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1. Introduction

During the last two decades convexity has been the subject of an intensive research.
In particular, many improvements, generalizations, and applications of the usual con-
vexity appeared in the literature. The purpose of this paper is to describe a new
concept of convex like function. Our investigation parallels the classical approach of
convexity as presented in [1] and [2].

2. Point-convexity on an interval

We shall need to define two notions in order to state and prove the main results.
We consider I subinterval of R and x0, y0 ∈ I.

Definition 2.1. A function f : I → R is called (x0, y0)-convex if

f ((1− λ)x0 + λy0) ≤ (1− λ) f (x0) + λf (y0)

for all λ ∈ [0, 1] .

Definition 2.2. A function f : I → R is called x0-convex if for all λ ∈ [0, 1] and all
points y ∈ I we have

f ((1− λ)x0 + λy) ≤ (1− λ) f (x0) + λf (y) .

Example 2.1. Two x0-convex functions on R, wich are not convex in the classical
sense:

1. The continuous function

f : R→ R, f (x) =





x2, x < 1
x, x ∈ [1, 2]

1
4x2 + 1, x > 2

is x0-convex, for all x0 ∈ (−∞, 0] .
2. The discontinuous function
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Figure 1. The graph of a x0-convex function

f : R→ R, f (x) =




−x, x < 0
x, x ∈ [0, 2]
2x, x > 2

is x0-convex, for all x0 ∈ (−∞, 0] .
Reversing the inequalities in the above definitions we will obtain respectively the

concept of (x0, y0)-concave function and of x0-concave function.
A function which is x0-convex and x0-concave will be called x0-affine.
The absolute value function is 0-affine though not affine in the ordinary sense.

However, every x0-affine and monotone function is affine (in the usual meaning).

Proposition 2.1. If f : [x0, y0] → R is an x0-convex function, then

f (y)− f (x0)
y − x0

≤ f (y0)− f (x0)
y0 − x0

for all y ∈ (x0, y0].

Proof. Indeed, every y ∈ (x0, y0] is of the form y = (1− λ)x0+λy0 for some λ ∈ (0, 1],
which yields

f ((1− λ)x0 + λy0)− f (x0)
λ (y0 − x0)

≤ f (y0)− f (x0)
y0 − x0

,

equivalently,
f ((1− λ)x0 + λy0) ≤ (1− λ) f (x0) + λf (y0) .

¤
In what follows we will need the function slope sx0 : (x0, y0] → R defined by

sx0 (y) =
f (y)− f (x0)

y − x0
.

Proposition 2.2. f : [x0, y0] → R is x0-convex if and only if sx0 : (x0, y0] → R is
nondecreasing.

Proof. If f : [x0, y0] → R is x0-convex then

f ((1− λ)x0 + λy) ≤ (1− λ) f (x0) + λf (y)

for all λ ∈ [0, 1] and every y ∈ [x0, y0] .
That happens if and only if

f ((1− λ)x0 + λy)− f (x0)
λ (y − x0)

≤ f (y)− f (x0)
y − x0
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.
We put z = (1− λ)x0 + λy, z ≤ y.

sx0 (z) = f(z)−f(x0)
z−x0

≤ f(y)−f(x0)
y−x0

= sx0 (y) for all z, y ∈ [x0, y0] , z ≤ y. ¤

Remark 2.1. We notice that f (y) ≤ f (x0)+
f(y0)−f(x0)

y0−x0
·(y − x0) , for all y ∈ [x0, y0] .

If f is x0-convex for all x0 in its domain, then it is convex. All results of this
article have corresponding tesults in the theory of convex functions. For a detailed
discussion see [1].

We can also easily observe that if f is convex in the usual sense, then the above
proposition aplies and we get an well known result of Galvani: sx is nondecreasing
for all x ∈ [x0, y0] .

Corollary 2.1. The function f : [x0, y0] → R is a x0-convex function if and only if

for all real y, z with x0 < y < z < y0, we have

∣∣∣∣∣∣

1 1 1
x0 y z

f (x0) f (y) f (z)

∣∣∣∣∣∣
≥ 0 .

Proposition 2.3. Let f : [x0, y0] → R be a x0-convex function and x1 < x2 two
points of its domain. If sx0 (x1) = sx0 (x2), then f|[x1,x2]| is affine.

Proof. Because of the monotonicity property of sx0 , we have sx0 (x1) = sx0 (z) for all
z ∈ (x1, x2) . The point (z, f (z)) is then collinear to (x1, f (x1)) and (x2, f (x2)) .

You can see Figure 1 (an example of such a graph). ¤

Corollary 2.2. If the function f : I → R is the limit function of a pointwise conver-
gent sequence of x0-convex functions, then f is also x0-convex.

Proof. We consider fn : I → R, n ∈ N∗ a sequence of x0-convex functions, fn
p→ f.

Then fn ((1− λ)x0 + λy0) ≤ (1− λ) fn (x0) + λfn (y0) for all λ ∈ [0, 1], all y ∈
[x0, y0] and all n ∈ N.

Passing to the limit, we get the conclusion. ¤

Definition 2.3. The function f : I → R is called x0-midpoint convex if for all y ∈ I
we have

f

(
x0 + y

2

)
≤ f (x0) + f (y)

2
.

For a function f : [x0, y0] → R that is continuous but is not x0-convex, we define
the function

ϕy (z) = f (z)− f (x0)− f (y)− f (x0)
y − x0

· (z − x0) ,

for all y ∈ (x0, y0] . Also we can define ξ (y) = inf {z ∈ (x0, y0) ; ϕy (z) > 0} ∈ [x0, y0] .

Proposition 2.4. If ξ (y) ≥ x0+y
2 , for all y ∈ [x0, y0], then f is x0-midpoint convex .

Proof. Indeed, ϕy

(
x0+y

2

)
= f

(
x0+y

2

) − f (x0) − f(y)−f(x0)
y−x0

· (x0+y
2 − x0

) ≤ 0, for all

y ∈ (x0, y0] , what brings us to the conclusion that f
(

x0+y
2

) ≤ f(x0)+f(y)
2 . ¤

As you can see in Figure 2, a continuous x0-midpoint convex function is not nece-
sarily x0- convex.
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Figure 2. x0- midpoint convex, but not x0- convex

Theorem 2.1. The following two statements are equivalent:
i) The function f : I → R is x0-convex.
ii) For all J ⊆ I compact, with an endpoint x0, and for all functions L x0-affine,

the function f + L attains its supremum at an endpoint of J .

Proof. We put J = [x0, y0] .
i) =⇒ ii). In fact,

sup
z∈J

(f + L) (z) = sup
λ∈[0,1]

(f + L) ((1− λ)x0 + λy0)

≤ sup
λ∈[0,1]

(1− λ) (f + L) (x0) + λ (f + L) (y0)

= max {(f + L) (x0) , (f + L) (y0)}
ii) =⇒ i). Let L be an x0-affine function such that L (x0) = f (x0) and L (y0) =

f (y0) . Then
sup
z∈J

(f − L) (z) = 0.

Since every z ∈ J is of the form z = (1− λ)x0 + λy0, for some λ ∈ [0, 1], we get

(f − L) ((1− λ) x0 + λy0) = f ((1− λ)x0 + λy0)− [(1− λ) f (x0) + λf (y0)] ≤ 0.

¤
Proposition 2.5. (Properties of x0-convex functions)

1) If f and g are two x0-convex functions defined on the same interval I, then f +g
is x0-convex.

2) If f is x0-convex on I, α ≥ 0, then αf is x0-convex.
3) If f is x0-convex on I, all restrictions of it to a subinterval of its domain wich

contains x0 are also x0-convex functions.
4) If f is x0-convex on I and if g is nondecreasing and f (x0)-convex on f (I), then

g ◦ f is x0-convex.
5) If f is x0-convex on I, bijective and increasing, then its inverse is f (x0)-

concave on f (I).
6) If f is x0-convex on I, bijective and decreasing ,then its inverse is f (x0)-

convex on f (I) .

Theorem 2.2. If f : I → R is continuous and x0-convex, then for all a ∈ I we get
1

a− x0

∫ a

x0

f (x) dx ≤ f (x0) + f (a)
2

.
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Proof.

1
a− x0

∫ a

x0

f (x) dx =
∫ 1

0

f ((1− λ)x0 + λa) dλ

≤
∫ 1

0

[(1− λ) f (x0) + λf (a)] dλ

=
f (x0) + f (a)

2
.

¤

If f is convex, the last theorem leads us to the right hand side of the Hermite
Hadamard inequality.

Theorem 2.3 (Maximum principle for x0-convex functions). Lets consider f : [x0, y0] →
R, a x0-convex function. If the point y is a global maximum point and an interior point
of its domain, then the function has constant values on [y, y0].

Proof. By reductio ad absurdum, we consider that y ∈ (x0, y0) is a maximum point.
We choose another point z ∈ (y, y0) . Then sx0 (y) ≥ sx0 (z) and, because of the mono-
tonicity property of sx0 , we deduce that equals. Aplying the proposition 2.3, we saw
that the function has constant values on (y, y0) . The points (x0, f (x0)) , (y, f (y)) and
(y0, f (y0)) are collinear, f (y) = max

x∈[x0,y0]
f (x) , that implies that the function has con-

stant values on [y, y0] . (See Figure 3.)

Figure 3. Maximum principle

¤

From now on we consider that f is a continuous and x0-convex function on [x0, y0] .

Remark 2.2. If f is differentiable on the right side at each point y ∈ (x0, y0), then
sx0 (y) ≤ f ′s (y) .

3. The left/right subdifferential

Definition 3.1. We say that f admits a support semiline at the right side of the
point y if there exist a λ such that f (z) ≥ f (y) + λ (z − y) for all z ∈ (y, y0) . We
call the set ∂fr (y) of all such λ the right subdifferential of f at y.
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Definition 3.2. We say that f admits a support semiline at the left side of the point
y if there exist a λ such that f (z) ≥ f (y) + λ (z − y) for all z ∈ (x0, y) . We call the
set ∂fl (y) of all such λ the left subdifferential of f at y.

If f has a finite left (right) derivative at y, we have ∂fr (y) = (−∞, f ′r (y)] (
∂fl (y) = [f ′l (y) ,∞) ).

If ∂fl (y)∩ ∂fr (y) 6= Φ, then the function admits a support line at y. Then
∂fl (y)∩ ∂fr (y) = ∂f (y) .

Proposition 3.1. Lets consider f : [x0, y0] → R continuous, with finite right deriv-
ative at all interior points of its domain. Then is x0-convex if and only if sx0 (y) ∈
∂fr (y) for all y ∈ (x0, y0).

Proof. Direct part of the statement is easy to prove.
The reverse:
sx0 (y) ∈ ∂fr (y) =⇒ f (z) ≥ f (y) + sx0 (y) (z − y) for all z ∈ (y, y0) .
We can write all z as a a convex combination of the endpoints, z = (1− λ)x0 +

λy, λ ∈ [0, 1].
f ((1− λ)x0 + λy) ≥ f (y) + sx0 (y) (1− λ) (x0 − y)
That yields to f ((1− λ)x0 + λy) ≥ (1− λ) f (x0) + λf (y) , for all λ ∈ [0, 1]. ¤
We recall the Extreme Value Theorem of Weierstrass: if a real-valued function f is

continuous in the closed and bounded interval [a, b], then f must attain its maximum
and minimum value, each at least once.

Theorem 3.1 (Rolle theorem for x0-convex functions). Suppose that f is continuous
and x0-convex on [x0, y0] and f (x0) = f (y0) . Then there exists y ∈ (x0, y0) such that
0 ∈ ∂fr (y) .

Proof. If the function is constant, the conclusion is obvious. If is not constant, because
of the fact it is continuous (attains ith minimum) and and x0-convex (the minimum
cannot be an endpoint of the interval ), we may obviously conclude that there exists at
least one interior global minimum point y. The parallel line through (y, f (y)) to the
Ox axis contains a right support semiline of the function at y and then 0 ∈ ∂fr (y) . ¤
Theorem 3.2 (Lagrange theorem for x0-convex functions). If f is continuous and
x0-convex on [x0, y0] , with finite right derivative at all interior points of its domain,
then there exists y ∈ (x0, y0) such that sx0 (y0) ∈ ∂fr (y) .

Proof. We define g(x) = f (x) − sx0 (y) (x− x0) . All conditions of Theorem 3.1 are
verified by g. There exists y ∈ (x0, y0) such that 0 ∈ ∂gr (y) =

(−∞, g′+ (y)
]
.

It follows that g′+ (y) = f ′+ (y) − sx0 (y) ≥ 0, that is, sx0 (y0) ∈
(−∞, f ′+ (y)

]
=

∂fr (y) . ¤
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(Flavia-Corina Minuţă) Faculty of Mathematics and Computer Science, University of
Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. & Fax:
40-251412673
E-mail address: minutacorina@yahoo.com


