras
and semigroups, called a BCI-semigroup/BCI-monoid/ BCI-group. In 1998, for the
convenience of study, Jun et al. [9] renamed the BCI-semigroup (respectively, BCI-
monoid and BCI-group) as the IS-algebra (respectively, IM-algebra and IG-algebra)
and studied further properties of these algebras. Not long ago, Park et al. [10] studied
the isomorphism theorems in IS-algebras.

Dar introduced the notions of left and right mappings over BCK-algebras in [1] and
further discussed in [2]. The notions of left and right mappings over BCI- algebras
have been discussed in [3]. In this paper, we discussed IS-algebras with additional
condition, so called strong IS-algebras, and investigated several properties. We intro-
duced the notion of strong IS-algebra endomorphisms. Some more properties of left
and right mappings of strong IS-algebras are investigated.

2. Preliminaries

The following definitions and notations will be used throughout this paper.
By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the following

conditions: for every x, y, z ∈ X,
(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,
(III) x ∗ x = 0,
(IV ) x ∗ y = 0 and y ∗ x = 0 imply x = y.
A BCI-algebra X satisfying 0 ≤ x for all x ∈ X is called a BCK-algebra. In any
BCI-algebra X one can define a partial order “≤” by putting x ≤ y if and only if
x ∗ y = 0.
A BCI-algebra X has the following properties for any x, y, z ∈ X :
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(a1) x ∗ 0 = x,
(a2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(a3) x ≤ y implies that (x ∗ z) ≤ (y ∗ z) and (z ∗ y) ≤ (z ∗ x),
(a4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(a5) x ∗ (x ∗ (x ∗ y)) = x ∗ y,
(a6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),
(a7) 0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) = (0 ∗ y) ∗ (0 ∗ x).

A non-empty subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies:
(i) 0 ∈ I and (ii) if x ∗ y ∈ I and y ∈ I implies x ∈ I for all x, y ∈ X. Any ideal I has
the property: y ∈ I and x ≤ y imply x ∈ I. A non-empty subset D of a BCI-algebra
X is called a subalgebra of X if x ∗ y ∈ D whenever x, y ∈ D. In general, an ideal I
of a BCI-algebra X need not be a subalgebra. If an ideal I is also a subalgebra of a
BCI-algebra X, we say that I is a closed ideal, equivalently, an ideal I is closed if and
only if 0 ∗ x ∈ I whenever x ∈ I.

Definition 2.1. [9]. An IS-algebra is a non-empty set X with two binary operations
“∗” and “·” and constant 0 satisfying the axioms

(b1) (X, ∗, 0) is a BCI-algebra,
(b2) (X, ·) is a semigroup,
(b3) the operation “·” is distributive (on both sides) over the operation “∗”, that is,

x · (y ∗ z) = (x · y) ∗ (x · z) and (x ∗ y) · z = (x · z) ∗ (y · z) for all x, y, z ∈ X.

Note that the IS-algebra is a generalization of the ring (see [9]).

Example 2.1. [11]. Let X = {0, a, b, c} be a set with Cayley tables:

∗ 0 a b c
0 0 0 c b
a a 0 c b
b b b 0 c
c c c b 0

· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 b c
c 0 0 c b

Then X is an IS-algebra.

Lemma 2.1. [7]. Let X be an IS-algebra. Then we have

(i) 0 · x = x · 0 = 0,
(ii) x ≤ y implies that x · z ≤ y · z and z · x ≤ z · y, for all x, y, z ∈ X.

Definition 2.2. [9]. A non-empty subset A of an IS-algebra X is called a left (resp.
right) I-ideal (here we call it a left (resp. right) IS-ideal) of X if
(i) x · a ∈ A (resp. a · x ∈ A) whenever x ∈ X and a ∈ A,

(ii) for any x, y ∈ X, x ∗ y ∈ A and y ∈ A imply that x ∈ A.
Both a left and right IS-ideal is called IS-ideal.

Definition 2.3. [8] An IS-ideal A of an IS-algebra X is said to be closed if x ∈ A
implies 0 ∗ x ∈ A.

Definition 2.4. [10] Let X, Y be IS-algebras. A mapping θ : X → Y is called a
homomorphism if for all a, b ∈ X, θ(a ∗ b) = θ(a) ∗ θ(b) and θ(a · b) = θ(a) · θ(b).
Theorem 2.1. If X is an IS-algebra, then the following are equivalent:

(i) (∀x ∈ X) (Ax = {y ∈ X : y · x = 0} is an IS-ideal of X).
(ii) (∀a, b ∈ X) (if a · b = 0 implies a · z · b = 0 for all z ∈ X).
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Proof. (i) ⇒ (ii) Let a, b ∈ X be such that a · b = 0. Then a ∈ Ab. Hence, a · z ∈ Ab

for every z ∈ X. Thus a · z · b = 0 for all z ∈ X.
(ii) ⇒ (i) Let x, z ∈ X and a ∈ Ax. Then z · a · x = z · 0 = 0. Hence, z · a ∈ Ax. Now
by (ii), a · z · x = 0 for every z ∈ X. Hence, a · z ∈ Ax. Therefore, a · z, z · a ∈ Ax.
Let a, z, x ∈ X be such that a ∗ z ∈ Ax and z ∈ Ax. Then

0 = (a ∗ z) · x
= a · x ∗ z · x
= a · x ∗ 0 (since z ∈ Ax)
= a · x (by (a1)).

Hence, a ∈ Ax. Therefore, Ax is an IS-ideal of X. ¤

3. Strong IS-algebras

Definition 3.1. An IS-algebra X is said to be a strong IS-algebra if

0 ∗ (x · y) = (0 ∗ x) · (0 ∗ y) for all x, y ∈ X.

Definition 3.2. A strong IS-algebra X is said to have an identity if there is an
element e ∈ X with

e · x = x · e = x for all x ∈ X.

Example 3.1. Let X = {0, a, b, c} be a set with Cayley tables:

∗ 0 a b c
0 0 0 b b
a a 0 c b
b b b 0 0
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b c

Then, by routine calculations, it can be seen that X is a strong IS-algebra with
identity c.

Proposition 3.1. Let X be a strong IS-algebra. Then

(i) 0 ∗ (x · y) = 0 ∗ (0 ∗ (x · y)) for any x, y ∈ X.
(ii) If x · y = 0, then x · (y ∗ z) = (0 ∗ x) · (0 ∗ z) for any x, y, z ∈ X.
(iii) If x · z = 0, then (x ∗ y) · z = (0 ∗ y) · (0 ∗ z) for any x, y, z ∈ X.

Theorem 3.1. Let X be a strong IS-algebra. Then the set H = {x ∈ X | 0 ∗ x = 0}
is an IS-ideal of X.

Proof. (i) Let y ∈ X and a ∈ H. Then

0 ∗ (y · a) = (0 ∗ y) · (0 ∗ a)
= (0 ∗ y) · 0
= 0

and
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0 ∗ (a · y) = (0 ∗ a) · (0 ∗ y)
= 0 · (0 ∗ y)
= 0

Hence, y · a, a · y ∈ H.
(ii) For a, y ∈ X, a ∗ y ∈ H and y ∈ H, we have

0 = 0 ∗ (a ∗ y)
= (0 ∗ a) ∗ (0 ∗ y)
= (0 ∗ a) ∗ 0
= (0 ∗ a).

Hence, a ∈ H. Therefore, H is an IS -ideal of X. ¤
Let ρ be a congruence relation on X, that is, ρ is an equivalence relation on X

such that (x, y) ∈ ρ implies (x ∗ z, y ∗ z) ∈ ρ, (z ∗ x, z ∗ y) ∈ ρ, (x · z, y · z) ∈ ρ, and
(z · x, z · y) ∈ ρ for all z ∈ X. The set of all equivalence classes of X with respect
to ρ will be denoted by X�ρ. On X�ρ we define two operations, ∗, ·, as follows:
[x]ρ ∗ [y]ρ = [x ∗ y]ρ and [x]ρ · [y]ρ = [x · y]ρ for all [x]ρ , [y]ρ ∈ X�ρ. It is clear that
such operation is well-defined, but (X�ρ, ∗, [0]ρ) may not be a BCI-algebra, because
X�ρ does not satisfy the fourth condition of a BCI-algebra. (see [4])

Proposition 3.2. [4] If ρ is a congruence relation on a BCI-algebra G, then the
following are equivalent:

(1) If x ∗ y ∈ [0]ρ and y ∗ x ∈ [0]ρ, then (x, y) ∈ ρ,

(2) ρ is regular, i.e., [x]ρ ∗ [y]ρ = [0]ρ = [y]ρ ∗ [x]ρ ,

(3) (G�ρ, ∗, [0]ρ) is a BCI-algebra.

Theorem 3.2. Let ρ be a regular congruence relation on a strong IS-algebra X. Then
X�ρ is a strong IS-algebra.

Proof. From Proposition 3.2 it follows that (X�ρ, ∗) is a BCI-algebra. Also, (X�ρ, ·)
is a semigroup. For every [x]ρ , [y]ρ , [z]ρ ∈ X�ρ, we have

[x]ρ ·
(
[y]ρ ∗ [z]ρ

)
= [x]ρ · [y ∗ z]ρ
= [x · (y ∗ z)]ρ
= [(x · y) ∗ (x · z)]ρ
= [x · y]ρ ∗ [x · z]ρ
= [x]ρ · [y]ρ ∗ [x]ρ · [z]ρ

and

(
[x]ρ ∗ [y]ρ

)
· [z]ρ = [x ∗ y]ρ · [z]ρ

= [(x ∗ y) · z]ρ
= [(x · z) ∗ (y · z)]ρ
= [x · z]ρ ∗ [y · z]ρ
= [x]ρ · [z]ρ ∗ [y]ρ · [z]ρ .
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Hence X�ρ is an IS-algebra. For every [x]ρ , [y]ρ ∈ X�ρ, we have

[0]ρ ∗
(
[x]ρ · [y]ρ

)
= [0]ρ ∗ [x · y]ρ
= [0 ∗ (x · y)]ρ
= [(0 ∗ x) · (0 ∗ y)]ρ
= [0 ∗ x]ρ · [0 ∗ y]ρ

=
(
[0]ρ ∗ [x]ρ

)
·
(
[0]ρ ∗ [y]ρ

)
.

Therefore, X�ρ is a strong IS-algebra. ¤

Theorem 3.3. If ρ is a congruence relation on an IS-algebra X, then [0]ρ is a closed
IS-ideal.

Proof. Let a ∈ [0]ρ , x ∈ X. Then (a, 0) ∈ ρ and hence (a · x, 0 · x) = (a · x, 0) ∈ ρ,

(x · a, x · 0) = (x · a, 0) ∈ ρ. Thus, a · x ∈ [0]ρ and x · a ∈ [0]ρ .

Let x, y ∈ X be such that x ∗ y ∈ [0]ρ and y ∈ [0]ρ . Then (x ∗ y, 0) ∈ ρ and (y, 0) ∈ ρ.

Since, (y, 0) ∈ ρ, it follows that (x ∗ y, x ∗ 0) = (x ∗ y, x) ∈ ρ. So, (x, 0) ∈ ρ. Hence,
x ∈ [0]ρ . Therefore, [0]ρ is an IS-ideal.
If x ∈ [0]ρ , then (x, 0) ∈ ρ and hence (0 ∗x, 0 ∗ 0) = (0 ∗x, 0) ∈ ρ, that is, 0 ∗x ∈ [0]ρ .

Therefore, [0]ρ is a closed IS-ideal. ¤

Proposition 3.3. Let ρ be a regular congruence relation on a strong IS-algebra X.
Then the mapping θ : X → X�ρ defined by θ(x) = [x]ρ , for all x ∈ X is a homo-
morphism.

4. Strong IS-algebra endomorphisms

Definition 4.1. A mapping η : X → X on an strong IS-algebra X is called an
endomorphism if for all x, y ∈ X, η(x ∗ y) = η(x) ∗ η(y) and η(x · y) = η(x) · η(y).

The set of End(X) of all endomorphisms of X forms a semigroup under the binary
operation of their composition (◦). Let η : X → X be an endomorphism of strong
IS-algebra. Then the set {x ∈ X | η(x) = 0} is called the kernel of η, and denoted by
ker η.

Proposition 4.1. If η is an endomorphism of a strong IS-algebra X then

(i) η(0) = 0.
(ii) η(0 ∗ x) = 0 ∗ η(x)) for all x ∈ X.
(iii) If x · y = 0, then η(x) · η(y) = 0 for all x, y ∈ X.
(iv) If η(x) = 0, then η(x · y) = 0 for all x, y ∈ X.
(v) If η(y) = 0, then η(x · y) = 0 for all x, y ∈ X.
(vi) If x ≤ y, then η(x) ≤ η(y) for all x, y ∈ X.
(vii) If x ≤ y, then η(x · z) ≤ η(y · z) and η(z · x) ≤ η(z · y) for all x, y, z ∈ X.
(viii) If A is left (resp. right) IS-ideal of X, then so is η(A).
(ix) ker η is a closed IS-ideal of X.

Theorem 4.1. Let η be an endomorphism of a strong IS-algebra X. Then η is one-
to-one if and only if ker η = {0} .
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Proof. Assume that η is one-to-one and let x ∈ ker η. Then η(x) = 0 = η(0). Thus
x = 0, i.e., ker η = {0} . Conversely suppose that ker η = {0} . Let x, y ∈ X such that
η(x) = η(y). It follows that η(x∗y) = η(x)∗η(y) = 0 and η(y∗x) = η(y)∗η(x) = 0. So,
x∗y, y∗x ∈ ker η. Thus x∗y = y∗x = 0. Hence, x = y. Therefore, η is one-to-one. ¤

Theorem 4.2. Let η be an endomorphism of a strong IS-algebra X. If η is idempotent,
i.e., η(η(x)) = η(x) for all x ∈ X, then η is one-to-one if and only if η is the identity
map.

Proof. =⇒) Suppose η is one-to-one. For any x ∈ X, we have η(x ∗ η(x)) = η(x) ∗
η(η(x)) = η(x) ∗ η(x) = 0 = η(0) and so x ∗ η(x) = 0 for any x ∈ X. Similarly,
η(x) ∗ x = 0 for any x ∈ X. Therefore, η(x) = x for any x ∈ X so that, η is the
identity map.
⇐=) Obvious. ¤

Proposition 4.2. Let η be an endomorphism of a strong IS-algebra X and η−1(0) =
{0} . Then η(x) ≤ η(y) imply x ≤ y.

Proof. If η(x) ≤ η(y), then we have η(x ∗ y) = η(x) ∗ η(y) = 0. Hence, x ∗ y = 0, and
so we obtain x ≤ y. ¤

Theorem 4.3. Let X be a strong IS-algebra and θ ∈ End(X). Then the set Kθ =
{(x, y) ∈ X ×X | θ(x) = θ(y)} is a congruence relation on X.

Proof. Clearly, Kθ is an equivalence relation on X. Let x, y ∈ X be such that (x, y) ∈
Kθ. Then θ(x) = θ(y), which implies that θ(x∗z) = θ(x)∗θ(z) = θ(y)∗θ(z) = θ(y∗z),
and θ(x · z) = θ(x) · θ(z) = θ(y) · θ(z) = θ(y · z). It follows that (x ∗ z, y ∗ z) and
(x · z, y · z) ∈ Kθ for all z ∈ X. The proof of (z ∗ x, z ∗ y), (z · x, z · y) ∈ Kθ for all
z ∈ X is similar. Therefore, Kθ is a congruence relation on X. ¤

Definition 4.2. Let X be a strong IS-algebra. For a fixed element x ∈ X, the mapping
Mx : X → X defined by Mx(y) = x ∗ y for all y ∈ X, is called left map on X. (see
[1]).

Definition 4.3. Let X be a strong IS-algebra. For a fixed element x ∈ X, the mapping
Nx : X → X defined by Nx(y) = y ∗ x for all y ∈ X, is called right map on X. (see
[1]).

It is easy to verify the following: (Nx(y) = My(x), for all x, y ∈ X), N0 = N−1
0 =

idX .

Proposition 4.3. Let X be a strong IS-algebra. If M = {Mx | x ∈ X} and N =
{Nx | x ∈ X} . Then the left mappings of the set (M, ◦) compose on X holding the
following interacting properties to (M, ◦) for all x, y ∈ X.

(a) N0 ◦Mx = Mx = Mx ◦N0.
(b) Nx·y(0) = M0(x) ·M0(y).
(c) Mx∗y = Ny ◦Mx.
(d) Nx ◦Mx = M0.

Proof. Routine. ¤

Theorem 4.4. Let X be a strong IS-algebra. Then for all x, y ∈ X, the following
hold: for every x, y ∈ X.
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(1) If x ≤ y, then M0(x) = M0(y).
(2) if Mx ≤ My, then x ≤ y.
(3) x = y if and only if Mx = My.

Proof. (1) M0(x) = 0 ∗ x = (x ∗ y) ∗ x = (x ∗ x) ∗ y = 0 ∗ y = M0(y).
(2) Suppose Mx ≤ My. Then Mx(z) ∗My(z) = 0, for all z ∈ X. Thus we have

x ∗ y = (x ∗ y) ∗ 0 = (x ∗ y) ∗ (y ∗ y) = Mx(y) ∗My(y) = 0,

and so x ≤ y.
(3) Necessity is obvious. If Mx = My, then

x ∗ y = Mx(y) = My(y) = 0 = Mx(x) = My(x) = y ∗ x.

It follows that x ∗ y = y ∗ x = 0. Therefore, x = y. ¤
Proposition 4.4. Let X be a strong IS-algebra and θ ∈ End(X). Then θ ◦ M0 =
M0 ◦ θ.

Proof. Let x ∈ X. Then

(θ ◦M0)(x) = θ(M0(x))
= θ(0 ∗ x)
= θ(0) ∗ θ(x)
= 0 ∗ θ(x)
= M0(θ(x))
= (M0 ◦ θ)(x).

¤
Theorem 4.5. Let X be a strong IS-algebra. The only endomorphism of X in M is
M0, where M = {Mx | x ∈ X} .

Proof. (i) For any x, y ∈ X, we have

M0(x ∗ y) = 0 ∗ x ∗ y

= (0 ∗ x) ∗ (0 ∗ y)
= M0(x) ∗M0(y).

(ii) For any x, y ∈ X, we have

M0(x · y) = 0 ∗ (x · y)
= (0 ∗ x) · (0 ∗ y)
= M0(x) ·M0(y).

Therefore, M0 is an endomorphism of X. Now, suppose that Mz is an endomorphism
for non-zero z in X. So, z = z ∗ 0 = Mz(0) = Mz(0 ∗ 0) = Mz(0) ∗Mz(0) = 0. Thus,
we have the contradiction z 6= 0 and z = 0. Therefore, the only endomorphism of X
in M is M0. ¤
Theorem 4.6. Let X be a strong IS-algebra, and let ~, ¯ be two binary operations
on End(X) defined as (γ ~ δ)(x) = γ(x) ∗ δ(x) and (γ ¯ δ)(x) = γ(x) · δ(x) for all
γ, δ ∈ End(X) and x ∈ X. Then End(X) is a strong IS-algebra.
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