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A nonlinear equation that unifies the quantum Yang-Baxter
equation and the Hopf equation. Solutions and applications

Gefry Barad

Abstract. We define a nonlinear equation , called (UE),which unify QYBE and Hopf equa-

tions, and which provide representations for the new crossed-simplicial groups R(n) defined in
[2]. We continue the study of a system of mixed Yang-Baxter type equations presented in [2],
which provide solutions for UE. Similar to the study of Hopf, Long or QYBE, we find sufficient
conditions for a bilinear on a Hopf algebra to provide canonical solutions on any H-comodule,

and also sufficient conditions for an entwining structure, such that the canonical application
for an entwined module R(m⊗ n) = m1n⊗m0 on M ⊗M verifies the equation.
Any solution of the equation generates a twisted factorisation structure on a tensor algebra.
Theory of Hopf algebras with a weak projection satisfying certain properties provides solutions.

A new nonlinear equation is proposed.
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1. Introduction

Non-linear equations on multiple tensor products of vector spaces play an im-
portant role in the theory of integrable systems and of quantum groups. Hopf and
quantum Yang-Baxter equations were studied in [3], [12] using a Tannaka-Krein ap-
proach.Also, Militaru mentioned that the Yetter- Drinfel’d modules and Hopf mod-
ules, which are modules and comodules satisfying certain compatibility conditions
and which provide solutions to QYBE and PE equations are particular cases of a
Doi-Koppinen datum [6], a concept generalized by Brzezinski to the concept of en-
twining structure [9].

Our purpose is to present a non-linear equation such that solutions of QYBE and
Hopf equations are automatically solutions of it. Solutions to a system of mixed
Yang-Baxter type equations came from a particular Doi-Koppinen datum.

2. Non - linear equations on tensor product of vector spaces

The quantum Yang-Baxter equation (QYBE) is the following equation involving
R: M ⊗M → M ⊗M ; R12R13R23 = R23R13R12 : M ⊗M ⊗M → M ⊗M ⊗M .
A solution of it generates representations for the type A Artin Braid groups B(n),
generated by si, 1 ≤ i ≤ n with relations: sisi+1si=si+1sisi+1. si and sj commutes
if i and j are not consecutive.
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We will use Sweedler notation and the multi-linearity of the involved operators.
We will use group-like notation for functions: ABC means C ◦ (B ◦A).

Solutions for QYBE are given by quasitriangular bialgebras (H, R), where the
element R from H ⊗H satisfies:
△⊗ id(R) = R13R23.
id⊗△(R)= R13R12.
id⊗ ϵ(R)= ϵ⊗ id(R)=1.
R△(h) = △cop(h)R, for any h from H.
If H is a Hopf algebra, R is invertible and induces on any left H-module a solution

for QYBE. The dual notion is that of a co-quasitriangular bialgebra (H, σ), where
σ : H ⊗ H → k verifies natural axioms such that on any right H-comodule M, the

function S(x⊗ y) =
∑

x1 ⊗ y1σ(x2 ⊗ y2) is a solution for QYBE. These axioms are:

σ(x⊗ 1) = ε(x);
σ(xy ⊗ z) =

∑
σ(x⊗ z(1))σ(y ⊗ z(2));

σ(1⊗ x) = ε(x);
σ(x⊗ yz) =

∑
σ(x(1) ⊗ z)σ(x(2) ⊗ y); for any x, y, z ∈ H.∑

σ(x(1) ⊗ y(1))y(2)x(2) =
∑

σ(x(2) ⊗ y2))x(1)y(1),
The Yetter-Drinfeld modules (M, ., f) also generates solutions for QYBE. M is a

left H-module and a right H-comodule with the following compatibility relation:
h1m0 ⊗ h2m1 = (h2m)0 ⊗ (h2m)1h1, for any h in H and m in M.
In this case, the operator R(m⊗n) = n1m⊗n0 is a solution for QYBE on M ⊗M .
Let R be a QYBE operator. The bialgebra A(R), generated by eij , 1 ≤ i,j ≤

dimC(M), modulo the relations:
∑
k,l

Rkl
ij e

a
ke

b
l =

∑
k,l

Rba
kl e

k
i e

l
j is cobraided (Chap.VIII

[10]).

Definition 2.1. ([12], [3])R ∈ End(M ⊗ M) satisfies the Pentagonal equation if
R23R12 = R12R13R23. The Hopf equation is given by: R12R23 = R23R13R12.

Lemma 2.1. ([12]) R is a solution of the Hopf equation if and only if Flip ◦R ◦Flip
is a solution of the pentagonal equation.

2.1. A unifying equation for QYBE and the Hopf equation. Let R: M⊗M →
M ⊗M be an invertible linear operator. We introduce the following equation (UE):

B123R34D124R24R14D123 = R34R24R14, where D is the inverse of the ”‘Yang-
Baxter operator” B : H ⊗H ⊗H → H ⊗H ⊗H. B=(R23R13R12)(R12R13R23)

−1

The equation represents the equality of two operators, built using R and defined
from M ⊗M ⊗M ⊗M → M ⊗M ⊗M ⊗M. The indices attached to R,D,B show
the positions from the tensor product where these operators act, on the remaining
positions the action is given by identity.

Theorem 2.1. Any operator R which satisfy QYBE is a solution to this equation.
Any operator which satisfy the Hopf equation is a solution to this equation.

Proof. If R satisfy QYBE, then B=D is the identity operator, so the equation UE is
satisfied. If R satisfy the Hopf equation, then B= R12R

−1
13 R

−1
12 and an easy calculation

shows the R satisfy also UE. Let S be the inverse of R.
R34R24R14 = R12R34R24S12

The UE equation is given by:
R34R24R14 = R23R13R12S23S13S12R34R12R14R24R13R23S12S13S23

R23R13R12 = R12R23, so the right hand side is equal to
A=R12S13S12R34R12R14R24R13R23S12S13S23
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R34R12 = R12R34 and R24R13 = R13R24 so
A=R12S13[R34R14R13]R24R23S12S13S23=
=R12S13[R13R34]R24R23S12S13S23=R12R34R24[R23S12S13S23]=
=R12R34R24S12, so the left hand side of the UE equation is equal to A.

2.2. A system of mixed Yang-Baxter type equations. Other solutions for
the UE equation. We consider the following system. R,S: M ⊗M →M ⊗M

R(1, 2)S(1, 3)R(2, 3) = R(2, 3)R(1, 3)R(1, 2)
S(1, 2)S(1, 3)R(2, 3) = R(2, 3)S(1, 3)S(1, 2)
It is a unifying system for the QYBE (if R=S) and for the Hopf equation (if S is

the identity operator). We recall the following theorem from [2] (Theorem 4.1).

Theorem 2.2. If the pair (R,S) is a solution for the system above, then R verifies
the UE. In particular, if R is a solution of the pentagonal equation, hen R satisfy the
UE equation.

Lemma 2.2. Flip◦R verifies the UE equation: B123R34D124R24R14D123=R34R24R14

if and only if R verifies the following equation: B123R34D123R23R12D234=R34R23R12,
called R- equation, where D is the inverse of the ”‘braid operator”

B : H ⊗H ⊗H → H ⊗H ⊗H. B=(R23R12R23)(R12R23R12)
−1

The R− equation represents the equality of two operators, built using R and
defined from M ⊗M ⊗M ⊗M →M ⊗M ⊗M ⊗M. The indices attached to R,D,B
show the positions from the tensor product where these operators act, on the remaining
positions the action is given by identity.

Proof. Graphically,the equation B123R34D124R24R14D123 = R34R24R14 is written as:

R-equation has the following graphical representation.
Similar relations between the QYBE and Braid operators were found in [7] (Prop.

114 and 124, Dfn. 12). Flip composition and the inverses of the operators connect
the Hopf and the pentagonal equation. Unlike other non-linear equations, if R is a
solution of UE, its inverse or their ”flip” compositions do not seem to provide other
solutions of UE.

The R- equation is an equation in the strict symmetric (so braided), abelian cat-
egory of the vector spaces V ect. R is a sum of operators f ⊗ g and the Flip (the
symmetry of the braided category Vect) is a natural transformation. So, we can push
the operators f ⊗ g above the crossings among strings from the second figure above:
the result will be the UE equation, followed by a composition of braid operators
(flips).
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Theorem 2.3. A solution of the following system generates an operator R, which ver-
ifies the UE equation R34R24R14 = R23R13R12S23S13R34R14R24R13R23S12S13S23,
where S is the inverse of R.

R,A,B,C,X,Y: M ⊗M →M ⊗M
R23R13R12 = A12B13R23

R23R13A12 = A12C13R23

R23C13B12 = B12X13Y23

R23R13R12 = R12X13Y23

C=R; X=B; Y=A, or other imposed conditions (B = Id and A=R, in which case
we have the Hopf equation) simplify the form of the system above.

Proof. Let (R,A,B,C,X,Y) be a solution to the system above. We will show that R
verifies the UE equation.

R23R13R12S23S13R34R14R24R13R23S12S13S23=
A12B13R23S23S13R34R14R24R13R23S12S13S23=
A12B13S13R34R14R13R24R23S12S13S23 = A12B13S13R13X14Y34R24R23S12S13S23

=A12B13X14Y34R24R23S12S13S23 = A12R34C14B13R24R23S12S13S23=
R34A12C14R24B13R23S12S13S23=R34R24R14A12B13R23S12S13S23 = R34R24R14

2.3. Hopf algebras with a projection. Generalized Yetter-Drinfeld mod-
ules. Panaite and Staic [15] introduced the concept of (a,b)-Yetter-Drinfeld module,
for a Hopf algebra H with bijective antipode and a, b automorphisms of H.

M is a left-right (a,b)-Yetter-Drinfeld module if it is a left module and a right
comodule over H, and the following compatibility relation between the action and the
coaction is satisfied:

(x1 ◃ y1)⊗ (b(x2)y2) = (x2 ◃ y)1 ⊗ (x2 ◃ y)2a(x1)
We prove that a solution for the system:
R(1, 2)S(1, 3)R(2, 3) = R(2, 3)R(1, 3)R(1, 2)
S(1, 2)S(1, 3)R(2, 3) = R(2, 3)S(1, 3)S(1, 2)
is given by any (p, id)- module over a Hopf algebra with a projection p.
A projection p for a Hopf algebra H is a Hopf algebra endomorphism which satisfies

p(p(x))=p(x) for any x from H. Any quasitriangular Hopf algebra H (for example the
Drinfeld double of a finite dimensional Hopf algebra A) has its Drinfeld double a
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Hopf algebra with a projection. Also any braided Hopf algebra (a Hopf algebra in
the category of Yetter-Drinfeld modules over H) provides using Radford biproduct a
Hopf algebra with a projection [4], [11] Thm.9.4.12.

Theorem 2.4. Let M be a (p, id)- Yetter - Drinfeld module over a Hopf algebra with
a projection p. We define:

R(m⊗ n) = m1 ⊗m2 ◃ n
S(m⊗ n) = m1 ⊗ p(m2) ◃ n
Then,(R,S) is a solution of the system above.

Proof. R23R13R12(m⊗ n⊗ w) = R12(R13(m⊗ n1 ⊗ n2 ◃ w))=
R12(m1 ⊗ n1 ⊗m2 ◃ n2 ◃ w)) = m1 ⊗m2 ◃ n1 ⊗m3n2 ◃ w.
R12S13R23(m⊗n⊗w) = R23(S13(m1⊗m2◃n⊗w)) = R23(m1⊗m3◃n⊗p(m2)◃w).
The first term m1 is the same in both expresions we want to prove they are equal,

so it is enough to prove that: R(m2 ◃ n⊗ p(m1) ◃ w)) = m1 ◃ n1 ⊗m2n2 ◃ w
⇔ (m2 ◃ n)1 ⊗ (m2 ◃ n)2p(m1) ◃ w =m1 ◃ n1 ⊗m2n2 ◃ w
M is a (p,id) Yetter-Drinfeld module , so the equality is true (both elements are

the image of the defining relation for M through id⊗− ◃ w)
R23S13S12(m⊗ n⊗ w) = S12(S13(m⊗ n1 ⊗ n2 ◃ w))=
S12(m1 ⊗ n1 ⊗ p(m2) ◃ n2 ◃ w)) = m1 ⊗ p(m2) ◃ n1 ⊗ p(m3)n2 ◃ w.
S12S13R23(m⊗ n⊗ w) = R23(S13(m1 ⊗ p(m2) ◃ n⊗ w)) =
R23(m1 ⊗ p(m3) ◃ n⊗ p(m2) ◃ w))
It is enough to prove that: R(p(m2) ◃ n⊗ p(m1) ◃w)) = p(m1) ◃ n1⊗ p(m2)n2 ◃w,

which is (p,id) Yetter -Drinfeld condition for h=p(m) in the image of p.

2.4. Braided Hopf algebras. In this section, we re-prove a particular case of The-
orem 4.2 [2], which states the Hopf equation in braided monoidal category, satisfied
by the fusion operator of a Hopf algebra in a braided monoidal category.

Let H be a Hopf algebra with bijective antipode. Let B be a Hopf algebra in
the strict braided monoidal category of left-right Yetter-Drinfeld modules over H. So,
B is an object in this category, togeter with a comultiplication δ : B → B ⊗ B ,
multiplication m, unit and counit ϵ morphisms which satisfy the usual axioms for a
Hopf algebra. δ is a braided algebra morphism:

δ(xy) = (m⊗m)(id⊗ c⊗ id)(δ(x)⊗ δ(y))
c is the braiding on B induced by the Yetter-Drinfeld structure (instead of the

regular flip).
We find a special class of solutions to the system associated to these data. The

proof uses classic facts about braided geometry [11].

Lemma 2.3. ([11] and Sect.2.2 [4]) On B⊗H there is a natural Hopf algebra structure
(Radford’s biproduct B oH), given by:

(b, h)(c, k) = (b(h1c), h2k)
∆(b, h) = (b1, b21h1)⊗ (b20, h2)
The subscript denotes the Yetter-Drinfeld coaction and the suprascript denotes δ

Sweedler notation. H acts by its left Yetter- Drinfeld action on B. The multiplication
from B appears also in the definition of the product. B and H are subalgebras of
B o H. There is a projection p : B o H → H, given by p(b, h) = ϵ(b)h. Any Hopf
algebra with a projection is isomorphic with a Radford’s biproduct.

To our knowledge, the following structural result concerning a braided Hopf algebra
is new. We provide B with the following module and comodule structure maps over
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the Hopf algebra (B o H)cop : B o H ⊗ B → B (b, h) � m = b(hm), where h acts
on m using the Yetter -Drinfeld action of H on B, and the second operation is the
braided Hopf algebra multiplication on B.

ρ : B → B ⊗B ⊗H, b→ b20 ⊗ b1 ⊗ b21 = ∆op(b, 1) = b[o] ⊗ b[1]
Note: the restriction of the action to H, and the composition of the coaction by

id⊗ p = id⊗ ϵBidH recovers the Yetter Drinfeld module structure of B.
Given a Hopf algebra with a projection (H, p,H1), there is a standard way (Sect.2.2

[4]) to recover B as the set of coinvariants with respect to (id ⊗ p)∆. Similarly we
can define on B an Hcop module and comodule structure and we conjecture that B is
a (p,id) Yetter-Drinfeld module.

Let R and S be the following maps:
R: B ⊗B → B ⊗B, R(b⊗ c) = b20 ⊗ b1(b21c) = b[o] ⊗ b[1] � c
S: B ⊗B → B ⊗B, S(b⊗ c) = b0 ⊗ (b1c)
S = flip ◦ c, where c is the braiding on the Yetter-Drinfeld module B.
(R,S) is a solution for the mixed Yang-Baxter system if and only if
(T=flip ◦R,c) satisfies the following sistem :
T (23)T (12)T (23) = T (12)c(23)T (12)
T (23)c(12)c(23) = c(12)c(23)T (12)

Theorem 2.5. B is a (p,id) Yetter-Drinfeld module over (B oH)cop.

Proof. Let H = (m,h). m is in B, and h in Im(p).
∆(m,h) = (m2

0, h2)⊗ (m1,m2
1h1) = H1 ⊗H2

∆(m, 1) = (m2
0, 1)⊗ (m1,m2

11) = D1 ⊗D2

ρ((m1,m2
1h1)◃b)ϵ(m

2
0)h2 = ρ(ϵ(m2

0)(m
1,m2

1)◃(h1◃b)h2 = ρ(ϵ(D1)D2◃(h1◃b)h2 =
ρ((m, 1) ◃ (h1 ◃ b)h2 = ρ((m.(h1 ◃ b)h2 = ∆(m, 1)∆(h1b)h2 = ∆(m, 1)∆((1, h)ρ(b),

where we used the B is a Yetter-Drinfeld module over Im(p)=H.
∆(m, 1)∆((1, h)ρ(b) = ∆(m,h)ρ(b), which is the definition of a (p,id)-Yetter -

Drinfeld module; we used the multiplicativity of the comultiplication in the ”‘big”
Hopf algebra, and the definition of the coaction.

As a corollary, we apply Theorem 4 to this (p,id)- Yetter-Drinfeld module to prove
the (T,c) verifies the Hopf equation associated with the braided Hopf algebra B.

3. Generalizations. Hopf algebras with a weak projections, entwined mod-
ules and bilinear forms.

Let H be a Hopf algebra. We investigate the sufficient conditions satisfied by a
bilinear form σ : H ⊗ H → k such that on any right H-comodule M, the function

R(x ⊗ y) =
∑

y1 ⊗ x1σ(x2 ⊗ y2) is a solution for the R- equation. We suppose σ is

convolution invertible, with inverse r and H has invertible antipode. The inverse of R

is S(x⊗ y) =
∑

y1 ⊗ x1r(y2 ⊗ x2).

Remark 3.1. We write the R-equation in the following form:
R34R23R12R34R23R34S23S34 = R23R12R23S12S23R34R23R12

If R and S are induced on M ⊗M by bilinear forms above, the equality is written,
when evaluated on x⊗ y ⊗ z ⊗ t as:

t1⊗ y1⊗x1⊗ z1r(x2⊗ z2)r(y2⊗ z3)σ(x3⊗ y3)σ(x4⊗ z4)σ(x5⊗ t2)σ(y4⊗ z5)σ(y5⊗
t3)σ(z6 ⊗ t4)

=t1⊗y1⊗x1⊗z1σ(y2⊗ t2)σ(x2⊗ t3)σ(z2⊗ t4)r(x3⊗z3)r(y3⊗z4)σ(x4⊗y4)σ(x5⊗
z5)σ(y5 ⊗ z6).
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An immediate consequence is the following: if H is co-commutative , any bilinear
σ induces on any H-comodule a solution for the R-equation.

Let M be a H-comodule.

Lemma 3.1. (a)If σ(x⊗ yz) =
∑

σ(x(1) ⊗ y)σ(x(2) ⊗ z) , σ(x⊗ 1) = ε(x), and
F (F (x, y), z) = F (x, y1)S(y2)F (y3, z) for any x,y,z from H, where S is the antipode
of H and F is the twisting of the multiplication of H by the inverse of σ:∑

σ(x(1) ⊗ y(1))F (y(2), x(2)) =
∑

σ(x(2) ⊗ y2))x(1)y(1),

then R(x⊗ y) =
∑

y1 ⊗ x1σ(x2 ⊗ y2) is a solution of the R-equation.

(b)If σ(xy ⊗ z) =
∑

σ(y ⊗ z(1))σ(x⊗ z(2)) , σ(1⊗ x) = ε(x), and F (F (x, y), z) =
F (xy, z) for any x,y,z from H, where F is the twisting of the opposite multiplication
of H by σ: ∑

σ(x(2) ⊗ y(2))F (x(1), y(1)) =
∑

σ(x(1) ⊗ y1))y(2)x(2),

the R defined as above using the bilinear and M is a solution of the R-equation.

Note: if F is an associative product, and in the settings of (b), a sufficient condition
is: there is an action of the Hopf algebra H on the vector space H, given by

F: H ⊗H → H.
An example of such an F which satisfies both conditions above is given by p(x)y,

where p is a Hopf algebra projection. If p=id or p=ε(x), we get H a coquasitriangular
Hopf algebra, or a Hopf algebra with a Hopf bilinear, studied by Militaru. Given a
projection p for a Hopf algebra, the fact that F (and the given associated p) is
induced by a bilinear σ requires further restrictions, which will be studied elsewhere.
For example, if p=ε(x), then σ has to be defined on C⊗H, where C is a sub-coalgebra
not containing the unit of H.(Remark 2.2 [13])

Proof. We will use the remark 3.1 above.
(a) r(x, y) = σ(x, S(y)) Using the right multiplicativity of σ and grouping the

terms which contain x’s, a sufficient condition to satisfy the R-equation is:
(we decrease by 1 the indices from the Sweedler notation) For any y,z,t from H:
S(z1)y2z3t1σ(y1 ⊗ S(z2))σ(y3 ⊗ z4)σ(y4 ⊗ t2)σ(z5 ⊗ t3) =
σ(y1 ⊗ t1)t2σ(z1 ⊗ t3)S(z2)σ(y2 ⊗ S(z3))y3z4σ(y4 ⊗ z5)
⇔ S(z1)F (z2, y1)t1σ(z3 ⊗ t3)σ(y2 ⊗ t2)= t2S(z2)F (z3, y2)σ(y1 ⊗ t1)σ(z1 ⊗ t3).
We apply to F (z2, y1)t1σ(y2 ⊗ t2) the following formula:
F (cd2, b2)σ(b1 ⊗ d1) = F (c, b1)d1σ(b2 ⊗ d2), which can be easily proved using the

definition of F. So the equality above is equivalent to: S(z1)F (z2t2, y2)σ(z3⊗t3)σ(y1⊗
t1)= t2S(z2)F (z3, y2)σ(y1 ⊗ t1)σ(z1 ⊗ t3)

We multiply by z0r(yo ⊗ to), we apply∑
σ(x(1) ⊗ y(1))F (y(2), x(2)) =

∑
σ(x(2) ⊗ y2))x(1)y(1),

we get:F (F (t, z), y) = F (t, z1)S(z2)F (z3, y)
(b)Let V be the inverse of the antipode S of H. r(x, y) = σ(V (x), y)
Using the left multiplicativity of σ and grouping the terms which contain t’s and

z’s, a sufficient condition to satisfy the R-equation is:(after we decrease the indices
from the Sweedler notation by 1)

σ(y3x3V (x1y1)⊗ z1)σ(x2 ⊗ y2)z2y4x4 = z1x1y1σ(y4x4V (x2y2)⊗ z2)σ(x3 ⊗ y3)
y3x3σ(x2 ⊗ y2) = F (x2, y2)σ(x3 ⊗ y3)
y4x4σ(x3 ⊗ y3) = F (x3, y3)σ(x4 ⊗ y4)
we apply these relations in the first term of the equality above, and we get:
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σ(F (x2, y2)V (x1y1)⊗ z1)z2F (x3y3) = z1x1y1σ(F (x3, y3)V (x2y2)⊗ z2)
σ(F (x2, y2)V (x1y1)⊗ z1)z2F (x3y3) = σ(V (x1y1)⊗ z1)σ(F (x2, y2)⊗ z2)z3F (x3y3)
= σ(F (x3, y3)⊗ z3)F (F (x2y2), z2)σ(V (x1y1)⊗ z1)
z1x1y1σ(F (x3, y3)V (x2y2)⊗ z2)=z1x1y1σ(V (x2y2)⊗ z2)σ(F (x3, y3)⊗ z3)
The R-equation become: F (F (x2y2), z2)σ(V (x1y1)⊗ z1) =z1x1y1σ(V (x2y2)⊗ z2).
After multiplication with σ(xoyo ⊗ zo), the equality become F(F(x,y),z)=F(xy, z).

3.1. Entwining modules. Let H be a Hopf algebra with invertible antipode S. Let
M be a left H-module and a right H-comodule with the following compatibility relation
between module and comodule structures, given by a map f: H ⊗H → H ⊗H.

(a ◃ m)0 ⊗ (a ◃ m)1 = a(f) ◃ m0 ⊗m1(f)

where f(x⊗ y) is denoted by
∑

x(f) ⊗ y(f).
The associativity and the coassociativity of the operations of H, as well as the

definitions of the action and coaction, impose several relations for f which form in
fact the definition of an entwining map. Applying the compatibility relation above
for ab, a, b ◃ m and m, we obtain the following relations for f:

f(ab⊗ x) = a(g)b(f) ⊗ (xf )g, where f=g
a(f) ⊗∆x(f) = f(af ⊗ x1)⊗ (x2)(f)
f(1,x)=x and (id⊗ ϵ)(f(h⊗ 1) = h

Theorem 3.1. If a right-right entwining associated with a Hopf algebra H satisfies
the following relation for any a, b and c from H:

(a2)(f) ⊗ f(S(a1)S((b1)(f))a3b2 ⊗ c) = (a2)(f) ⊗ d1 ⊗ d2c, where
d = S(a1)S((b1)(f))a3b2, then the canonical map R(m⊗ n) = m1 ◃ n⊗m0.
R: M ⊗M →M ⊗M is a solution for the R-equation, for any entwinned module

M associated with (H,H,f).

The condition from the hypothesis implies that f satisfies the Hopf module com-
patibility f(d⊗ x) = d1 ⊗ d2x, when the element from the first position,

d= ϵ((a2)(f))S(a1)S((b1)(f))a3b2.

An easy computation shows that f(h⊗x) = h2⊗h3xS
−1(p(h1)) is an entwining map

for a Hopf algebra H with bijective antipode S, where p is a Hopf algebra projection.
An f-entwined module is a (p,id)-Yetter Drinfeld module as in section 2.3. Also, f
satisfies the relation prescribed by the theorem above. This is a third reason the map
R associated with a braided Hopf algebra in the category of Yetter-Drinfeld module
satisfies the R-equation. The first two proofs were given by the mixed system of
Yang-Baxter type equations from sect. 2.3, and by the general theorem 4.2 [2].

Proof. The inverse of the canonical application is S(a⊗ b) = b0 ⊗ S(b1) ◃ a
For convenience we will supress the symbol for the tensor product from sums of

monomials, and the symbol for the action ◃, writing hm , where h is in H and m is a
vector from M. We write the R-equation in the following way, and we evaluate both
terms on a⊗ b⊗ c⊗ d:

R34R23R12R34R23R34S23S34S12S23=R23R12R23S12S23R34

We succesively apply the operators in the left to the right order (group-like nota-
tion). The fundamental monomials from the sequences below are separated by arrows-
the places where we apply the operators in the order given by the equation above.
For the left hand side:
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(a, b, c, d)→ (a, b, c2d, c1)→ (a, b2c2d, b1, c1)→ (a2b2c2d, a1, b1, c1)→
(a2b3c2d, a1, b2c1, b1)

→ (a3b3c2d, a2b2c1, a1, b1)→ (a4b3c2d, a3b2c1, a2b1, a1)→
(a4b4c2d, (a2)(f)b1, S((b2)(f))a3b3c1, a1)

→ (a5b4c2d, (a3)(f)b1, a1, S(a2)S((b2)(f))a4b3c1)→
((a3)(f)(f)b1, S((b2)(f))a5b5c2d, a1, S(a2)S((b3)(f))a4b4c1)

→ ((a4)(f)(f)b1, a1, S(a2)S((b2)(f))a5b5c2d, S(a3)S((b3)(f))a4b4c1)

For the right hand side:
(a, b, c, d)→ (a, b2c, b1, d)→ (a2b2c, a1, b1, d)→ (a3b2c, a2b1, a1, d)→
((a2)(f)b1, S((b2)f )a3b3c, a1, d)→ ((a3)(f)b1, a1, S(a2)S((b2)f )a4b3c, d)→

((a3)(f)b1, a1, R(S(a2)S((b2)f )a4b3c, d)) = ((a3)(f)b1, a1, (c2)f ′d, [S(a2)S((b2)f )a4b3]f ′c1)

The equality between the left and the right sides is equivalent to an equality of elements
from H ⊗H ⊗H, which is exactly the condition stated in the theorem.

Examples of entwined maps which satisfy the condition above are not trivial to be
found. Among (a,b)- Yetter-Drinfeld modules, only (p=projection,id) Yetter Drinfeld
modules satisfy it. The theory of Hopf algebras with a weak projection will provide
an example of a special solution to the R-equation .

3.2. Hopf algebras with a weak projection. Let H be a Hopf algebra with
invertible antipode S. p:H → H is called a weak projection if p is a coalgebra map,
if p(p(x))=p(x) , if p(p(x)y)=p(x)p(y) and if p ◦ S = S ◦ p. Im(p)=H’is a sub-Hopf
algebra of H

Notes:
A left or right multiplicative bilinear form on H ⊗H can define an action on any

H-comodule. In the cases above, further conditions have to be imposed in such a way
the action and the coaction were given by an entwining structure which satisfy the
conditions from the previous theorem.

A weak projection p does not generate an entwinning structure like (p,id) Yetter
Drinfeld modules, unless it is a Hopf algebra projection.

We generalize the action of H on B from the previous section.
Let B be the set of elements x from H, such that x1 ⊗ p(x2) = x⊗ 1.
There is an action of H on B given by x ◃ b = x1b1p(S(x2y2)).
In general, this action and the coaction given by comultiplication are not connected

by an entwinning structure, as for p an algebra map. B has a coalgebra structure.

Theorem 3.2. Consider R(a ⊗ b) = a1 ◃ b ⊗ a2 and its inverse T (x ⊗ y) = y2 ⊗
S−1(y1) ◃ x. R satisfies the R-equation on multiple tensor products of vector spaces
B’s if, for any b,c from B, and any x from H, the element p[S(c)p(S(x1b)x2] commutes
with any element from B.

We will review the structural results of Schauenburg and Stefan about the theory
of Hopf algebras with a weak projection in the last section. Various conditions on
ingredients could imply the condition above.

Proof. The R-equation is written as:
R34R23R12R34R23R34S23S34S12S23 = R23R12R23S12S23R34

and we evaluate both terms on a⊗ b⊗ c⊗ d:
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The sequence of arrows below shows the application of the operators R’s in the
order prescribed by the equation above.

For the left hand side:

(a, b, c, d)→ (a, b, c1d1p(S(c2d2), c3)→ (a, b1c1d1p(S(b2c2d2)), b3, c3)
→ (a1b1c1d1p(S(a2b2c2d2)), a3, b3, c3)→

(a1b1c1d1p(S(a2b2c2d2)), a3, b3c3p(S(b4, c4)), b5)→
(a1b1c1d1p(S(a2b2c2d2)), a3b3c3p(S(a4b4c4)), a5, b5)

→ (a1b1c1d1p(S(a2b2c2d2)), a3b3c3p(S(a4b4c4)), a5b5p(S(a6b6)), a7)→
(a1b1c1d1p(S(a2b2c2d2)), a3b3p(S(a4b4)), p(a5b5)c3p(S(a6b6)), a7)→

(a1b1p(S(a2b2)), p(a3b3)c1d1p(S(c2d2)p(S(a4b4))), p(a5b5)c3p(S(a6b6)), a7)→

(a1b1p(S(a2b2)), p(a3b3)c1d1p(S(c2d2)p(S(a4b4))), a9, S
−1(a8)p(a5b5)c3p(S(c4)p(S(a6b6))a7)) →

(a1b1p(S(a2b2)), a11, S
−1

(a10)p(a3b3)c1d1p(S[p(a4b4)c2d2]a9), S
−1

(a8)p(a5b5)c3p(S(c4)p(S(a6b6))a7))

The right hand side is equal to:

(a, b, c, d)→ (a, b1c1p(S(b2c2), b3, d)→ (a1b1c1p(S(a2b2c2)), a3, b3, d)→
(a1b1c1p(S(a2b2c2)), a3b3p(S(a4b4)), a5, d)

→ (a1b1p(S(a2b2), p(a3b3)c1p[S(c2)p(S(a4b4))], a5, d)→
(a1b1p(S(a2b2), a7, S

−1(a6)p(a3b3)c1p(S[p(a4b4)c2]a5), d)→
(a1b1p(S(a2b2)), a15, x, S

−1(a12)p(a5b5)c3p(S(c4)p(S(a6b6))a11)), where x=

S−1(a14)p(a3b3)c1p(S[p(a8b8)c6]a9)d1p[S(d2)p(S(a10)S
2[p(a7b7)c5])S(c2)p(S(a4b4))a13]

If T=p(S[p(a7b7)c5]a8), then T1⊗ p(WS(T2)Q) appears in the expression above, and
does not appear in the left hand side expression.

T1 = p(S[p(a8b8)c6]a9) and S(T2) = p(S(a10)S
2[p(a7b7)c5])

The left and the right hand side are equal if any element from B commutes with
elements T = p(S[p(x1b)c]x2).

In our case, the element from B is d, x = a7, b := b7, c := c5.
Td=dT implies T1d1p(S(T2d2)Z) = d1T1p(S(d2T2)Z) = d1T1p(S(T2)S(d2)Z)
= d1T1p(S(T2))p(S(d2)Z) = d1p(S(d2)Z). We used that T is in Im(p) and p is a

weak projection.

4. Factorisation structures.

Let R: M ⊗M →M ⊗M be a solution of the R-equation.
According to the Theorem 3.1 [2], R provides a representation for the group R(N),

for any N, which means:
There are operators R(x,y): M⊗N → M⊗N , which act as identity on the tensor

products of M’s outside the range x,x+1...y-1,y; In this range, there are well defined
using the formula R(x,t)R(x,y)=R(t,y)R(x,t)R(x+1,t+1), according to the Theorem
3.1 [2].

There is also a cabling procedure (Theorem 2.1, [2]), which allow us to define the
operators T(m,n):M⊗m+n →M⊗m+n, T(m,n)=R1,m+1R2,m+2...Rn,m+n

We consider the tensor algebra T(M). For x ∈ Tm(M) and y ∈ Tn(M), we consider
the following binary operation: x ⋆ y = T (m,n)(x⊗ y)

Lemma 4.1. ⋆ define an associative product on the tensor algebra T(M):
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Proof. Let x ∈ Tm(M), y ∈ Tn(M), z ∈ T p(M).
(x ⋆ y) ⋆ z = x ⋆ (y ⋆ z) if and only if
T (m+ n, p)(T (m,n)(x⊗ y)⊗ z) = T (m,n+ p)(x⊗ T (n, p)(y ⊗ z))
This is in fact the (m,n,p) cabling of the fundamental relation
R(1, 2)R(1, 3) = R(2, 3)R(1, 2)R(2, 3) (Theorem 2.1, Lemma 2.2 from [2]).

Remark 4.1. ⋆ = m ◦ T ′, where m is the multiplication of T(M) given by the tensor
product, and T’: T (M)⊗ T (M)→ T (M)⊗ T (M) is obtained from

T:T (M) ⊗ T (M) → T (M) by a spliting isomorphism p(m,n):Tm+n → Tn ⊗ Tm.
composed with T(m,n).

T’satisfy, like R, the R-equation, so the construction above can be iterated.

Definition 4.1. Let A and B be two associative algebras. R: B⊗A→ A⊗B is called
a factorisation map if the following product ◦ defined on A⊗B is associative:

(a, b) ◦ (c, p) = acR ⊗ bRp.
We used the following notation R(x⊗ y) = yR ⊗ xR. The multiplication of A, and

respectively B were used on the first and the last positions.
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If a map R satisfies certain axioms (the naturality with respect to multiplications
from A and B) diagramatically presented in the last figure, then R is a factorisation
map. A factorisation map replaces the regular flip.

T’ is not a factorisation map for (T (M), ⊗) ⊗ (T(M),⊗). More precisely, if T’is
such a map, then T’ is a solution for the Braid equation, which forces
R: M ⊗M →M ⊗M to be also solution for the Braid equation. Instead:

Lemma 4.2. T’ define a factorisation structure for X=(T (V ), ⊗) ⊗ (T(V),⋆)

Proof.

Let (a,x), (b,y) and (c,z) elements from the algebra X.
The two figures above show the computation of the products [(a,x)(b,y)](c,z) and

(a,x)[(b,y)(c,z)]. For all 6 elements from T(M) having degree 1 (∈ M), we have to
check the equality: R(2,3)R(3,4)R(3,5)R(4,6)=R(2,3)R(4,5)R(3,4)R(5,6)R(4,5)R(5,6)
in the group R(n).

Recall the groups R(n) is given by generators and relations: generators: Rx,y,
where 1≤x<y≤n and relations: Rx,yRx,z = Ry,zRx,yRx+1,y+1 if x<y<z

Rx,yRz,t = Rz,tRx,y if x<y<z<t and Ra,yRx,z = Rx,zRa+1,y+1, where x<a<y<z
There are exactly the relations satisfied by insertion permutations. These groups

form the algebraic structure of the operad under a cabling operation. (Theorem 2.1
[2]). They admit the following presentation (Theorem 3.1 [2]), which show that a map
R solution of the R-equation gives a representation of R(n) on Mn:

R(n) is generated by R(i,i+1), where 1 ≤ i ≤ n-1; R(i,i+1) satisfy the relations:
1)[R(i, i+ 1), R(j, j + 1)]=0 if |i− j| is not equal to 1.
2)For any i, R(i,i+1), R(i+1,i+2) and R(i+2,i+3) satisfy the relation prescribed

by the R-equation : R23R12R23S12S23R34R23R12R34R23S34S23S34=R34R23R12

(indices are shifted by i).
R(2,3)R(3,4)R(3,5)R(4,6)=R(2,3)R(4,5)R(3,4)R(5,6)R(4,5)R(5,6) iff
R(3,4)R(3,5)R(4,6)=R(4,5)R(3,4)R(5,6)R(4,5)R(5,6) iff
R(4,5)R(3,4)R(4,5)R(4,6)=R(4,5)R(3,4)R(5,6)R(4,5)R(5,6) iff
R(4,5)R(4,6)=R(5,6)R(4,5)R(5,6) which is a defining relation for the group R(n).

If all six elements above a,x...c,z have different degrees in T(M), the cabling of the 6
strings with the degrees of a,b,c,x,y,z, from the previous equality between two elements
of R(n) generate two equal elements in R(n) (Thm 2.1 and Lemma 2.2 [2]), so the
equality between the two figures representing the products is still valid, so X is an
associative algebra.
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Definition 4.2. Let A be an associative algebra with multiplication m.
R: A⊗A→ A⊗A is called a twisted factorisation structure if R is a factorisation

map for (A,m)⊗ (A,m ◦R)

Remark 4.2. 1. m◦R is not necessarly an associative product. The definition above
says that the product built on A ⊗ A, as in the definition of a factorisation map, is
associative.

2. If R is a factorisation map for (A,m) ⊗ (A,m) and R satisfies the follow-
ing equation R12R23R34R12R23=R23R12R34R23R34, then R is a twisted factorisation
structure. In particular, R is not necessarly a twistor or an R-matrix (Theorems 3.1
and 3.2 [14]).

The axioms for a factorisation map (naturality with respect to the products from A
and B); the diagramatic proof of remark 2, using the naturality of R with respect to
the multiplication and the new stated equation.

3.In our case T’ satisfies the R-equation. T’satisfies the equation above if and only
if T’ is a Braid operator.

5. Co-quasi Hopf algebras and crossed products.Braided Hopf algebras
with a weak projection.

5.1. Co-quasi Hopf algebras and crossed products. We would like to discuss
the context of Lemma 2 b). F is a twist of the multiplication of A=Hop by a convo-
lution invertible bilinear σ, with inverse r.

Define ω(a⊗ b⊗ c) = σ(a1, b1)σ(a2b2, c1)r(a3, b3c2)r(b4, c3)
F is an associative product if ω(a⊗ b⊗ c) is cocentral which by definition means:
ω(a1 ⊗ b1 ⊗ c1)a2 ⊗ b2 ⊗ c2 = ω(a2 ⊗ b2 ⊗ c2)a1 ⊗ b1 ⊗ c1
Let A the quasi-bialgebra above. Let R be an associative algebra. We consider the

following algebraic data:
1) a weak action of H on R: . : H ⊗R→ R
2) a linear map σ : H ⊗H → R
and the following product on R⊗H: (r,h) ⋆ (s,g)=(r(h1.s)σ(h2, g1), h3g2)
The product is called ω-associative if
[(r, h)(s, g)](t, k) = (r, h1)[(s, g1)(t, k1)]ω(h2 ⊗ g2 ⊗ k2)
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Theorem 5.1. ( Theorem 9 [1]) If the following conditions are satisfied, the product
above is ω-associative:

1H .r = r
σ(h, 1) = σ(1, h) = ϵ(h)1R
[h1.(g1.r)]σ(h2, g2) = σ(h1, g1)[(h2g2).r]
[h1.σ(a1, b1)]σ(h2, a2b2) = σ(h1, a1)σ(h2a2, b1)ω

−1(h3, a3, b2)

5.2. Hopf algebras with a weak projection. We present after Schauenburg [17]
and Stefan [18]the following structures of the Hopf algebras with a weak projection
(A,p), as defined in subsection 3.2

Let B=Im(p) and i is its inclusion in A; Let R be the set of elements x ∈ A such
that x1 ⊗ p(x2) = x⊗ 1. Let q(x)=x1p(S(x2)) ∈ R

1) a product ⋆ on R, not necessarly associative, defined as x ⋆ y =q(xy)
2) a comultiplication on R, ∆R(x) = q(x1)⊗ q(x2) = x[1] ⊗ x[2]

3) a cocycle t: R⊗R→ B, t(x,y)=p(xy)
4) an action B ⊗R→ R, denoted b → r = q(br)
5) a map B ⊗R→ B, b ← r = p(br)
6) a left coaction R→ B ⊗R ρ(x) = p(x1)⊗ x2 = x(−1) ⊗ x(o)

Theorem 2.12 ([18]) Theorem 5.1([17]): On vector space R ⊗ B there are the
following multiplication and comultiplication maps, such that the application R⊗B →
A given by (r,b)→ rb is a bialgebra isomorphism:

(q ⊗ y)(p⊗ x) = (q[1] ⋆ (q[2](−1)y1 → p[1])⊗ t(q[2](o), y2 → p[2])(y3 ← p[3])x)
The comultiplication on R⊗B is given by ∆(r, h) = ∆(r, 1)∆(1, h).
The comultiplication of h is give by the Hopf algebra structure of Im(p), and
∆(r, 1) = (r[1], r[2](−1) ⊗ (r[2](o), 1).
There is also a converse of the theorem above, which says that a Hopf algebra

B, a coalgebra R and the six maps above generate on the vector space A=R ⊗ B a
structure of a Hopf algebra with a weak projection onto B if a long list of relations
among them is fullfiled.

Let us go back to theorem 7 sect.3.2.
(r,1)(1,h)=(r,h)
(1,h)(r,1)=(h1 → r1, h2 ← r2)
For any p ∈R and h=p[S(c)p(S(x1b)x2], we want ph=hp. We apply ϵ on the left

and the right positions of the both expressions above, and we get:
h← r = ϵ(r)h for any h of the special form, and any r in R.
h→ r = ϵ(h)r for any h of the special form, and any r in R.
p satisfies p(p(x)y)=p(xp(y))=p(x)p(y) if and only if h ← r = ϵ(r)h for any h

in B, and any r in R, so in this case the first condition is automatically satisfied.
(section 6.1 [17]). In this special case, (1,h)(r,1)=(h1 → r, h2) and h1 is also on the
form described by p[S(c)p(S(x1b)x2]. If the action h → r is also trivial for any h,
(and in particular it is trivial for any h= p[S(c)p(S(x1b)x2]) then any element from
R commutes with any element from B. The Hopf algebra H is a crossed product by a
cocycle, as described in section 5.0.1, when the weak action is trivial.

5.3. Entwinning and factorisation structures. Let A be a unital algebra and C
a coalgebra. f:A⊗ C → A⊗ C is denoted f(a⊗ c) = a(f) ⊗ c(f)

(A,C,f) is an entwining structure if the following conditions hold:
f(ab⊗ c) = a(f ′)b(f) ⊗ c(ff ′)

f(1A ⊗ c) = 1A ⊗ c
(id⊗∆)f(a⊗ c) = a(f)f ′ ⊗ (c1)f ′ ⊗ (c2)f
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(id⊗ ϵ)f(a⊗ c) = ϵ(c)a
M is an f-module if it is a left A-module and a right C-comodule, such that ρ(am) =

afm1 ⊗ (m2)f .
We recall from [12] (Thm.8)the connection between the notions of entwining and

factorisations.
Theorem: Let (A,C,f) be an entwining structure, where C is finite dimensional.

Let B be the algebra C∗. ej and ej dual bases in C and B
Let R :B ⊗ A → A ⊗ B be the map R(k ⊗ a) =

∑
k((ej)(f))a(f) ⊗ ej . Then R is

a factorisation map in the sense of Defn. 4.1.Conversely, f can be recovered from R
associated with A and C∗ Tensor algebra and universal differential calculus associated
with an entwining structure, and iterated tensor product of algebras were studied in
[9], [16].

Lemma 10.3 [5] states that for a Yetter -Drinfeld datum (H,A,C) and C finite
dimensional, we have a functor G from the category of left modules over C∗⊗smashA
and (H,A,C)-Yetter -Drinfeld modules , given by: G(M)=M

u.m = (ϵ⊗smash u) ◃ m
ρ : M →M ⊗ C,m→

∑
(E∗

j ⊗ 1) ◃ m⊗ Ej ,
where Ei is a basis for C, and E∗

j is the corresponding dual basis for C.
So, the coaction is given by a canonical element.
C∗⊗smashA is a generalized Drinfeld double of a Yetter -Drinfeld datum (H,A,C),

defined in [8]. It is an associative algebra built using a factorisation map associated
with the entwining structure, as described by the theorem above. Among particular
cases of this construction there are Drinfeld double and Heisenberg double of a Hopf
algebra. Compatibility of the action and the coaction for a comodule in the presence
of a bilinear, in the case of Lemma 2, as well as the factorisation structures induced by
the entwining maps of Thm. 6 and their canonical elements as above will be studied
in a further project.
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