## On strong IS-algebras

Ali H. Handam


#### Abstract

IS-algebras with additional condition, so called strong IS-algebras, are introduced, and some properties are investigated. We introduced the notion of a strong IS-algebra endomorphisms. In addition, a congruence relation on a strong IS-algebras is defined. As well as some properties of left and right mappings of strong IS-algebras are investigated.

2010 Mathematics Subject Classification. Primary 06F35, 03G25; Secondary 08A35. Key words and phrases. IS-algebras, strong IS-algebras, endomorophism, left and right mappings.


## 1. Introduction

Imai and Iséki [5] in 1966 introduced the notion of a BCK-algebra. In the same year, Iséki introduced BCI-algebras [6] as a super class of the class of BCK-algebras. In 1993, Jun et al. [7] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI-semigroup/BCI-monoid/ BCI-group. In 1998, for the convenience of study, Jun et al. [9] renamed the BCI-semigroup (respectively, BCImonoid and BCI-group) as the IS-algebra (respectively, IM-algebra and IG-algebra) and studied further properties of these algebras. Not long ago, Park et al. [10] studied the isomorphism theorems in IS-algebras.

Dar introduced the notions of left and right mappings over BCK-algebras in [1] and further discussed in [2]. The notions of left and right mappings over BCI- algebras have been discussed in [3]. In this paper, we discussed IS-algebras with additional condition, so called strong IS-algebras, and investigated several properties. We introduced the notion of strong IS-algebra endomorphisms. Some more properties of left and right mappings of strong IS-algebras are investigated.

## 2. Preliminaries

The following definitions and notations will be used throughout this paper.
By a BCI-algebra we mean an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following conditions: for every $x, y, z \in X$,
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $x * y=0$ and $y * x=0$ imply $x=y$.

A BCI-algebra $X$ satisfying $0 \leq x$ for all $x \in X$ is called a BCK-algebra. In any BCI-algebra $X$ one can define a partial order " $\leq$ " by putting $x \leq y$ if and only if $x * y=0$.
A BCI-algebra $X$ has the following properties for any $x, y, z \in X$ :

[^0](a1) $x * 0=x$,
(a2) $(x * y) * z=(x * z) * y$,
(a3) $x \leq y$ implies that $(x * z) \leq(y * z)$ and $(z * y) \leq(z * x)$,
(a4) $(x * z) *(y * z) \leq x * y$,
(a5) $x *(x *(x * y))=x * y$,
(a6) $0 *(x * y)=(0 * x) *(0 * y)$,
(a7) $0 *(0 *((x * z) *(y * z)))=(0 * y) *(0 * x)$.
A non-empty subset $I$ of a BCK/BCI-algebra $X$ is called an ideal of $X$ if it satisfies: (i) $0 \in I$ and (ii) if $x * y \in I$ and $y \in I$ implies $x \in I$ for all $x, y \in X$. Any ideal $I$ has the property: $y \in I$ and $x \leq y$ imply $x \in I$. A non-empty subset $D$ of a BCI-algebra $X$ is called a subalgebra of $X$ if $x * y \in D$ whenever $x, y \in D$. In general, an ideal $I$ of a BCI-algebra $X$ need not be a subalgebra. If an ideal $I$ is also a subalgebra of a BCI-algebra $X$, we say that $I$ is a closed ideal, equivalently, an ideal $I$ is closed if and only if $0 * x \in I$ whenever $x \in I$.
Definition 2.1. [9]. An IS-algebra is a non-empty set $X$ with two binary operations "*" and "" and constant 0 satisfying the axioms
(b1) $(X, *, 0)$ is a BCI-algebra,
(b2) $(X, \cdot)$ is a semigroup,
(b3) the operation "." is distributive (on both sides) over the operation "*", that is, $x \cdot(y * z)=(x \cdot y) *(x \cdot z)$ and $(x * y) \cdot z=(x \cdot z) *(y \cdot z)$ for all $x, y, z \in X$.
Note that the IS-algebra is a generalization of the ring (see [9]).
Example 2.1. [11]. Let $X=\{0, a, b, c\}$ be a set with Cayley tables:

| $*$ | 0 | $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $c$ | $b$ |
| $a$ | $a$ | 0 | $c$ | $b$ |
| $b$ | $b$ | $b$ | 0 | $c$ |
| $c$ | $c$ | $c$ | $b$ | 0 |


| $\cdot$ | 0 | $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| $a$ | 0 | 0 | 0 | 0 |
| $b$ | 0 | 0 | $b$ | $c$ |
| $c$ | 0 | 0 | $c$ | $b$ |

Then $X$ is an IS-algebra.
Lemma 2.1. [7]. Let $X$ be an IS-algebra. Then we have
(i) $0 \cdot x=x \cdot 0=0$,
(ii) $x \leq y$ implies that $x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$, for all $x, y, z \in X$.

Definition 2.2. [9]. A non-empty subset $A$ of an $\boldsymbol{I S}$-algebra $X$ is called a left (resp. right) I-ideal (here we call it a left (resp. right) IS-ideal) of $X$ if
(i) $x \cdot a \in A$ (resp. $a \cdot x \in A$ ) whenever $x \in X$ and $a \in A$,
(ii) for any $x, y \in X, x * y \in A$ and $y \in A$ imply that $x \in A$.

Both a left and right IS-ideal is called IS-ideal.
Definition 2.3. [8] An IS-ideal $A$ of an IS-algebra $X$ is said to be closed if $x \in A$ implies $0 * x \in A$.
Definition 2.4. [10] Let $X, Y$ be IS-algebras. A mapping $\theta: X \rightarrow Y$ is called $a$ homomorphism if for all $a, b \in X, \theta(a * b)=\theta(a) * \theta(b)$ and $\theta(a \cdot b)=\theta(a) \cdot \theta(b)$.
Theorem 2.1. If $X$ is an IS-algebra, then the following are equivalent:
(i) $(\forall x \in X)\left(\mathcal{A}_{x}=\{y \in X: y \cdot x=0\}\right.$ is an IS-ideal of $\left.X\right)$.
(ii) $(\forall a, b \in X)$ (if $a \cdot b=0$ implies $a \cdot z \cdot b=0$ for all $z \in X$ ).

Proof. $(i) \Rightarrow(i i)$ Let $a, b \in X$ be such that $a \cdot b=0$. Then $a \in \mathcal{A}_{b}$. Hence, $a \cdot z \in \mathcal{A}_{b}$ for every $z \in X$. Thus $a \cdot z \cdot b=0$ for all $z \in X$.
(ii) $\Rightarrow$ (i) Let $x, z \in X$ and $a \in \mathcal{A}_{x}$. Then $z \cdot a \cdot x=z \cdot 0=0$. Hence, $z \cdot a \in \mathcal{A}_{x}$. Now by (ii), $a \cdot z \cdot x=0$ for every $z \in X$. Hence, $a \cdot z \in \mathcal{A}_{x}$. Therefore, $a \cdot z, z \cdot a \in \mathcal{A}_{x}$.
Let $a, z, x \in X$ be such that $a * z \in \mathcal{A}_{x}$ and $z \in \mathcal{A}_{x}$. Then

$$
\begin{array}{rlr}
0 & =(a * z) \cdot x & \\
& =a \cdot x * z \cdot x & \\
& =a \cdot x * 0 \quad & \left(\text { since } z \in \mathcal{A}_{x}\right) \\
& =a \cdot x \quad & (\text { by }(a 1)) .
\end{array}
$$

Hence, $a \in \mathcal{A}_{x}$. Therefore, $\mathcal{A}_{x}$ is an IS-ideal of $X$.

## 3. Strong IS-algebras

Definition 3.1. An $\boldsymbol{I} \boldsymbol{S}$-algebra $X$ is said to be a strong $\boldsymbol{I S}$-algebra if

$$
0 *(x \cdot y)=(0 * x) \cdot(0 * y) \quad \text { for all } x, y \in X
$$

Definition 3.2. A strong IS-algebra $X$ is said to have an identity if there is an element $e \in X$ with

$$
e \cdot x=x \cdot e=x \quad \text { for all } x \in X
$$

Example 3.1. Let $X=\{0, a, b, c\}$ be a set with Cayley tables:

| $*$ | 0 | $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $b$ | $b$ |
| $a$ | $a$ | 0 | $c$ | $b$ |
| $b$ | $b$ | $b$ | 0 | 0 |
| $c$ | $c$ | $b$ | $a$ | 0 |


| $\cdot$ | 0 | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| $a$ | 0 | $a$ | 0 | $a$ |
| $b$ | 0 | 0 | $b$ | $b$ |
| $c$ | 0 | $a$ | $b$ | $c$ |

Then, by routine calculations, it can be seen that $X$ is a strong IS-algebra with identity $c$.

Proposition 3.1. Let $X$ be a strong IS-algebra. Then
(i) $0 *(x \cdot y)=0 *(0 *(x \cdot y))$ for any $x, y \in X$.
(ii) If $x \cdot y=0$, then $x \cdot(y * z)=(0 * x) \cdot(0 * z)$ for any $x, y, z \in X$.
(iii) If $x \cdot z=0$, then $(x * y) \cdot z=(0 * y) \cdot(0 * z)$ for any $x, y, z \in X$.

Theorem 3.1. Let $X$ be a strong IS-algebra. Then the set $H=\{x \in X \mid 0 * x=0\}$ is an IS-ideal of $X$.
Proof. (i) Let $y \in X$ and $a \in H$. Then

$$
\begin{aligned}
0 *(y \cdot a) & =(0 * y) \cdot(0 * a) \\
& =(0 * y) \cdot 0 \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
0 *(a \cdot y) & =(0 * a) \cdot(0 * y) \\
& =0 \cdot(0 * y) \\
& =0
\end{aligned}
$$

Hence, $y \cdot a, a \cdot y \in H$.
(ii) For $a, y \in X, a * y \in H$ and $y \in H$, we have

$$
\begin{aligned}
0 & =0 *(a * y) \\
& =(0 * a) *(0 * y) \\
& =(0 * a) * 0 \\
& =(0 * a) .
\end{aligned}
$$

Hence, $a \in H$. Therefore, $H$ is an $I S$-ideal of $X$.
Let $\rho$ be a congruence relation on $X$, that is, $\rho$ is an equivalence relation on $X$ such that $(x, y) \in \rho$ implies $(x * z, y * z) \in \rho,(z * x, z * y) \in \rho,(x \cdot z, y \cdot z) \in \rho$, and $(z \cdot x, z \cdot y) \in \rho$ for all $z \in X$. The set of all equivalence classes of $X$ with respect to $\rho$ will be denoted by $X / \rho$. On $X / \rho$ we define two operations,, , $\cdot$, as follows: $[x]_{\rho} *[y]_{\rho}=[x * y]_{\rho}$ and $[x]_{\rho} \cdot[y]_{\rho}=[x \cdot y]_{\rho}$ for all $[x]_{\rho},[y]_{\rho} \in X / \rho$. It is clear that such operation is well-defined, but $\left(X / \rho, *,[0]_{\rho}\right)$ may not be a BCI-algebra, because $X / \rho$ does not satisfy the fourth condition of a BCI-algebra. (see [4])
Proposition 3.2. [4] If $\rho$ is a congruence relation on a BCI-algebra $G$, then the following are equivalent:
(1) If $x * y \in[0]_{\rho}$ and $y * x \in[0]_{\rho}$, then $(x, y) \in \rho$,
(2) $\rho$ is regular, i.e., $[x]_{\rho} *[y]_{\rho}=[0]_{\rho}=[y]_{\rho} *[x]_{\rho}$,
(3) $\left(G / \rho, *,[0]_{\rho}\right)$ is a BCI-algebra.

Theorem 3.2. Let $\rho$ be a regular congruence relation on a strong IS-algebra $X$. Then $X / \rho$ is a strong IS-algebra.
Proof. From Proposition 3.2 it follows that $(X / \rho, *)$ is a BCI-algebra. Also, $(X / \rho, \cdot)$ is a semigroup. For every $[x]_{\rho},[y]_{\rho},[z]_{\rho} \in X / \rho$, we have

$$
\begin{aligned}
{[x]_{\rho} \cdot\left([y]_{\rho} *[z]_{\rho}\right) } & =[x]_{\rho} \cdot[y * z]_{\rho} \\
& =[x \cdot(y * z)]_{\rho} \\
& =[(x \cdot y) *(x \cdot z)]_{\rho} \\
& =[x \cdot y]_{\rho} *[x \cdot z]_{\rho} \\
& =[x]_{\rho} \cdot[y]_{\rho} *[x]_{\rho} \cdot[z]_{\rho}
\end{aligned}
$$

and

$$
\begin{aligned}
\left([x]_{\rho} *[y]_{\rho}\right) \cdot[z]_{\rho} & =[x * y]_{\rho} \cdot[z]_{\rho} \\
& =[(x * y) \cdot z]_{\rho} \\
& =[(x \cdot z) *(y \cdot z)]_{\rho} \\
& =[x \cdot z]_{\rho} *[y \cdot z]_{\rho} \\
& =[x]_{\rho} \cdot[z]_{\rho} *[y]_{\rho} \cdot[z]_{\rho}
\end{aligned}
$$

Hence $X / \rho$ is an IS-algebra. For every $[x]_{\rho},[y]_{\rho} \in X / \rho$, we have

$$
\begin{aligned}
{[0]_{\rho} *\left([x]_{\rho} \cdot[y]_{\rho}\right) } & =[0]_{\rho} *[x \cdot y]_{\rho} \\
& =[0 *(x \cdot y)]_{\rho} \\
& =[(0 * x) \cdot(0 * y)]_{\rho} \\
& =[0 * x]_{\rho} \cdot[0 * y]_{\rho} \\
& =\left([0]_{\rho} *[x]_{\rho}\right) \cdot\left([0]_{\rho} *[y]_{\rho}\right) .
\end{aligned}
$$

Therefore, $X / \rho$ is a strong IS-algebra.
Theorem 3.3. If $\rho$ is a congruence relation on an IS-algebra $X$, then $[0]_{\rho}$ is a closed IS-ideal.

Proof. Let $a \in[0]_{\rho}, x \in X$. Then $(a, 0) \in \rho$ and hence $(a \cdot x, 0 \cdot x)=(a \cdot x, 0) \in \rho$, $(x \cdot a, x \cdot 0)=(x \cdot a, 0) \in \rho$. Thus, $a \cdot x \in[0]_{\rho}$ and $x \cdot a \in[0]_{\rho}$.
Let $x, y \in X$ be such that $x * y \in[0]_{\rho}$ and $y \in[0]_{\rho}$. Then $(x * y, 0) \in \rho$ and $(y, 0) \in \rho$. Since, $(y, 0) \in \rho$, it follows that $(x * y, x * 0)=(x * y, x) \in \rho$. So, $(x, 0) \in \rho$. Hence, $x \in[0]_{\rho}$. Therefore, $[0]_{\rho}$ is an IS-ideal.
If $x \in[0]_{\rho}$, then $(x, 0) \in \rho$ and hence $(0 * x, 0 * 0)=(0 * x, 0) \in \rho$, that is, $0 * x \in[0]_{\rho}$. Therefore, $[0]_{\rho}$ is a closed IS-ideal.

Proposition 3.3. Let $\rho$ be a regular congruence relation on a strong IS-algebra $X$. Then the mapping $\theta: X \rightarrow X / \rho$ defined by $\theta(x)=[x]_{\rho}$, for all $x \in X$ is a homomorphism.

## 4. Strong IS-algebra endomorphisms

Definition 4.1. A mapping $\eta: X \rightarrow X$ on an strong $I S$-algebra $X$ is called an endomorphism if for all $x, y \in X, \eta(x * y)=\eta(x) * \eta(y)$ and $\eta(x \cdot y)=\eta(x) \cdot \eta(y)$.

The set of $\operatorname{End}(X)$ of all endomorphisms of $X$ forms a semigroup under the binary operation of their composition (o). Let $\eta: X \rightarrow X$ be an endomorphism of strong IS-algebra. Then the set $\{x \in X \mid \eta(x)=0\}$ is called the kernel of $\eta$, and denoted by ker $\eta$.

Proposition 4.1. If $\eta$ is an endomorphism of a strong IS-algebra $X$ then
(i) $\eta(0)=0$.
(ii) $\eta(0 * x)=0 * \eta(x))$ for all $x \in X$.
(iii) If $x \cdot y=0$, then $\eta(x) \cdot \eta(y)=0$ for all $x, y \in X$.
(iv) If $\eta(x)=0$, then $\eta(x \cdot y)=0$ for all $x, y \in X$.
(v) If $\eta(y)=0$, then $\eta(x \cdot y)=0$ for all $x, y \in X$.
(vi) If $x \leq y$, then $\eta(x) \leq \eta(y)$ for all $x, y \in X$.
(vii) If $x \leq y$, then $\eta(x \cdot z) \leq \eta(y \cdot z)$ and $\eta(z \cdot x) \leq \eta(z \cdot y)$ for all $x, y, z \in X$.
(viii) If $A$ is left (resp. right) IS-ideal of $X$, then so is $\eta(A)$.
$(i x)$ ker $\eta$ is a closed IS-ideal of $X$.
Theorem 4.1. Let $\eta$ be an endomorphism of a strong IS-algebra $X$. Then $\eta$ is one-to-one if and only if $\operatorname{ker} \eta=\{0\}$.

Proof. Assume that $\eta$ is one-to-one and let $x \in \operatorname{ker} \eta$. Then $\eta(x)=0=\eta(0)$. Thus $x=0$, i.e., $\operatorname{ker} \eta=\{0\}$. Conversely suppose that $\operatorname{ker} \eta=\{0\}$. Let $x, y \in X$ such that $\eta(x)=\eta(y)$. It follows that $\eta(x * y)=\eta(x) * \eta(y)=0$ and $\eta(y * x)=\eta(y) * \eta(x)=0$. So, $x * y, y * x \in \operatorname{ker} \eta$. Thus $x * y=y * x=0$. Hence, $x=y$. Therefore, $\eta$ is one-to-one.

Theorem 4.2. Let $\eta$ be an endomorphism of a strong IS-algebra $X$. If $\eta$ is idempotent, i.e., $\eta(\eta(x))=\eta(x)$ for all $x \in X$, then $\eta$ is one-to-one if and only if $\eta$ is the identity map.

Proof. $\Longrightarrow)$ Suppose $\eta$ is one-to-one. For any $x \in X$, we have $\eta(x * \eta(x))=\eta(x) *$ $\eta(\eta(x))=\eta(x) * \eta(x)=0=\eta(0)$ and so $x * \eta(x)=0$ for any $x \in X$. Similarly, $\eta(x) * x=0$ for any $x \in X$. Therefore, $\eta(x)=x$ for any $x \in X$ so that, $\eta$ is the identity map.
$\Longleftarrow)$ Obvious.
Proposition 4.2. Let $\eta$ be an endomorphism of a strong IS-algebra $X$ and $\eta^{-1}(0)=$ $\{0\}$. Then $\eta(x) \leq \eta(y)$ imply $x \leq y$.
Proof. If $\eta(x) \leq \eta(y)$, then we have $\eta(x * y)=\eta(x) * \eta(y)=0$. Hence, $x * y=0$, and so we obtain $x \leq y$.

Theorem 4.3. Let $X$ be a strong IS-algebra and $\theta \in \operatorname{End}(X)$. Then the set $K_{\theta}=$ $\{(x, y) \in X \times X \mid \theta(x)=\theta(y)\}$ is a congruence relation on $X$.

Proof. Clearly, $K_{\theta}$ is an equivalence relation on $X$. Let $x, y \in X$ be such that $(x, y) \in$ $K_{\theta}$. Then $\theta(x)=\theta(y)$, which implies that $\theta(x * z)=\theta(x) * \theta(z)=\theta(y) * \theta(z)=\theta(y * z)$, and $\theta(x \cdot z)=\theta(x) \cdot \theta(z)=\theta(y) \cdot \theta(z)=\theta(y \cdot z)$. It follows that $(x * z, y * z)$ and $(x \cdot z, y \cdot z) \in K_{\theta}$ for all $z \in X$. The proof of $(z * x, z * y),(z \cdot x, z \cdot y) \in K_{\theta}$ for all $z \in X$ is similar. Therefore, $K_{\theta}$ is a congruence relation on $X$.

Definition 4.2. Let $X$ be a strong IS-algebra. For a fixed element $x \in X$, the mapping $M_{x}: X \rightarrow X$ defined by $M_{x}(y)=x * y$ for all $y \in X$, is called left map on $X$. (see [1]).

Definition 4.3. Let $X$ be a strong IS-algebra. For a fixed element $x \in X$, the mapping $N_{x}: X \rightarrow X$ defined by $N_{x}(y)=y * x$ for all $y \in X$, is called right map on $X$. (see [1]).

It is easy to verify the following: $\left(N_{x}(y)=M_{y}(x)\right.$, for all $\left.x, y \in X\right), N_{0}=N_{0}^{-1}=$ $i d_{X}$.
Proposition 4.3. Let $X$ be a strong IS-algebra. If $M=\left\{M_{x} \mid x \in X\right\}$ and $N=$ $\left\{N_{x} \mid x \in X\right\}$. Then the left mappings of the set $(M, \circ)$ compose on $X$ holding the following interacting properties to $(M, \circ)$ for all $x, y \in X$.
(a) $N_{0} \circ M_{x}=M_{x}=M_{x} \circ N_{0}$.
(b) $N_{x \cdot y}(0)=M_{0}(x) \cdot M_{0}(y)$.
(c) $M_{x * y}=N_{y} \circ M_{x}$.
(d) $N_{x} \circ M_{x}=M_{0}$.

Proof. Routine.
Theorem 4.4. Let $X$ be a strong IS-algebra. Then for all $x, y \in X$, the following hold: for every $x, y \in X$.
(1) If $x \leq y$, then $M_{0}(x)=M_{0}(y)$.
(2) if $M_{x} \leq M_{y}$, then $x \leq y$.
(3) $x=y$ if and only if $M_{x}=M_{y}$.

Proof. (1) $M_{0}(x)=0 * x=(x * y) * x=(x * x) * y=0 * y=M_{0}(y)$.
(2) Suppose $M_{x} \leq M_{y}$. Then $M_{x}(z) * M_{y}(z)=0$, for all $z \in X$. Thus we have

$$
x * y=(x * y) * 0=(x * y) *(y * y)=M_{x}(y) * M_{y}(y)=0
$$

and so $x \leq y$.
(3) Necessity is obvious. If $M_{x}=M_{y}$, then

$$
x * y=M_{x}(y)=M_{y}(y)=0=M_{x}(x)=M_{y}(x)=y * x .
$$

It follows that $x * y=y * x=0$. Therefore, $x=y$.
Proposition 4.4. Let $X$ be a strong IS-algebra and $\theta \in \operatorname{End}(X)$. Then $\theta \circ M_{0}=$ $M_{0} \circ \theta$.
Proof. Let $x \in X$. Then

$$
\begin{aligned}
\left(\theta \circ M_{0}\right)(x) & =\theta\left(M_{0}(x)\right) \\
& =\theta(0 * x) \\
& =\theta(0) * \theta(x) \\
& =0 * \theta(x) \\
& =M_{0}(\theta(x)) \\
& =\left(M_{0} \circ \theta\right)(x) .
\end{aligned}
$$

Theorem 4.5. Let $X$ be a strong IS-algebra. The only endomorphism of $X$ in $M$ is $M_{0}$, where $M=\left\{M_{x} \mid x \in X\right\}$.
Proof. (i) For any $x, y \in X$, we have

$$
\begin{aligned}
M_{0}(x * y) & =0 * x * y \\
& =(0 * x) *(0 * y) \\
& =M_{0}(x) * M_{0}(y) .
\end{aligned}
$$

(ii) For any $x, y \in X$, we have

$$
\begin{aligned}
M_{0}(x \cdot y) & =0 *(x \cdot y) \\
& =(0 * x) \cdot(0 * y) \\
& =M_{0}(x) \cdot M_{0}(y) .
\end{aligned}
$$

Therefore, $M_{0}$ is an endomorphism of $X$. Now, suppose that $M_{z}$ is an endomorphism for non-zero $z$ in $X$. So, $z=z * 0=M_{z}(0)=M_{z}(0 * 0)=M_{z}(0) * M_{z}(0)=0$. Thus, we have the contradiction $z \neq 0$ and $z=0$. Therefore, the only endomorphism of $X$ in $M$ is $M_{0}$.

Theorem 4.6. Let $X$ be a strong IS-algebra, and let $\circledast, \odot$ be two binary operations on End $(X)$ defined as $(\gamma \circledast \delta)(x)=\gamma(x) * \delta(x)$ and $(\gamma \odot \delta)(x)=\gamma(x) \cdot \delta(x)$ for all $\gamma, \delta \in \operatorname{End}(X)$ and $x \in X$. Then $\operatorname{End}(X)$ is a strong IS-algebra.

## References

[1] K. H. Dar, A characterization of positive implicative BCK-algebras by self-maps, Math. Japonica 31 (1986), no. 2, 197-199.
[2] K. H. Dar and B. Ahmad, On endomorphisms of BCK-algebras, Math. Japonica 31 (1986), no. 6, 855-857.
[3] K. H. Dar, B. Ahmad and M. A. Chaudhary, On ( $r ; l$ )-system of BCI-algebras, J. Nat. Sciences and Math. 26 (1985), 1-6.
[4] W.A. Dudek, Y.B. Jun and H.S. Kim, Rough set theory applied to BCI-algebras, Quasigroups and Related Systems 9 (2002), 45-54.
[5] Y. Imai and K. Iséki, On axiom systems of propositional calculi, XIV Proc. Japan Academy 42 (1966), 19-22.
[6] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[7] Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam Math. J. 15 (1993), no. 1, 59-64, MR 94j:20071.
[8] Y. B. Jun, E. H. Roh and X. L. Xin, I-ideals generated by a set in IS-algebras, Bull. Korean Math. Soc. 35 (1998), no. 4, 615-624.
[9] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow J. Math. 24 (1998), no. 4, 309-321.
[10] J. K. Park, W. H. Shim and E. H. Roh, On Isomorphism Theorems in IS-Algebras, Soochow J. Math. 27 (2001), no. 2, 153-160.
[11] E. H. Roh, Y. B. Jun and W. H. Shim, Some ideals in IS-algebras, Sci. Math. 2 (1999), no. 3, 315-320.
(Ali H. Handam) Department of Mathematics, Al al-Bayt University, P.O.Box: 130095, Al Mafraq, Jordan
E-mail address: ali.handam@aabu.edu.jo


[^0]:    Received March 29, 2010. Revision received May 15, 2010.

