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On the weak stability of Picard iteration for some contractive
type mappings
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Abstract. We prove a weak stability result for Picard iteration in the class of mappings that
satisfy some contraction condition. Illustrative examples are also given.
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1. Introduction

In [8] there are some examples of mapping that satisfy the following conditions:

d(Tx, Ty) < max {d(x, Tx), d(y, Ty)} (1)

d(Tx, Ty) < max {d(x, Tx), d(y, Ty), d(x, y)} (2)

d(Tx, Ty) < max {d(x, Tx), d(y, Ty), d(x, y), d(x, Ty), d(y, Tx)} (3)

d(Tx, Ty) < max
{

d(x, Tx), d(y, Ty), d(x, y),
d(x, Ty) + d(y, Tx)

2

}
(4)

and the associated Picard iteration is not stable.
On the other hand, in [1] is introduced a weaker concept of stability, called weak

stability and in [27] there is a study of weak stability of iterative procedures for some
coincidence theorems.

The purpose of this paper is to show that for the class of mappings which satisfy
the condition (1)-(4), the Picard iteration is weak stable in the meaning of Definition
2.4.

2. Weak stability of fixed point iteration procedures

The concept of stability of fixed point iteration procedure has been systematically
studied by Harder in her Ph.D. thesis and published in the papers [7],[8]. The stability
of the Picard iteration with respect to α-contractions and Zamfirescu mappings is
given in [8] and both these results being established in the framework of a metric
space setting. It has also been shown that in a normed linear space setting certain
Mann iterations are stable with respect to any Zamfirescu mapping. In the same
setting, a similar result was proved for Kirk’s iteration procedure, in the class of
c-contractions, with 0 ≤ c < 1.
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One of the most general contractive definition for which corresponding stability
results have been obtained in the case of Kirk, Mann and Ishikawa iteration procedures
in arbitrary Banach spaces appears to be the following class of mappings: for (X, d)
a metric space, T : X → X is supposed to satisfy the condition

d (Tx, Ty) ≤ ad(x, y) + Ld(x, Tx) (5)

for some a ∈ [0, 1), L ≥ 0 and for all x, y ∈ D ⊂ X. This condition appears in [15]
and other related results may be found in [14], [19], [20].

The concept of stability is not very precise because of the sequence {yn}∞n=0 which
is arbitrary taken. So, it would be more natural that {yn} to be an approximate
sequence of {xn}. In [1] was introduced a weaker concept of stability, called weak
stability. Therefore, any stable iteration will be also weakly stable but the reverse is
not generally true.

Definition 2.1. [1] Let (X, d) be a metric space and {xn}∞n=1 ⊂ X be a given se-
quence. We shall say that {yn}∞n=0 ∈ X is an approximate sequence of {xn} if, for
any k ∈ N, there exists η = η(k) such that

d(xn, yn) ≤ η, for all n ≥ k.

Remark 2.1. We can have approximate sequences of both convergent and divergent
sequences.

The following result will be useful in the sequel.

Lemma 2.1. [1] The sequence {yn} is an approximate sequence of {xn} if and only if
there exists a decreasing sequence of positive numbers {ηn} converging to some η ≥ 0
such that

d(xn, yn) ≤ ηn, for any n ≥ k (fixed) .

Definition 2.2. [1] Let (X, d) be a metric space and T : X → X be a map. Let {xn}
be an iteration procedure defined by x0 ∈ X and

xn+1 = f(T, xn), n ≥ 0. (6)

Suppose that {xn} converges to a fixed point p of T . If for any approximate
sequence {yn} ⊂ X of {xn}

lim
n→∞

d(yn+1, f(T, yn)) = 0

implies
lim

n→∞
yn = p,

then we shall say that (6) is weakly T-stable or weakly stable with respect to T.

In this paper, we consider a new concept of weak stability which is obtained from
the Definition 2.2 by replacing of the notion of approximate sequence with the notion
of the equivalent sequence.

Definition 2.3. [4] Two sequences {xn}∞n=0 and {yn}∞n=0 are equivalent sequences if

d(xn, yn) → 0, as n →∞.
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Definition 2.4. Let (X, d) be a metric space and T : X → X be a map. Let {xn} be
an iteration procedure defined by x0 ∈ X and

xn+1 = f(T, xn), n ≥ 0. (7)

Suppose that {xn} converges to a fixed point p of T . If for any equivalent sequence
{yn} ⊂ X of {xn}

lim
n→∞

d(yn+1, f(T, yn)) = 0

implies
lim

n→∞
yn = p,

then we shall say that the iteration procedure is weak w2-stable with respect to T.

Remark 2.2. Any equivalent sequence is an approximative sequence but the reverse
is not true, as it is shown in the next example.

Example 2.1.

Let {xn}∞n=0 to be a sequence with xn = n. First, we take an equivalent sequence
of {xn}∞n=0 to be {yn}∞n=0, yn = n + 1

n . In this case, we have that d(yn, xn) = 1
n →

0, n →∞.
Now, we take an approximate sequence of {xn}∞n=0 to be {yn}∞n=0, yn = n + n

2n+1 .

Then, d(yn, xn) = n
2n+1 → 1

2 > 0, n →∞.

The basic results of this paper are the following theorems:

Theorem 2.1. Let (X, d) a complete metric space and T : X → X a mapping
satisfying (1), i.e.,

d(Tx, Ty) < max {d(x, Tx), d(y, Ty)} .

Let {xn}∞n=0 an iterative procedure defined by x0 ∈ X and xn+1 = Txn, for all
n ≥ 0 and the sequence {xn} converges to x∗, the unique fixed point of T.

Then, the Picard iteration is w2-stable.

Proof. Consider {yn}∞n=0 to be an equivalent sequence of {xn}. Then, according to
Definition 2.4, if limn→∞ d(yn+1, Tyn) = 0 implies that limn→∞ yn = x∗, then the
Picard iteration is w2-stable.

In order to prove this, we suppose that limn→∞ d(yn+1, T yn) = 0. Therefore,
∀ε > 0, ∃n0 = n(ε) such that d (yn+1, T yn) < ε, ∀n ≥ n0.

So, d (yn+1, x
∗) ≤ d (yn+1, xn+1) + d (xn+1, x

∗) ≤ d (yn+1, T yn) + d (Tyn, Txn) +
d (xn+1, x

∗) < d (yn+1, T yn) + max {d (xn, Txn) , d (yn, Tyn)}+ d (xn+1, x
∗) .

From the hypothesis, from xn → x∗, we have that d (xn, Txn) = d (xn, xn+1) ≤
d (xn, x∗) + d (x∗, xn+1) → 0.

If max {d (xn, Txn) , d (yn, T yn)} = d (xn, Txn) , by taking to the limit, we obtain
that d (yn+1, x

∗) → 0.
If max {d (xn, Txn) , d (yn, T yn)} = d (yn, T yn) , we have that

d (yn, T yn) ≤ d (yn, xn) + d (xn, xn+1) + d (xn+1, yn+1) + d (yn+1, T yn) .

From Definition 2.3, we have that d (xn, yn) → 0 and by taking to the limit, we obtain
that d (yn+1, x

∗) → 0.
This shows that the Picard iteration is w2-stable with respect to T. ¤
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Theorem 2.2. Let (X, d) a complete metric space and T : X → X a mapping
satisfying (2), i.e.,

d(Tx, Ty) < max {d(x, Tx), d(y, Ty), d(x, y)} .

Let {xn}∞n=0 an iterative procedure defined by x0 ∈ X and xn+1 = Txn, for all
n ≥ 0 and the sequence {xn} converges to x∗, the unique fixed point of T.

Then, the Picard iteration is w2-stable.

Proof. We follow the same assumptions as in Theorem 2.1, by taking {yn}∞n=0 to be
an equivalent sequence of {xn}.

According to Definition 2.4, if limn→∞ d(yn+1, T yn) = 0 implies that limn→∞ yn =
x∗, then the Picard iteration is w2-stable.

Theorem 2.1 shows this result if we consider max {d(x, Tx), d(y, Ty)}. In this
case, there is a new situation, when max could be d(x, y). Therefore, following the
same steps, we get that max {d(xn, Txn), d(yn, T yn), d(xn, yn)} = d(xn, yn). From
Definition 2.3, we have that d(xn, yn) → 0 and by taking to the limit as it is shown
in the above theorem, we obtain the conclusion. ¤

Theorem 2.3. Let (X, d) a complete metric space and T : X → X a mapping
satisfying (3), i.e.,

d(Tx, Ty) < max {d(x, Tx), d(y, Ty), d(x, y), d(x, Ty), d(y, Tx)} .

Let {xn}∞n=0 an iterative procedure defined by x0 ∈ X and xn+1 = Txn, for all
n ≥ 0 and the sequence {xn} converges to x∗, the unique fixed point of T.

Then, the Picard iteration is w2-stable.

Proof. We follow the same assumptions as in Theorem 2.2, where is shown this result
if we consider max {d(x, Tx), d(y, Ty), d(x, y)}. In this case, there are new situations,
when max could be d(x, Ty) or d(y, Tx). Again, we follow the same steps.

If max {d(xn, Txn), d(yn, T yn), d(xn, yn), d(xn, Tyn), d(yn, Txn)} = d(xn, T yn), we
have that d(xn, T yn) ≤ d(xn, yn) + d(yn, T yn). From Definition 2.3, d(xn, yn) → 0
and the expression of d(yn, T yn) was treated in Theorem 2.1.

On the other hand, if max = d(yn, Txn), then d(yn, Txn) ≤ d(yn, xn)+d(xn, Txn).
By taking to the limit in a same way as in above theorems, we obtain the conclusion.

¤

Theorem 2.4. Let (X, d) a complete metric space and T : X → X a mapping
satisfying (4), i.e.,

d(Tx, Ty) < max
{

d(x, Tx), d(y, Ty), d(x, y),
d(x, Ty) + d(y, Tx)

2

}
.

Let {xn}∞n=0 an iterative procedure defined by x0 ∈ X and xn+1 = Txn, for all
n ≥ 0 and the sequence {xn} converges to x∗, the unique fixed point of T.

Then, the Picard iteration is w2-stable.

Proof. We follow the same assumptions as in Theorem 2.3, where is shown this result
if we consider max {d(x, Tx), d(y, Ty), d(x, y), d(x, Ty), d(y, Tx)}. In this case, this is
a new situation, when max could be d(x,Ty)+d(y,Tx)

2 . Then, following the same steps
as in Theorem 2.3, we obtain that d(xn, T yn) → 0 and d(yn, Txn) → 0 so, by taking
to the limit in the whole expression, we get the result. ¤
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3. Examples of weak stable, w2-stable but not stable iterations

In [8] there are some examples of mappings which satisfy the conditions (1)-(4) or
other related ones and their iteration procedures are not stable.

In this paper, we take these examples and study their weak stability and the w2-
stability.

Example 3.1.

Let T : [0, 1] → [0, 1] be given by

Tx =





1
2 , x ∈

[
0,

1
2

]

0, x ∈
(

1
2
, 1

]

where [0, 1] is endowed with the usual metric. T is continuous at each point of
[0, 1] except at 1

2 and T has an unique fixed point at 1
2 .

As shown in [8], T satisfies the condition

d(Tx, Ty) < max {d(x, Tx), d(y, Ty)} .

Indeed, first let x ∈ [
0, 1

2

]
and y ∈ [

1
2 , 1

]
. Then, |Tx − Ty| = | 12 − 0| = 1

2 <

max {|x− Tx|, |y − Ty|} < max
{| 12 − x|, |y − 0|} = max

{(
1
2 − x

)
, y

}
= y. Now, let

x ∈ [
0, 1

2

]
and y ∈ [

0, 1
2

]
, with x 6= y. Then |Tx−Ty| = 0 < max {|x− Tx|, |y − Ty|} =

max
{| 12 − x|, | 12 − y|} = max

{(
1
2 − x

)
,
(

1
2 − y

)}
. If x ∈ [

1
2 , 1

]
and y ∈ [

1
2 , 1

]
, with

x 6= y, |Tx− Ty| = 0 < max {|x− Tx|, |y − Ty|} = max {x, y} .
In order to study the T -stability, let x0 be any point in [0, 1] and xn+1 = Txn, for

n = 0, 1, 2, · · · . Then,

x1 = Tx0 =





1
2 , x0 ∈

[
0,

1
2

]

0, x0 ∈
(

1
2
, 1

]

But x2 = Tx1 = 1
2 for either case. Furthermore, xn = 1

2 , ∀n ≥ 2 and limn→∞ xn =
1
2 = T

(
1
2

)
.

Now, let {yn}∞n=0 = 1
2 , 1

4 , 1
2 + 1

42 , 1
43 , 1

2 + 1
44 , 1

45 , · · · . Observe that {yn}∞n=0 is a
divergent sequence.

If n is a positive even integer, then

εn =
∣∣∣∣

1
4n+1

− T

(
1
2

+
1
4n

)∣∣∣∣ =
∣∣∣∣

1
4n+1

− 0
∣∣∣∣ =

1
4n+1

.

If n is a positive odd integer, then

εn =
∣∣∣∣
(

1
2

+
1

4n+1

)
− T

(
1
4n

)∣∣∣∣ =
1
2

+
1

4n+1
− 1

2
=

1
4n+1

.

Thus,

lim
n→∞

εn = lim
n→∞

1
4n+1

= 0,

but {yn}∞n=0 does not converge to 1
2 . So, the Picard iteration is not T -stable.

In order to study the T -weak stability, we take an approximate sequence {yn}∞n=0

of {xn}. Then, there exists a decreasing sequence of nonnegative numbers {ηn}
converging to some η ≥ 0 for n →∞ such that
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|xn − yn| ≤ ηn, n ≥ k, k fixed.

Then, −ηn ≤ xn − yn ≤ ηn and results that 0 ≤ yn ≤ xn + ηn, n ≥ k.
Since xn = 1

2 , for n ≥ 2, we obtain 0 ≤ yn ≤ 1
2 + ηn, n ≥ k1 = max{2, k}.

For every choice of nonnegative ηn we have that 0 ≤ yn ≤ 1, ∀n ≥ k1. So, Tyn = 1
2

or Tyn = 0. So, if {yn} is an approximate sequence, it is not possible to obtain the
weak stability.

Now, we take an equivalent sequence {yn}∞n=0 of {xn}. Then,

|xn − yn| → 0, n →∞.

So, xn − yn = αn, αn → 0, n ≥ k, k fixed. Since xn = 1
2 , for n ≥ 2, we obtain

that yn = 1
2 − αn, n ≥ k1 = max{2, k}.

Then, Tyn = 1
2 and by limn→∞ |yn+1 − Tyn| = 0 results that limn→∞ yn = 1

2 =
T

(
1
2

)
. That shows that the Picard iteration is w2-stable with respect to T ..

Example 3.2.

Let T : [0, 1] → [0, 1] be given by

Tx =





0, x ∈ [
0, 1

2

]

1
2 , x ∈ (

1
2 , 1

]

where [0, 1] is endowed with the usual metric. T is continuous at every point of
[0, 1] except at 1

2 and 0 is the only fixed point of T .
For each x, y ∈ [0, 1], x 6= y, T satisfies the condition

d (Tx, Ty) < max {d (x, Ty) , d (y, Tx)} .

Indeed, first let x ∈ [
0, 1

2

]
, y ∈ [

0, 1
2

]
and x 6= y. Then, |Tx− Ty| = 0 <

max {x, y} = max {|x− Ty| , |y − Tx|} . If x ∈ (
1
2 , 1

]
, y ∈ (

1
2 , 1

]
and x 6= y, then

|Tx− Ty| = 0 < max
{(

x− 1
2

)
,
(
y − 1

2

)}
= max {|x− Ty| , |y − Tx|} . If x ∈ [

0, 1
2

]
and y ∈ (

1
2 , 1

]
, then |Tx− Ty| = ∣∣0− 1

2

∣∣ = 1
2 < y = max

{(
1
2 − x

)
, y

}
=

= max {|x− Ty| , |y − Tx|} .
We will show that the Picard iteration is not T -stable but it is T -weakly stable.
In order to prove the first claim, let (yn), with

yn =
n + 2
2n

, n ≥ 1.

Then
εn = |yn+1 − f(T, xn)| = |yn+1 − Tyn| = | n + 3

2(n + 1)
− 1

2
|,

because yn ≥ 1
2 , for n ≥ 1.

Therefore, limn→∞ εn = 0 but limn→∞ yn = 1
2 , so the Picard iteration is not

T -stable.
In order to show the T -weak stability, we take an approximate sequence {yn} of

xn. Then, there exists a decreasing sequence of nonnegative numbers {ηn} converging
to some η ≥ 0 for n →∞ such that

|xn − yn| ≤ ηn, n ≥ k.

Then, −ηn ≤ xn − yn ≤ ηn and results that 0 ≤ yn ≤ xn + ηn, n ≥ k.
Since xn = 0, for n ≥ 2, we obtain 0 ≤ yn ≤ ηn, n ≥ k1 = max{2, k}.
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We can choose {ηn} such that ηn ≤ 1
2 , n ≥ k1 and therefore 0 ≤ yn ≤ 1

2 , ∀n ≥ k1.
So, Tyn = 0 and results that εn = |yn+1 − Tyn| = |yn+1| = yn+1.

Now, it is obvious that limn→∞ εn = 0 ⇒ limn→∞ yn = 0, so the iteration {yn}is
T -weakly stable. Hence, it is w2-stable, too.

Example 3.3.

Let T : R→ {
0, 1

4 , 1
2

}
be defined by

Tx =





1
2 , x < 0

1
4 , x ∈

[
0,

1
2

]

0, x > 1
2

where R is endowed with the usual metric. T is continuous at every point in R
except at 0 and 1

2 . The only fixed point of T is 1
4 .

For each x, y ∈ R, x 6= y, T satisfies the condition

d(Tx, Ty) < max
{

d(x, y),
d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
.

Indeed, first choose x < 0 and y ∈ [
0, 1

2

]
. Then, |Tx − Ty| = | 12 − 1

4 | = 1
4 and

|x−Tx|+|y−Ty|
2 ≥ 1

2

∣∣x− 1
2

∣∣ = 1
4 − x

2 > 1
4 . If x < 0 and y > 1

2 , then |Tx − Ty| =

| 12 − 0| = 1
2 and |x−Tx|+|y−Ty|

2 = |x− 1
2 |+|y−0|

2 ≥ 1
4 + y−x

2 > 1
4 + 1

4 > 1
2 . If x ∈ [

0, 1
2

]

and y > 1
2 , then |Tx − Ty| = | 14 − 0| = 1

4 and |x−Tx|+|y−Ty|
2 = |x− 1

4 |+y

2 ≥ y
2 > 1

4 . If
x < 0, y < 0 and x 6= y, then |Tx−Ty| = 0 < |x−y|. If x > 1

2 , y > 1
2 and x 6= y, then

|Tx−Ty| = 0 < |x−y|. If x ∈ [
0, 1

2

]
, y ∈ [

0, 1
2

]
and x 6= y, then |Tx−Ty| = 0 < |x−y|.

Thus, |Tx− Ty| < max
{
|x− y| , |x−Tx|+|y−Ty|

2 , |x−Ty|+|y−Tx|
2

}
, for each x, y ∈ R

such that x 6= y.
In order to study the T -stability, let x0 be any real number and xn+1 = Txn, for

n = 0, 1, 2, · · · . Then,

x1 = Tx0 =





1
2 , x0 < 0

1
4 , x0 ∈

[
0, 1

2

]

0, x0 > 1
2

In each case, x2 = Tx1 = 1
4 and xn = 1

4 , ∀n ≥ 2. So, limn→∞ xn = 1
4 = T

(
1
4

)
.

To show that the Picard iteration is not T -stable, let {yn}∞n=0 be the sequence
of real numbers such that y0 = x0, yn = 1

2 + 1
n , for each positive odd integer and

yn = − 1
n , for each positive even integer.

If n is a positive even integer, then

εn =
∣∣∣∣
1
2

+
1

n + 1
− T

(
− 1

n

)∣∣∣∣ =
∣∣∣∣
1
2

+
1

n + 1
− 1

2

∣∣∣∣ =
1

n + 1
.

If n is a positive odd integer, then

εn =
∣∣∣∣
(
− 1

n + 1

)
− T

(
1
2

+
1
n

)∣∣∣∣ =
∣∣∣∣−

1
n + 1

− 0
∣∣∣∣ =

1
n + 1

.
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Thus,

lim
n→∞

εn = lim
n→∞

1
n + 1

= 0,

but {yn}∞n=0 does not converge to 1
4 . So, the Picard iteration is not T -stable.

In order to study the T -weak stability, we take an approximate sequence {yn}∞n=0 of
xn. Then, there exists a decreasing sequence of nonnegative numbers {ηn} converging
to some η ≥ 0 for n →∞ such that

|xn − yn| ≤ ηn, n ≥ k.

Then, −ηn ≤ xn − yn ≤ ηn and results that 0 ≤ yn ≤ xn + ηn, n ≥ k.
Since xn = 1

4 , for n ≥ 2, we obtain 0 ≤ yn ≤ 1
4 + ηn, n ≥ k1 = max{2, k}.

We can choose {ηn} such that ηn ≤ 1
4 , n ≥ k1 and therefore 0 ≤ yn ≤ 1

2 , ∀n ≥ k1.
So, Tyn = 1

4 and by limn→∞ |yn+1 − Tyn| = 0 results that limn→∞ yn = 1
4 = T

(
1
4

)
.

That shows that the Picard iteration is weakly T -stable.
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