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Factorization of an inheritance knowledge base (II)

Nicolae Ţăndăreanu and Claudiu-Ionuţ Pop̂ırlan

Abstract. In [6] we start to develop the decomposition of inheritance knowledge bases ([5])
into disjoint components such that the answer mapping can be locally computed in some com-
ponent(factorization problem). This paper includes several further results concerning these
structures. The main results presented in this paper are the following: we demonstrate that
every component is itself an inheritance knowledge base and we prove that an interrogation
for the object x ∈ Obj(K) can be equivalently accomplished in the component which contains
the object x. The factorization of a knowledge base is a useful operation in the vision of an
implementation on several work stations in a network architecture. Several open problems are
discussed in the last section.
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1. Introduction

Artificial Intelligence combines type hierarchies with other declarative information
and calls the result a semantic network. Type hierarchies always reflect both the na-
ture of the data they classify and the operations performed upon it. Recent intelligent
systems have encoded knowledge bases whose volume is orders of magnitude smaller
than real-world data bases, but whose internal complexity, heterogeneity, and variety
of operations performed upon the data are vastly greater. In [3] were discussed var-
ious types of inheritance mechanisms in type hierarchies, followed by an attempt to
unify these into a coherent, inheritance inference method.

Research in artificial intelligence based on the inheritance mechanism (theoretical
and practical aspects) were treated in the last decade:
• an extension of the disjunctive logic programming (with strong negation) by

inheritance ([2]);
• the inheritance of business rules in the medical insurance domain was studied in

[4];
• a natural model-theoretic semantics for inheritance in frame-based knowledge

bases, which supports inference by inheritance as well as inference via rules was
treated in [11];

• the use of the lattice theory to characterize the features of the answer mapping
in knowledge systems based on inheritance were described in [7], [8] and [9];

• the use of the voice interfaces to interrogate an inheritance based knowledge
system is given in [10].
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In the present paper we develop the idea introduced in [6], decomposition of in-
heritance knowledge bases into disjoint components and mathematical study of the
factorization problem. This paper is organized as follows:
• Section 2 contains the basic notions and results obtained in [6];
• In Section 3 we demonstrate that every component resulted from factorization

mechanism is itself an inheritance knowledge base;
• In Section 4 we prove that an interrogation for the object x ∈ Obj(K) can be

equivalently accomplished in the component which contains the object x;
• The last section contains conclusions and future work.
The purpose of this research is to apply these results to accomplish an implemen-

tation based on multi-agent technology ([1]). In a forthcoming paper we propose a
master-slave structure of agents that implements the results presented in this paper.
The structure includes one master agent and several client agents. Every component
can be uploaded on a work station in a network architecture, where a local agent can
perform the computations. The master agent receives the interrogation and commu-
nicates with the slave agents. On the other hand, due to the fact that the search
operation is a basic one in any implementation, the factorization of a knowledge base
improves the running time of the computations performed by the answer mapping.

2. Basic notions and notations

In this section we present several algebraic properties of the binary relations, which
are used in the next sections. We recall the following properties:
• The usual product operation ◦ between binary relations is defined as follows:

ρ1 ◦ ρ2 = {(x, y) ∈ X ×X | ∃z ∈ X : (x, z) ∈ ρ1, (z, y) ∈ ρ2}
• The product operation is an associative one:

(ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3)

• The powers of the relation ρ are defined recursively as follows:
{
ρ1 = ρ
ρn+1 = ρn ◦ ρ, n ≥ 0

Definition 2.1. If ρ ⊆ X×X is a binary relation then we define the following binary
relations on X:

ρ−1 = { (y, x) | (x, y) ∈ ρ }
ρ = ρ ∪ ρ−1

ρ̃ =
⋃
i≥1 ρ

i

Definition 2.2. ([6]) An element x ∈ X is an isolated element with respect to ρ if
there is no y ∈ X such that (x, y) ∈ ρ.

Intuitively, a knowledge base K which uses the inheritance mechanism is a finite
set of objects and an interrogation of K is defined by a pair (f, a1), where f is the
name of an object of K and a1 is an attribute. The value of a attribute is of the form
(v1, q1), where v1 is a direct value of a1 or the name of a procedure which returns the
value of a1 and q1 is a parameter specifying some feature of a1.

We consider a subset K0 ⊆ Lobj × 2Lobj × 2Lattr×(Vdir∪Lproc)×Param. If x =
(m,P,Q) ∈ K0 is an object then m determines uniquely the object x and we denote by
N(x) = m the name of x. For this reason an object is denoted by x = (N(x), Px, Qx).
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Definition 2.3. ([5]) An inheritance knowledge base is a pair K = (Obj(K), ρK),
where
(1) Obj(K) ⊆ Lobj × 2Lobj × 2Lattr×(Vdir∪Lproc)×Param is a finite set of elements

named the objects of K, such that if x = (N(x), P1, Q1) ∈ Obj(K), y =
(N(y), P2, Q2) ∈ Obj(K) and N(x) = N(y) then P1 = P2 and Q1 = Q2.

(2) ρK ⊆ Obj(K) × Obj(K) is the relation generated by K, which is defined as
follows:

(x, y) ∈ ρK ⇐⇒ N(x) ∈ Py
(3) ρiK ∩ ρjK = ∅ for i , j
Definition 2.4. ([5]) An inheritance knowledge base K is an accepted knowledge
base if the following conditions are fulfilled:
• There is no isolated object in K with respect to ρK .
• K contains minimal-ρK elements.
• inhK is a strict partial order.

Definition 2.5. ([5]) The relation inhK =
⋃
n≥1 ρ

n
K is named the inheritance re-

lation generated by K.
Definition 2.6. ([6]) An interrogation of a knowledge base K is an element of the
set Obj(K) × Attr(K). The answer of an interrogation (x, a1) is the value of the
attribute a1 for x ∈ Obj(K).
Notation 2.1. ([6]) The equivalence class of the object x ∈ Obj(K) with respect to
ρ̃K is denoted by [x]

ρ̃K
.

In the vision of the computer network programming we are interested to decompose
a knowledge base K which uses the inheritance mechanism into several components
D1, . . ., Dm such that the following conditions are satisfied:
• Obj(K) =

⋃m
i=1Obj(Di), where Obj(K) and Obj(Di) denotes the objects of K

and Di respectively..
• Two arbitrary components are disjoint sets of objects: Obj(Di) ∩ Obj(Dj) = ∅

for i , j.
• Each component Di is itself a knowledge base. As a consequence we have a

”global” interrogation (f, a1) for K and a ”local” interrogation (f, a1) for Di

if f ∈ Obj(Di). The answer should be the same both for global and for local
interrogation.
• For every i ∈ {1, . . . ,m} the component Di is an ”atomic” knowledge base: it

can not be itself divided into several knowledge bases.
We can say that m is the greatest number of components such that each component
is an independent knowledge base that uses the inheritance mechanism. The problem
specified above can be named the factorization problem of an inheritance knowledge
base. This name comes from universal algebra domain, where the factor set X/ρ of
the set X with respect to the equivalence relation ρ is the set of all equivalence classes.

The main aspects connected by our research presented in [6] can be shortly de-
scribed as follows:
(1) Based on the inheritance mechanism from the knowledge base K was defined an

equivalence relation ρ̃K on the set of objects.
(2) Was proved that the set of all components of K is the factor set K/ρ̃K and thus

a component is an equivalence class.
(3) Was defined a method to find the components of a knowledge base. This method

was based on the fact that a component is the equivalence class generated by
some free of parents objects.
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(4) Was given a necessary and sufficient condition for the factorization of a knowledge
base.

3. The factorization problem

Proposition 3.1. The mapping ω : Initial(K)/σK −→ Obj(K)/ρ̃K defined by
ω(X) = X

ρ̃K
is bĳective.

Proof. Take X,Y ∈ Initial(K)/σK such that ω(X) = ω(Y ). Consider an element
z ∈ ω(X) = ω(Y ) = X

ρ̃K
= Y

ρ̃K
. If r1 ∈ X and r2 ∈ Y then by Proposition 5.5

from [6] we obtain (r1, z) ∈ ρ̃K and (r2, z) ∈ ρ̃K . But ρ̃K is an equivalence relation
therefore (r1, r2) ∈ ρ̃K . We observe that r1, r2 ∈ Initial(K) and we proved that
(r1, r2) ∈ ρ̃K . It follows that (r1, r2) ∈ σK . But X is a σK-equivalence class and
r1 ∈ X. It follows that X = [r1]σK . In a similar manner we have Y = [r2]σK . Taking
into consideration the property (r1, r2) ∈ σK we obtain X = Y . Thus the mapping ω
is injective.
Let us prove that ω is a surjective mapping. Take T ∈ Obj(K)/ρ̃K . From Proposition
6.5 from [6] we know that T is a component of K. In virtue of Proposition 6.1 from
[6] we have T ∩ Initial(K) ∈ Initial(K)/σK . We use now Proposition 5.7 from [6]
and deduce that T = X

ρ̃K
. Thus ω(X) = T and the proposition is proved. �

Corollary 3.1. Card(Initial(K)/σK) = Card(Obj(K)/ρ̃K)

Propositions 6.5 from [6] and 3.1 show that the space Obj(K)/ρ̃K gives the com-
ponents of a knowledge base and this space is the set {X

ρ̃K
| X ∈ Initial(K)/σK}.

Proposition 3.2. A knowledge base K can be decomposed into several components
if and only if Card(Initial(K)/σK) ≥ 2.

Proof. Immediate from the previous propositions. �

Remark 3.1. Obviously a knowledge base K can not be decomposed if and only if
Card(Initial(K)/σK) = 1.

Suppose that Obj(K)/ρ̃K = {Obj(D1), . . . , Obj(Dn)}, where n ≥ 2. For each
i ∈ {1, . . . , n} we denote Di = (Obj(Di), ρDi). We prove that each Di is an accepted
knowledge base. We observe first thatObj(Di) ⊆ Obj(K). If x = (N(x), Px, Qx) ∈ Di

and y = (N(y), Py, Qy) ∈ Di then using Definition 2.3 we obtain
(x, y) ∈ ρDi =⇒ N(x) ∈ Py (1)

But (N(x), Px, Qx) ∈ K and (N(y), Py, Qy) ∈ K. Applying the same definition we
obtain

N(x) ∈ Py =⇒ (x, y) ∈ ρK (2)
From (1) and (2) we deduce that ρDi is a restriction of the relation ρK :

ρDi ⊆ ρK (3)
Let us consider the objects x = (N(x), Px, Qx) ∈ Obj(K) and y = (N(y), Py, Qy) ∈
Obj(K) such that (x, y) ∈ ρK . In other words we have N(x) ∈ Py. But Obj(K) =⋃n
m=1Obj(Dm). It follows that there are i, j ∈ {1, . . . , n} such that x ∈ Obj(Di)

and y ∈ Obj(Dj). We have ρK ⊆ ρ̃K and (x, y) ∈ ρK , therefore (x, y) ∈ ρ̃K . But
Obj(Di) is a ρ̃K-equivalence class and x ∈ Obj(Di). It follows that y ∈ Obj(Di).
By our assumption we have y ∈ Obj(Dj). This implies that j = i. Thus we have
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x ∈ Obj(Di), y ∈ Obj(Di) and N(x) ∈ Py, therefore (x, y) ∈ ρDi . In conclusion we
have

n⋃
m=1

ρDm = ρK

Proposition 3.3. Every component of an accepted knowledge base is an accepted
knowledge base.

Proof. The conditions specified in Definition 2.4 are satisfied:
(1) There is no useless object in Di because Obj(Di) ⊆ Obj(K) and K does not

contain such objects.
(2) Di is a component of K. This means that there is a minimal-ρK element in

Di. But a minimal-ρK element in Di is a minimal-ρDi element. Thus there is a
minimal-ρDi element in Di.

(3) The relation ρDi ⊆ Obj(Di)×Obj(Di) is a strict partial order:
- We have ∆Di ∩ ρDi ⊆ ∆(K) ∩ ρK = ∅, therefore ∆Di ∩ ρDi = ∅.
- Suppose that x, y, z ∈ Obj(Di), (x, y) ∈ ρDi and (y, z) ∈ ρDi . Because
Obj(Di) ⊆ Obj(K) and ρDi is a restriction of ρK we have (x, z) ∈ ρK . It
follows that x ∈ Pz, therefore (x, z) ∈ ρDi .

The proposition is proved. �

4. Global and local interrogations

We consider an accepted knowledge base K, which can be decomposed into m
components and denote by D1 = (Obj(D1), ρD1), . . ., Dm = (Obj(Dm), ρDm) its
components. An interrogation (x, a) is:

- a global interrogation addressed to K; the answer is obtained by a sequence of
computations in K;

- a local interrogation addressed to Di if x ∈ Obj(Di) and in this case the answer
is given by a sequence of computations in Di.

If y ∈ Obj(K) then we denote by a1 � y the fact that there is a slot of y which
contains the attribute a1. For every (x, a1) ∈ Obj(K) × Attr(K) and p ≥ 1 we
consider the set

ParentpK(x, a1) = { y ∈ Obj(K) | (y, x) ∈ ρpK , a1 � y } (4)
of all parents of order p in K for x that contain the attribute a1. In a similar manner
for every (x, a1) ∈ Obj(Di)×Attr(Di) and p ≥ 1 we consider the set

ParentpDi(x, a1) = { y ∈ Obj(Di) | (y, x) ∈ ρpDi , a1 � y } (5)
of all parents of order p in Di for x that contain the attribute a1.

The next two propositions are used in the remainder of this section.

Proposition 4.1. If y, x ∈ Obj(Di) and (y, x) ∈ ρpK then (y, x) ∈ ρpDi .
Proof. If (y, x) ∈ ρpK then there is z1, . . ., zp+1 ∈ Obj(K) such that
y = z1
(zr, zr+1) ∈ ρK for every r ∈ {1, . . . , p}
zp+1 = x

But Di is an equivalence class with respect to ρ̃K , ρK ⊆ ρ̃K and y ∈ Obj(Di). It fol-
lows that z2 ∈ Obj(Di). It is easy to observe that if zi ∈ Obj(Di) then zi+1 ∈ Obj(Di),
therefore zp+1 ∈ Obj(Di). Now, from z1, . . . , zp+1 ∈ Obj(Di) and (zr, zr+1) ∈ ρK for
every r ∈ {1, . . . , p} we obtain (zr, zr+1) ∈ ρDi . It follows that (y, x) ∈ ρpDi . �
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Proposition 4.2. For every p ≥ 1 and (x, a1) ∈ Obj(Di) × Attr(Di) we have
ParentpDi(x, a1) = ParentpK(x, a1).

Proof. Suppose that y ∈ ParentpDi(x, a1). From (5) we obtain
y ∈ Obj(Di), (y, x) ∈ ρpDi , a1 � y (6)

But Obj(Di) ⊆ Obj(K) and ρDi ⊆ ρK , therefore
y ∈ Obj(K), (y, x) ∈ ρpK , a1 � y (7)

From (7) and (4) we obtain y ∈ ParentpK(x, a1), therefore
ParentpDi(x, a1) ⊆ ParentpK(x, a1) (8)

Take now y ∈ ParentpK(x, a1). From (4) we obtain (7). But (x, a1) ∈ Obj(Di) ×
Attr(Di) and Di is a component of K. A component of K is an equivalence class
with respect to ρ̃K , therefore from (y, x) ∈ ρpK , x ∈ Obj(Di) and ρpK ⊆ ρ̃K we deduce
that y ∈ Obj(Di). From Proposition 4.1 we obtain (y, x) ∈ ρpDi , therefore we have
(6). It follows that y ∈ ParentpDi(x, a1) and thus

ParentpK(x, a1) ⊆ ParentpDi(x, a1) (9)
From (8) and (9) we obtain ParentpDi(x, a1) = ParentpK(x, a1). �

We denote by V alKattr and V alDiattr the mappings which compute the value of an
attribute in K and Di respectively. In the next proposition we show that V alKattr
extends the mappings V alDiattr for i ∈ {1, . . . ,m}.
Proposition 4.3. V alKattr(x, a1) = V alDiattr(x, a1) for (x, a1) ∈ Obj(Di)×Attr(Di).

Proof. We define the computing environment for V alKattr(x, a1), which is denoted by
Env(V alKattr(x, a1)). This entity contains all objects from Obj(K) which are used to
compute V alKattr(x, a1). We define

Env(V alKattr(x, a1)) =
⋃

n≥0
RKn

where the sequence {RKn }n≥0 is defined as follows:



RK0 = {x }

RKn+1 = {y ∈ Obj(K) | ∃t ∈ RKn : (y, t) ∈ ρK }
In a similar manner we define

Env(V alDiattr(x, a1)) =
⋃

n≥0
QDin

where the sequence {QDin }n≥0 is obtained as follows:



QDi0 = {x }

QDin+1 = {y ∈ Obj(Di) | ∃t ∈ QKn : (y, t) ∈ ρDi }
Let us take an element x ∈ Obj(Di). We prove that

Env(V alKattr(x, a1)) = Env(V alDiattr(x, a1))
More precisely, we prove by induction on n ≥ 0 that RKn = QDin . For n = 0 this
property is obviously true. Suppose that RKn = QDin and let us prove that RKn+1 =
QDin+1. Because Obj(Di) ⊆ Obj(K) and ρDi is a restriction of ρK we have QDin+1 ⊆
RKn+1.
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It remains to prove that RKn+1 ⊆ QDin+1. Take an element y ∈ RKn+1. There is t ∈ RKn
such that (y, t) ∈ ρK . From the following facts
• Obj(Di) is a ρ̃K-equivalence class
• QDin ⊆ Obj(Di)
• t ∈ RKn = QDin

we deduce that y ∈ Obj(Di). Now, from the following facts
• t, y ∈ Obj(Di)
• (y, t) ∈ ρK
• ρDi is the restriction of ρk to Obj(Di)

we deduce that (y, t) ∈ ρDi . Finally we observe that from
• t ∈ QDin and y ∈ Obj(Di)
• (y, t) ∈ ρDi

we deduce that y ∈ QDin+1. Thus we proved that RKn+1 ⊆ QDin+1. Taking into account
the converse inclusion we have RKn+1 = QDin+1. In conclusion we have RKn = QDin for
every n ≥ 0.
Now we observe that in order to compute the value V alKattr(x, a1) only the objects
from Env(V alKattr(x, a1)) are used. In the same manner, to compute V alDiattr(x, a1)
only the elements from Env(V alDiattr(x, a1)) are used. But we proved above that
Env(V alKattr(x, a1)) = Env(V alDiattr(x, a1)). �

5. Conclusions and future work

In this paper some demonstrations based on factorization problem ([6]) which prove
that an interrogation for the object x ∈ Obj(K) can be equivalently accomplished in
the component which contains the object x were presented. The main problem studied
in this paper was connected by the factorization of an inheritance knowledge base([5]).

The factorization is a useful operation for large knowledge bases. The factoriza-
tion of a knowledge base allows to upload each component on a work station in a
network architecture. The local computation on a component gives the same result
as the global computation for the entire knowledge base. The replication of a com-
ponent becomes a possible problem, as we proceed in the domain of databases. The
computation presented in this paper is not a distributed one.

In the future we are interested to imply the mobile agents in a master-slave struc-
ture that implements the results presented in these papers. Every component can be
uploaded on a work station in a network architecture, where a local agent can perform
the computations. We intend to develop a research line concerning the modeling of
the distributed knowledge by inheritance.

References

[1] J. Baumann, Mobile Agents: Control Algorithms, Lecture Notes in Computer Science,
Springer-Berlin, 2000.

[2] F. Buccafurri, W. Faber and N. Leone, Disjunctive logic programs with inheritance, Proceedings
of ICLP-99, MIT Press, (1999), 79–93.

[3] J.G. Carbonell, Default Reasoning and Inheritance Mechanisms on Type Hierarchies, Computer
Science Department (1980), Paper 366. http://repository.cmu.edu/compsci/366

[4] L. Morgenstern, Inheritance comes of age: Applying non monotonic techniques to problems in
industry, Artificial Intelligence 103 (1998), 237–271.
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