Generalization of α -open sets in bitopological spaces

NEELAMEGARAJAN RAJESH AND JAMAL M. MUSTAFA

ABSTRACT. In this paper, we introduce and study the notion of (i, j)- \mathcal{N} - α -open sets as a generalization of (i, j)- α -open sets in bitopological space.

2010 Mathematics Subject Classification. 54C10, 54D10. Key words and phrases. Bitopological spaces, (i, j)- \mathcal{N} - α -open sets, (i, j)- \mathcal{N} - α -continuous functions.

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified forms of continuity, separation axioms etc. by utilizing generalized open sets. The concept of a bitopological space was introduced by Kelly [2]. On the other hand Bose introduced the concept of a α -open sets in bitopological space. In this paper, we introduce and study the notion of (i, j)- \mathcal{N} - α -open sets as a generalization of (i, j)- α -open sets in bitopological space. Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, the closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)- α -open [1] if $A \subset \tau_i$ -Int $(\tau_j$ - $Cl(\tau_i$ -Int(A))), where i, j = 1, 2 and $i \neq j$. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- α -continuous [1] if the inverse image of every σ_i -open set in (Y, σ_1, σ_2) is (i, j)- α -open in (X, τ_1, τ_2) , where $i \neq j, i, j = 1, 2$.

2. (i, j)- \mathcal{N} - α -open sets

Definition 2.1. A subset A is said to be (i, j)- \mathcal{N} - α -open if for each $x \in A$ there exists an (i, j)- α -open set U_x containing x such that $U_x \setminus A$ is a finite set. The complement of an (i, j)- \mathcal{N} - α -open subset is said to be (i, j)- \mathcal{N} - α -closed.

The family of all (i, j)- \mathcal{N} - α -open (resp. (i, j)- \mathcal{N} - α -closed) subsets of a space (X, τ_1, τ_2) is denoted by (i, j)- $\mathcal{N}\alpha O(X)$ (resp. (i, j)- $\mathcal{N}\alpha C(X)$). The family of all (i, j)- \mathcal{N} - α -open subsets of a space (X, τ_1, τ_2) containing a point x is denoted by (i, j)- $\mathcal{N}\alpha O(X, x)$.

It is clear that every (i, j)- α -open set is (i, j)- \mathcal{N} - α -open. The following example shows that the converse is not true in general.

Example 2.1. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, X\}$. Then $\{b\}$ is (i, j)- \mathcal{N} - α -open but not (i, j)- α -open in (X, τ_1, τ_2) .

Received June 14, 2010.

Lemma 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is (i, j)- \mathcal{N} - α -open if and only if for every $x \in A$, there exists an (i, j)- α -open subset U_x containing x and a finite subset C such that $U_x \setminus C \subset A$.

Proof. Let A be an (i, j)- \mathcal{N} - α -open set and $x \in A$, then there exists an (i, j)- α -open subset U_x containing x such that $U_x \setminus A$ is finite. Let $C = U_x \setminus A = U_x \cap (X \setminus A)$. Then $U_x \setminus C \subset A$. Conversely, let $x \in A$. Then there exist an (i, j)- α -open subset U_x containing x and a finite subset C such that $U_x \setminus C \subset A$. Thus $U_x \setminus A \subset C$ and $U_x \setminus A$ is a finite set. \Box

Theorem 2.1. Let (X, τ_1, τ_2) be a bitopological space and $F \subset X$. If F is (i, j)- \mathcal{N} - α -closed, then $F \subset K \cup C$ for some (i, j)- α -closed subset K and a finite subset C.

Proof. If F is (i, j)- \mathcal{N} - α -closed, then $X \setminus F$ is (i, j)- \mathcal{N} - α -open and hence for every $x \in X \setminus F$, there exists an (i, j)- α -open set U containing x and a finite set C such that $U \setminus C \subset X \setminus F$. Thus $F \subset X \setminus (U \setminus C) = X \setminus (U \cap (X \setminus C)) = (X \setminus U) \cup C$. Let $K = X \setminus U$. Then K is an (i, j)- α -closed set such that $F \subset K \cup C$.

Lemma 2.2. Any union of family of (i, j)- \mathcal{N} - α -open sets is (i, j)- \mathcal{N} - α -open.

Proof. Let $\{U_i : i \in I\}$ be a family of (i, j)- \mathcal{N} - α -open subsets of X and $x \in \bigcup_{i \in I} U_i$. Then $x \in U_j$ for some $j \in I$. This implies that there exists an (i, j)- α -open subset V of X containing x such that $V \setminus U_j$ is finite. Since $V \setminus \bigcup_{i \in I} U_i \subseteq V \setminus U_j$, then $V \setminus \bigcup_{i \in I} U_i$ is finite. Thus, $\bigcup_{i \in I} U_i \in (i, j)$ - $\mathcal{N}\alpha O(X)$.

Definition 2.2. (i) The intersection of all (i, j)- \mathcal{N} - α -closed sets of X containing A is called the (i, j)- \mathcal{N} - α -closure of A and is denoted by (i, j)- $\mathcal{N}\alpha$ Cl(A).

(ii) The union of all (i, j)- \mathcal{N} - α -open sets of X contained in A is called the (i, j)- \mathcal{N} - α -interior and is denoted by (i, j)- $\mathcal{N}\alpha$ Int(A).

Theorem 2.2. Let A and B be subsets of (X, τ_1, τ_2) . Then the following properties hold:

(i) (i, j)- $\mathcal{N}\alpha$ Int(A) is the largest (i, j)- \mathcal{N} - α -open subset of X contained in A.

(ii) A is (i, j)- \mathcal{N} - α -open if and only if A = (i, j)- $\mathcal{N}\alpha$ Int(A).

(iii) (i, j)- $\mathcal{N}\alpha \operatorname{Int}((i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A)) = (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A)$.

(iv) If $A \subset B$, then (i, j)- $\mathcal{N}\alpha \operatorname{Int}(A) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(B)$.

(v) (i,j)- $\mathcal{N}\alpha \operatorname{Int}(A) \cup (i,j)$ - $\mathcal{N}\alpha \operatorname{Int}(B) \subset (i,j)$ - $\mathcal{N}\alpha \operatorname{Int}(A \cup B)$.

(vi) $\mathcal{N}\alpha \operatorname{Int}(A \cap B) \subset (i, j) - \mathcal{N}\alpha \operatorname{Int}(A) \cap \mathcal{N}\alpha \operatorname{Int}(B).$

Proof. The proof of (i)-(iv) are obvious.

(v). By (iv), (i, j)- $\mathcal{N}\alpha \operatorname{Int}(A) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A \cup B)$ and (i, j)- $\mathcal{N}\alpha \operatorname{Int}(B) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A \cup B)$. Then (i, j)- $\mathcal{N}\alpha \operatorname{Int}(A) \cup (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(B) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A \cup B)$. (vi). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (iv), we have (i, j)- $\mathcal{N}\alpha \operatorname{Int}(A \cap B) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A)$ and (i, j)- $\mathcal{N}\alpha \operatorname{Int}(A \cap B) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A) \cap (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(B)$. Then (i, j)- $\mathcal{N}\alpha \operatorname{Int}(A \cap B) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A) \cap (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(B)$. \Box

Theorem 2.3. Let A and B be subsets of (X, τ_1, τ_2) . Then the following properties hold:

- (i) (i, j)- $\mathcal{N}\alpha$ Cl(A) is the smallest (i, j)- \mathcal{N} - α -closed subset of X containing A.
- (ii) A is (i, j)- \mathcal{N} - α -closed if and only if A = (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A)$.
- (iii) $(i, j) \mathcal{N}\alpha \operatorname{Cl}((i, j) \mathcal{N}\alpha \operatorname{Cl}(A) = (i, j) \mathcal{N}\alpha \operatorname{Cl}(A).$
- (iv) If $A \subset B$, then (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(B)$.

(v)
$$(i, j) \cdot \mathcal{N}\alpha \operatorname{Cl}(A \cup B) = (i, j) \cdot \mathcal{N}\alpha \operatorname{Cl}(A) \cup (i, j) \cdot \mathcal{N}\alpha \operatorname{Cl}(B).$$

(vi) $(i, j) \cdot \mathcal{N}\alpha \operatorname{Cl}(A \cap B) \subset (i, j) \cdot \mathcal{N}\alpha \operatorname{Cl}(A) \cap (i, j) \cdot \mathcal{N}\alpha \operatorname{Cl}(B).$

Proof. The proofs are obvious.

Theorem 2.4. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. A point $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - $\mathcal{N}\alpha O(X, x)$.

Proof. Suppose that $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - $\mathcal{N}\alpha O(X, x)$. Suppose that there exists $U \in (i, j)$ - $\mathcal{N}\alpha O(X, x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is (i, j)- \mathcal{N} - α -closed. Since $A \subset X \setminus U$, (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(X \setminus U)$. Since $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$, we have $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A)$, we have $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(X, x)$. We have $x \in X \setminus U$; hence $x \notin U$, which is a contradiction that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$. We shall show that $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$. Suppose that $x \notin (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$. Then there exists $U \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$. $\Box \cap A = \emptyset$. This is a contradiction to $U \cap A \neq \emptyset$; hence $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$. \Box

Theorem 2.5. Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. Then the following properties hold:

(i) (i, j)- $\mathcal{N}\alpha \operatorname{Int}(X \setminus A) = X \setminus (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A);$

(i) (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(X \setminus A) = X \setminus (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(A)$.

Proof. (i). Let $x \in X \setminus (i, j) - \mathcal{N}\alpha \operatorname{Cl}(A)$. Since $x \notin (i, j) - \mathcal{N}\alpha \operatorname{Cl}(A)$, there exists $V \in (i, j) - \mathcal{N}\alpha O(X, x)$ such that $V \cap A = \emptyset$; hence we obtain $x \in (i, j) - \mathcal{N}\alpha \operatorname{Int}(X \setminus A)$. This shows that $X \setminus (i, j) - \mathcal{N}\alpha \operatorname{Cl}(A) \subset (i, j) - \mathcal{N}\alpha \operatorname{Int}(X \setminus A)$. Let $x \in (i, j) - \mathcal{N}\alpha \operatorname{Int}(X \setminus A)$. Since $(i, j) - \mathcal{N}\alpha \operatorname{Int}(X \setminus A) \cap A = \emptyset$, we obtain $x \notin (i, j) - \mathcal{N}\alpha \operatorname{Cl}(A)$; hence $x \in X \setminus (i, j) - \mathcal{N}\alpha \operatorname{Cl}(A)$. Therefore, we obtain $(i, j) - \mathcal{N}\alpha \operatorname{Int}(X \setminus A) = X \setminus (i, j) - \mathcal{N}\alpha \operatorname{Cl}(A)$. (ii). Follows from (i). □

Theorem 2.6. If each nonempty (i, j)- α -open set of a bitopological space (X, τ_1, τ_2) is infinite, then (i, j)- $\alpha \operatorname{Cl}(A) = (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$ for each subset $A \in \tau_1 \cap \tau_2$.

Proof. Clearly (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A) \subset (i, j)$ - $\alpha \operatorname{Cl}(A)$. On the other hand, let $x \in (i, j)$ - $\alpha \operatorname{Cl}(A)$ and B be an (i, j)- \mathcal{N} - α -open subset containing x. Then by Lemma 2.1, there exists an (i, j)- α -open set V containing x and a finite set C such that $V \setminus C \subset B$. Thus $(V \setminus C) \cap A \subset B \cap A$ and so $(V \setminus A) \cap C \subset B \cap A$. Since $x \in V$ and $x \in (i, j)$ - $\alpha \operatorname{Cl}(A)$, $V \cap A \neq \emptyset$ and $V \cap A$ is (i, j)- α -open since V is (i, j)- α -open and $A \in \tau_1 \cap \tau_2$. By the hypothesis each nonempty (i, j)- α -open set of X is finite and so is $(V \cap A) \setminus C$. Thus $B \cap A$ is finite. Therefore, $B \cap A \neq \emptyset$ which means that $x \in (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(A)$.

Corollary 2.1. If each nonempty (i, j)- α -closed set of a bitopological space (X, τ_1, τ_2) is infinite, then (i, j)- α Int(A) = (i, j)- $\mathcal{N}\alpha$ Int(A) for each subset $A \in \tau_1 \cap \tau_2$.

Theorem 2.7. If every (i, j)- α -open subset of X is τ_i -open in (X, τ_1, τ_2) , then $(X, (i, j)-\mathcal{N}\alpha O(X))$ is a topological space.

Proof. (*i*). We have Ø, $X \in (i, j)$ - $\mathcal{N}\alpha O(X)$. (*ii*). Let $U, V \in (i, j)$ - $\mathcal{N}\alpha O(X)$ and $x \in U \cap V$. Then there exist (i, j)-α-open sets $G, H \in X$ containing x such that $G \setminus U$ and $H \setminus V$ are finite. And $(G \cap H) \setminus (U \cap V) = (G \cap H) \cap ((X \setminus U) \cup (X \setminus V)) \subset (G \cap (X \setminus U)) \cup (H \cap (X \setminus V))$. Hence $(G \cap H) \setminus (U \cap V)$ is finite and by hypothesis, the intersection of two (i, j)-α-open sets is (i, j)-α-open. Hence $U \cap V \in (i, j)$ - $\mathcal{N}\alpha O(X)$. (*iii*). Let $\{U_i : i \in I\}$ be any family of (i, j)- \mathcal{N} -α-open sets of X. Then, by Lemma 2.2 $\bigcup_{i \in I} U_i$ is (i, j)- \mathcal{N} -α-open.

3. (i, j)- \mathcal{N} - α -continuous functions

Definition 3.1. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- \mathcal{N} - α continuous if the inverse image of every σ_i -open set of Y is (i, j)- \mathcal{N} - α -open in X,
where $i \neq j, i, j=1, 2$.

It is clear that every (i, j)- α -continuous function is (i, j)- \mathcal{N} - α -continuous but not conversely.

Example 3.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, X\}$. Clearly the identity function $f : (X, \tau) \to (X, \sigma)$ is (i, j)- \mathcal{N} - α -continuous but not (i, j)- α -continuous.

Theorem 3.1. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

- (i) f is (i, j)- \mathcal{N} - α -continuous;
- (ii) For each point x in X and each σ_i -open set F in Y such that $f(x) \in F$, there is a (i, j)- \mathcal{N} - α -open set A in X such that $x \in A$, $f(A) \subset F$;
- (iii) The inverse image of each σ_i -closed set in Y is (i, j)- \mathcal{N} - α -closed in X;
- (iv) For each subset A of X, $f((i, j) \mathcal{N}\alpha \operatorname{Cl}(A)) \subset \sigma_i \operatorname{Cl}(f(A));$
- (v) For each subset B of Y, (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i \operatorname{-Cl}(B));$
- (vi) For each subset C of Y, $f^{-1}(\sigma_i \operatorname{-Int}(C)) \subset (i, j) \cdot \mathcal{N}\alpha \operatorname{Int}(f^{-1}(C))$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_i -open set of Y containing f(x). By (i), $f^{-1}(F)$ is (i, j)- \mathcal{N} - α -open in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$. (ii) \Rightarrow (i): Let F be σ_i -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii),

there is an (i, j)- \mathcal{N} - α -open set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i, j)- \mathcal{N} - α -open in X.

(i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_i - \operatorname{Cl}(f(A)))$. Now, $(i, j) - \mathcal{N} \alpha \operatorname{Cl}(f(A))$ is σ_i -closed in Y and hence $(i, j) - \mathcal{N} \alpha \operatorname{Cl}(A) \subset f^{-1}(\sigma_i - \operatorname{Cl}(f(A)))$, for $(i, j) - \mathcal{N} \alpha \operatorname{Cl}(A)$ is the smallest $(i, j) - \mathcal{N} - \alpha$ -closed set containing A. Then $f((i, j) - \mathcal{N} \alpha \operatorname{Cl}(A)) \subset \sigma_i - \operatorname{Cl}(f(A))$.

(iv) \Rightarrow (iii): Let F be any σ_i -closed subset of Y. Then $f((i, j)-\mathcal{N}\alpha \operatorname{Cl}(f^{-1}(F))) \subset \sigma_i$ - $\operatorname{Cl}(f(f^{-1}(F))) \subset \sigma_i$ - $\operatorname{Cl}(F) = F$. Therefore, $(i, j)-\mathcal{N}\alpha \operatorname{Cl}(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is $(i, j)-\mathcal{N}-\alpha$ -closed in X.

(iv) \Rightarrow (v): Let *B* be any subset of *Y*. Now, $f((i, j) - \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(B))) \subset \sigma_i - \operatorname{Cl}(f(f^{-1}(B))) \subset \sigma_i - \operatorname{Cl}(B)$. Consequently, $(i, j) - \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i - \operatorname{Cl}(B))$.

(v) \Rightarrow (iv): Let B = f(A) where A is a subset of X. Then, (i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\operatorname{-Cl}(B)) = f^{-1}(\sigma_i\operatorname{-Cl}(f(A)))$. This shows that f((i, j)- $\mathcal{N}\alpha \operatorname{Cl}(A)) \subset \sigma_i\operatorname{-Cl}(f(A))$.

(i) \Rightarrow (vi): Let *B* be any subset of *Y*. Clearly, $f^{-1}(\sigma_i \operatorname{-Int}(B) \text{ is } (i, j) \cdot \mathcal{N} \cdot \alpha$ -open and we have $f^{-1}(\sigma_i \operatorname{-Int}(B)) \subset (i, j) \cdot \mathcal{N} \alpha \operatorname{Int}(f^{-1}\sigma_i \operatorname{-Int}(B)) \subset (i, j) \cdot \mathcal{N} \alpha \operatorname{Int}(f^{-1}B)$.

 $(\text{vi}) \Rightarrow (\text{i})$: Let *B* be a σ_i -open set in *Y*. Then σ_i -Int(B) = B and $f^{-1}(B) \subset f^{-1}(\sigma_i$ -Int $(B)) \subset (i, j)$ - $\mathcal{N}\alpha$ Int $(f^{-1}(B))$. Hence we have $f^{-1}(B) = (i, j)$ - $\mathcal{N}\alpha$ Int $(f^{-1}(B))$. This shows that $f^{-1}(B)$ is (i, j)- \mathcal{N} - α -open in *X*. \Box

Definition 3.2. (i) A bitopological space (X, τ_1, τ_2) is said to be pairwise α -compact if every cover of X by (i, j)- α -open sets admits a finite subcover.

(ii) A subset A of a bitopological space (X, τ_1, τ_2) is said to be pairwise α -compact relative to X if every cover of A by (i, j)- α -open sets of X admits a finite subcover.

Theorem 3.2. If (X, τ_1, τ_2) is a bitopological space such that every (i, j)- α -open subset of X is pairwise α -compact relative to X, then every subset of X is pairwise α -compact relative to X.

Proof. Let B be an arbitrary subset of X and $\{U_i : i \in I\}$ be cover of B by (i, j)- α -open sets of (X, τ_1, τ_2) . Then the family $\{U_i : i \in I\}$ is an (i, j)- α -open cover of the (i, j)- α -open set $\cup \{U_i : i \in I\}$. Hence by hypothesis there is a finite subfamily $\{U_{i_j} : j \in N_0\}$ which covers $\cup \{U_i : i \in I\}$ where N_0 is a finite subset of the naturals N. This subfamily is also a cover of the set B.

Theorem 3.3. A subset A of a bitopological space (X, τ_1, τ_2) is pairwise α -compact relative to X if and only if for any cover $\{V_\alpha : \alpha \in \Lambda\}$ of A by (i, j)-N- α -open sets of X, there exists a finite subset Λ_0 of Λ such that $A \subset \cup \{V_\alpha : \alpha \in \Lambda_0\}$.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of A and $V_{\alpha} \in (i, j)$ - $\mathcal{N}\alpha O(X)$. For each $x \in A$, there exists $\alpha(x) \in \Lambda$ such that $x \in V_{\alpha(x)}$. Since $V_{\alpha(x)}$ is (i, j)- \mathcal{N} - α -open, there exists an (i, j)- α -open set $U_{\alpha(x)}$ such that $x \in U_{\alpha(x)}$ and $U_{\alpha(x)} \setminus V_{\alpha(x)}$ is finite. The family $\{U_{\alpha(x)} : x \in A\}$ is an (i, j)- α -open cover of A. Since A is pairwise α -compact relative to X, there exists a finite subset, $x_1, x_2, ..., x_n$ such that $A \subset \cup \{U_{\alpha(x_i)} : i \in F\}$, where $F = \{1, 2, ..., n\}$. Now, we have $A \subseteq \bigcup_{i \in F} ((U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \cup V_{\alpha(x_i)})) = (\bigcup_{i \in F} V_{\alpha(x_i)}) \cup (\bigcup_{i \in F} V_{\alpha(x_i)})$. For each $x_i, U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}$ is a finite set and there exists a finite subset $\Lambda(x_i)$ of Λ such that $(U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \cap A \subseteq \cup \{V_{\alpha} : \alpha \in \Lambda(x_i)\}$. Therefore, we have $A \subseteq (\bigcup_{i \in F} (\cup_i (\cup_i (V_{\alpha(x_i)} \setminus V_{\alpha(x_i)}))) \cap (\bigcup_{i \in F} V_{\alpha(x_i)})) \cap (\bigcup_{i \in F} V_{\alpha(x_i)}) \cap A \subseteq \cup_i (V_{\alpha(x_i)})$. Hence A is pairwise α -compact relative to X.

Corollary 3.1. For any bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (i) X is pairwise α -compact.
- (ii) Every (i, j)- \mathcal{N} - α -open cover of X admits a finite subcover.

Theorem 3.4. A bitopological space (X, τ_1, τ_2) is pairwise α -compact if and only if every proper (i, j)- \mathcal{N} - α -closed set is pairwise α -compact with respect to X.

Proof. Let A be a proper (i, j)- \mathcal{N} - α -closed subset of X. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of A by (i, j)- α -open sets of X. Now for each $x \in X \setminus A$, there is an (i, j)- α -open set V_x such that $V_x \setminus A$ is finite. Then $\{U_{\alpha} : \alpha \in \Lambda\} \cup \{V_x : x \in X \setminus A\}$ is a (i, j)- α -open cover of X. Since X is pairwise α -compact, there exists a finite subset Λ_1 of Λ and a finite number of points, say, $x_1, x_2, ..., x_n$ in $X \setminus A$ such that $X = (\cup \{U_{\alpha} : \alpha \in \Lambda_1\}) \cup (\cup \{V_{x_i} : 1 \leq i \leq n\})$; hence $A \subset (\cup \{U_{\alpha} : \alpha \in \Lambda_1\}) \cup (\cup \{A \cap V_{x_i} : 1 \leq i \leq n\})$. Since $A \cap V_{x_i}$ is finite for each i, there exists a finite subset Λ_2 of Λ such that $\cup \{A \cap V_{x_i} : 1 \leq i \leq n\} \subset \cup \{U_{\alpha} : \alpha \in \Lambda\}$. Therefore, we obtain $A \subset \cup \{U_{\alpha} : \alpha \in \Lambda_1 \cup \Lambda_2\}$. This shows that A is pairwise α -compact relative to X. Conversely, Let $\{V_{\alpha} : \alpha \in \Lambda \setminus \{\alpha_0\}\}$ is an (i, j)- α -open cover of the (i, j)- \mathcal{N} - α -closed set $X \setminus V_{\alpha_0}$. Then there exists a finite set $\Lambda_0 \subset \Lambda$ such that $X \setminus V_{\alpha_0} \subset \cup \{V_{\alpha} : \alpha \in \Lambda_0 \cup \{\alpha_0\}\}$. This shows that X is pairwise α -compact. \Box

Theorem 3.5. Let (X, τ_1, τ_2) be a bitopological space such that $(i, j) \cdot \alpha O(X) = \tau_i$. Then (X, τ_1, τ_2) is pairwise α -compact if and only if $(X, (i, j) \cdot \mathcal{N} \alpha O(X))$ is compact.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be an open cover of $(X, (i, j)-\mathcal{N}\alpha O(X))$. For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $x \in V_{\alpha(x)}$. Since $V_{\alpha(x)}$ is $(i, j)-\mathcal{N}$ - α -open, there exists an (i, j)- α -open set $U_{\alpha(x)}$ such that $x \in U_{\alpha(x)}$ and $U_{\alpha(x)} \setminus V_{\alpha(x)}$ is finite. The family

 $\{U_{\alpha(x)} : x \in X\} \text{ is a } (i, j) \text{-}\alpha \text{-open cover of } (X, \tau_1, \tau_2). \text{ Since } (X, \tau_1, \tau_2) \text{ is pairwise } \alpha \text{-compact, there exists a finite subset, } x_1, x_2, \dots, x_n \text{ such that } X = \cup \{U_{\alpha(x_i)} : i \in F\}, \text{ where } F = \{1, 2, \dots, n\}. \text{ Now, we have } X = \bigcup_{i \in F} ((U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \cup V_{\alpha(x_i)}) = (\bigcup_{i \in F} (U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \cup (\cup_{i \in F} V_{\alpha(x_i)})). \text{ For each } x_i, U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \text{ is a finite set and there exists a finite subset } \Lambda(x_i) \text{ of } \Lambda \text{ such that } (U_{\alpha(x_i)} \setminus V_{\alpha(x_i)}) \cap A \subseteq \cup \{V_\alpha : \alpha \in \Lambda(x_i)\}. \text{ Therefore, we have } X = (\bigcup_{i \in F} (\cup \{V_\alpha : \alpha \in \Lambda(x_i)\}) \cup (\bigcup_{i \in F} V_{\alpha(x_i)})). \text{ Hence } (X, (i, j) \text{-} \mathcal{N}\alpha O(X)) \text{ is compact. Conversely, let } \mathcal{U} \text{ be an } (i, j) \text{-}\alpha \text{-open cover of } (X, \tau_1, \tau_2). \text{ Then } \mathcal{U} \subseteq (i, j) \text{-} \mathcal{N}\alpha O(X). \text{ Since } (X, (i, j) \text{-} \mathcal{N}\alpha O(X)) \text{ is compact. Hence } (X, (i, j, \tau_1, \tau_2)) \text{ is pairwise } \alpha \text{-compact.} \square$

Definition 3.3. (i) A bitopological space (X, τ_1, τ_2) is said to be pairwise compact if every cover of X by τ_i -open sets admits a finite subcover.

(ii) A subset A of a bitopological space (X, τ_1, τ_2) is said to be pairwise compact relative to X if every cover of A by τ_i -open sets of X admits a finite subcover.

Theorem 3.6. Let f be an (i, j)- \mathcal{N} - α -continuous function from a space X onto a space Y. If X is pairwise α -compact, then Y is pairwise compact.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be a cover of Y by σ_i -open sets of Y. Then $\{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$ is an (i, j)- \mathcal{N} - α -open cover of X. Since X is pairwise α -compact, there exists a finite subset Λ_0 of Λ such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Lambda_0\}$; hence $Y = \bigcup \{V_{\alpha} : \alpha \in \Lambda_0\}$. Therefore Y is pairwise compact.

4. (i, j)- \mathcal{N} - α -irresolute functions

Definition 4.1. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- \mathcal{N} - α -irresolute if the inverse image of every (i, j)- α - \mathcal{N} -open set of Y is (i, j)- \mathcal{N} - α -open in X, where $i \neq j, i, j=1, 2$.

Proposition 4.1. Every (i, j)- \mathcal{N} - α -irresolute function is (i, j)- \mathcal{N} - α -continuous but not conversely.

Proof. Straightforward.

The function f defined as in example 3.1 is (i, j)- \mathcal{N} - α -continuous but not (i, j)- \mathcal{N} - α -irresolute.

Theorem 4.1. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function, then

- (1) f is (i, j)- \mathcal{N} - α -irresolute;
- (2) the inverse image of each (i, j)- α -N-closed subset of Y is (i, j)-N- α -closed in X;
- (3) for each $x \in X$ and each $V \in (i, j) \cdot \mathcal{N} \alpha O(Y)$ containing f(x), there exists $U \in (i, j) \cdot \mathcal{N} \alpha O(X)$ containing x such that $f(U) \subset V$.

Proof. The proof is obvious from the fact that the arbitrary union of (i, j)- \mathcal{N} - α -open subsets is (i, j)- \mathcal{N} - α -open.

Theorem 4.2. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function, then

- (i) f is (i, j)- \mathcal{N} - α -irresolute;
- (ii) $(i, j) \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}((i, j) \mathcal{N}\alpha \operatorname{Cl}(V))$ for each subset V of Y;
- (iii) $f((i,j)-\mathcal{N}\alpha\operatorname{Cl}(U)\subset (i,j)-\mathcal{N}\alpha\operatorname{Cl}(f(U))$ for each subset U of X.

Proof. (*i*) ⇒ (*ii*): Let V be any subset of Y. Then $V \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(V)$ and $f^{-1}(V) \subset f^{-1}((i, j)-\mathcal{N}\alpha \operatorname{Cl}(V))$. Since f is (i, j)- \mathcal{N} -α-irresolute, $f^{-1}((i, j)-\mathcal{N}\alpha \operatorname{Cl}(V))$ is a (i, j)- \mathcal{N} -α-closed subset of X. Hence

 $\begin{aligned} &(i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(V)) \subset (i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f^{-1}((i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(V))) = f^{-1}((i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(V)). \\ &(ii) \Rightarrow (iii): \text{ Let } U \text{ be any subset of } X. \text{ Then } f(U) \subset (i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f(U)) \text{ and } (i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(U) \subset (i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(f(U))) \subset f^{-1}((i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f(U))). \\ &\mathcal{N}\alpha \operatorname{Cl}(U) \subset (i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(f(U))) \subset f^{-1}((i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f(U))). \\ &f((i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(U)) \subset f(f^{-1}((i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f(U)))) \subset (i,j) \cdot \mathcal{N}\alpha \operatorname{Cl}(f(U)). \end{aligned}$

 $(iii) \Rightarrow (i)$: Let V be an (i, j)- \mathcal{N} - α -closed subset of Y. Then f((i, j)- $\mathcal{N}\alpha \operatorname{Cl}(f^{-1}(V)) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(f(f^{-1}(V))) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(V) = V$. This implies that

 $\begin{array}{l} (i,j) - \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(f((i,j) - \mathcal{N}\alpha \operatorname{Cl}(f^{-1}(V)))) \subset f^{-1}(V). \\ \text{Therefore, } f^{-1}(V) \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \mathcal{N} - \alpha \text{-closed subset of } X \text{ and consequently } f \text{ is an } (i,j) - \alpha \text{-closed subset } (i,j) - \alpha \text{-closed subset } X \text{ and } X \text{ and consequently } f \text{ and } X \text{ and } X$

Theorem 4.3. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an (i, j)- \mathcal{N} - α -irresolute if and only if $f^{-1}((i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(V)) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(f^{-1}(V))$ for each subset V of Y.

Proof. Let V be any subset of Y. Then (i, j)-Nα Int(V) ⊂ V. Since f is (i, j)-N-αirresolute, $f^{-1}((i, j)$ -Nα Int(V)) is an (i, j)-N-α-open subset of X. Hence $f^{-1}((i, j)$ -Nα Int(V)) = (i, j)-Nα Int $(f^{-1}((i, j)$ -Nα Int(V))) ⊂ (i, j)-Nα Int $(f^{-1}(V))$. Conversely, let V be an (i, j)-α-N-open subset of Y. Then $f^{-1}(V) = f^{-1}((i, j)$ -

Conversely, let V be an (i, j)- α - \mathcal{N} -open subset of Y. Then $f^{-1}(V) = f^{-1}((i, j) - \mathcal{N}\alpha \operatorname{Int}(V)) \subset (i, j)$ - $\mathcal{N}\alpha \operatorname{Int}(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is an (i, j)- \mathcal{N} - α -open subset of X and consequently f is an (i, j)- \mathcal{N} - α -irresolute function. \Box

Definition 4.2. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be:

- (i) (i, j)- \mathcal{N} - α -open if f(U) is a (i, j)- \mathcal{N} - α -open set of Y for every τ_i -open set U of X.
- (ii) (i, j)- \mathcal{N} - α -closed if f(U) is a (i, j)- \mathcal{N} - α -closed set of Y for every τ_i -closed set U of X.

Corollary 4.1. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function. Then f is (i, j)- \mathcal{N} - α -closed and (i, j)- \mathcal{N} - α -irresolute if and only if f((i, j)- $\mathcal{N}\alpha \operatorname{Cl}(V)) = (i, j)$ - $\mathcal{N}\alpha \operatorname{Cl}(f(V)))$ for every subset V of X.

Theorem 4.4. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an (i, j)- \mathcal{N} - α -irresolute function. If Y is pairwise α -compact, then X is pairwise α -compact.

Proof. The proof is clear.

References

M. Jelić, Feeble P-continuious mappings, Rend. Circ Math. Palermo 24 (1990), 387-395.
 J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-83.

(Neelamegarajan Rajesh) DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA. *E-mail address*: nrajesh_topology@yahoo.co.in

(Jamal M. Mustafa) DEPARTMENT OF MATHEMATICS, AL AL-BAYT UNIVERSITY, MAFRAQ, JORDAN *E-mail address*: jjmmr971@yahoo.com