Annals of the University of Craiova, Mathematics and Computer Science Series Volume 37(4), 2010, Pages 58–64 ISSN: 1223-6934

State-morphisms on Hilbert algebras

Cătălin Buşneag

ABSTRACT. In this paper (which is a continuation of [2]) we develop a theory of statemorphisms on Hilbert algebras.

2010 Mathematics Subject Classification. Primary 03G25; Secondary 28A60. Key words and phrases. Hilbert algebra, deductive system, Bosbach states, Riečan states, state-morphism.

1. Introduction

The notion of *state* is an analogue of a probability measure and has a very important role in the theory of quantum structures (see [10]). The state on MV-algebras was first introduced by Kôpka and Chovanek in [13]; the state on BL-algebras was introduced by Riečan in [14]. In the case of non-commutative fuzzy structures, these states were introduced by Dvurecenskij for pseudo MV-algebras in [9], by Georgescu for pseudo BL-algebras in [12], by Dvurecenskij and Rachünek for bounded non-commutative Rl-monoids in [11], and by Ciungu for pseudo BCK-algebras in [7].

Hilbert algebras are important tools for certain investigations in algebraic logic since they can be considered as fragments of any propositional logic containing a logical connective implication and the constant 1 which is considered as the logical value "true". The concept of Hilbert algebras was introduced by Henkin and Skolem (under the name *implicative models*) for investigations in intuitionistic logics and other non-classical logics. Diego in [8] proved that Hilbert algebras form a variety which is locally finite.

This paper is organized as follows:

In Section 2 we recall the basic definitions and put in evidence many rules of calculus in Hilbert algebras which we need in the rest of paper (especially $c_{10} - c_{28}$). Also we recall some results relative to maximal deductive systems for the case of bounded and unbounded Hilbert algebras (Theorem 2.1 and Corollary 2.1). In Section 3 we recall some results relative to the theory of Bosbach states on Hilbert algebras developed in [2]. In Section 4 we develop a theory of state-morphisms on Hilbert algebras.

2. Preliminaries

In this paper the symbols \Rightarrow and \Leftrightarrow are used for logical implication and respectively logical equivalence.

Received August 19, 2010. Revision received October 29, 2010.

Definition 2.1. ([2]-[6], [8])

A Hilbert algebra is an algebra $(A, \rightarrow, 1)$ of type (2,0) such that the following axioms are fulfilled for every $x, y, z \in A$:

- $(a_1) x \to (y \to x) = 1;$
- $(a_2) \quad (x \to (y \to z)) \to ((x \to y) \to (x \to z)) = 1;$
- $(a_3) \ \text{If} \ x \to y = y \to x = 1, \ then \ x = y.$

In [8] it is proved that the system of axioms $\{a_1, a_2, a_3\}$ is equivalent with the system $\{a_4, a_5, a_6, a_7\}$, where:

- (a_4) : $x \to x = 1;$
- $(a_5): 1 \to x = 1;$
- $(a_6): x \to (y \to z) = (x \to y) \to (x \to z);$
- $(a_7): (x \to y) \to ((y \to x) \to x) = (y \to x) \to ((x \to y) \to y).$

For examples of Hilbert algebras see [3]-[6] and [8]. If A is a Hilbert algebra, then the relation \leq defined by $x \leq y$ iff $x \to y = 1$ is a partial order on A (which will be called the *natural ordering*); with respect to this ordering 1 is the largest element of A. A *bounded* Hilbert algebra is a Hilbert algebra with a smallest element 0; in this case for $x \in A$ we denote $x^* = x \to 0$.

From [2]-[6], [8] in a Hilbert algebra A we have the following rules of calculus for $x, y, z \in A$:

- $(c_1) x \to 1 = 1;$
- $(c_2) \ x \leq y \to x;$
- $(c_3) \ x \leq (x \to y) \to y;$
- $(c_4) ((x \to y) \to y) \to y = x \to y;$
- $(c_5) \ x \to y \le (y \to z) \to (x \to z);$
- (c₆) If $x \leq y$, then $z \to x \leq z \to y$ and $y \to z \leq x \to z$;
- (c₇) $x \to (y \to z) = y \to (x \to z);$ For $x_1, ..., x_n \in A$ $(n \ge 1)$ we will define $(x_1, ..., x_{n-1}; x_n) = x_n$ if n = 1 and $x_1 \to (x_2, ..., x_{n-1}; x_n)$ if n > 1. Then we have:
- (c₈) If σ is a permutation of $\{1, 2, ..., n-1\}$ $(n \ge 2)$, then

$$(x_{\sigma(1)}, ..., x_{\sigma(n-1)}; x_n) = (x_1, ..., x_{n-1}; x_n);$$

$$\begin{array}{l} (c_9) \ x \to (x_1,...,x_{n-1};x_n) = (x,x_1,...,x_{n-1};x_n) = (x_1,x,x_2,...,x_{n-1};x_n) = ... = \\ (x_1,...,x_{n-1},x;x_n). \end{array}$$

For $x, y \in A$ we define $x \sqcup y = (x \to y) \to ((y \to x) \to x)$. Then we have the following rules of calculus for $x, y, z \in A$:

- $(c_{10}) x, y \leq x \sqcup y \text{ and } x \sqcup y = y \sqcup x;$
- $(c_{11}) \ x \sqcup x = x, x \sqcup 1 = 1;$
- $(c_{12}) \ x \sqcup (x \to y) = 1;$
- $(c_{13}) \ (x \to y) \sqcup (y \to x) = 1;$
- $(c_{14}) \ x \to (y \to z) = (x \to z) \sqcup (y \to z);$
- $(c_{15}) \ x \to (y \sqcup z) = (x \to y) \sqcup (x \to z);$

 $(c_{16}) \ (x \to y) \sqcup z = x \to (y \sqcup z).$

If A is a bounded Hilbert algebra and $x, y \in A$, then we denote $x \lor y = x^* \to y$ and $x \downarrow y = (x \to y^*)^*$. We have the following rules of calculus for $x, y, z \in A$ (see [2]):

- $(c_{17}) \ 0^* = 1, 1^* = 0;$
- $(c_{18}) \ x \to y^* = y \to x^*;$
- $(c_{19}) x \to x^* = x^*, x^* \to x = x^{**}, (y \to x)^* \le x \to y;$

C. BUŞNEAG

- (c_{20}) If $x \leq y$, then $y^* \leq x^*$;
- $\begin{array}{l} (c_{21}) \ x,y \leq x \curlyvee y, x \curlyvee x = x^{**}, x \curlyvee 0 = x^{**}, x \curlyvee 1 = 1, x \curlyvee x^{*} = 1, x \curlyvee (y \rightarrow z) = (x \curlyvee y) \rightarrow (x \curlyvee z); \end{array}$
- $(c_{22}) x \Upsilon (y \Upsilon z) = (x \Upsilon y) \Upsilon z = y \Upsilon (x \Upsilon z);$
- $\begin{array}{c} (c_{23}) \\ (c_{23}) \\ (x^* \sqcup y^* = x \to y^*; \\ (c_{23}) \\ (x^* \sqcup y)^{**} \\ (x^* \to y)^$

 (c_{24}) $(x \to y)^{**} = x^{**} \to y^{**} = x \to y^{**}.$

Proposition 2.1. ([2]) Let A be a bounded Hilbert algebra and $x, y, z \in A$. Then $(c_{25}) \ x \downarrow 0 = 0, x \downarrow 1 = x^{**}, x \downarrow x = x^{**};$

- $(c_{26}) \ x \land y = y \land x \le x^{**}, y^{**};$
- $(c_{27}) \ x \le y \Rightarrow x \land y = x^{**};$
- $(c_{28}) x \land (y \land z) = (x \land y) \land z.$

Definition 2.2. If A is a Hilbert algebra, a subset D of A is a deductive system of A if the following axioms are satisfied:

 $(a_8) \ 1 \in D;$

(a₉) If $x, x \to y \in D$, then $y \in D$.

We denote by Ds(A) the set of all deductive systems of A.

We say that $M \in Ds(A), M \neq A$, is *maximal* if it is a maximal element in the lattice $(Ds(A), \subseteq)$. Let us denote by Max(A) the set of all maximal deductive systems of A. We have the following theorem of characterization for maximal deductive systems:

Theorem 2.1. ([15]) Let A be a Hilbert algebra and $M \in Ds(A), M \neq A$. The following conditions are equivalent:

- (i) $M \in Max(A)$;
- (ii) If $x, y \in A$ and $x \sqcup y \in M$, then $x \in M$ or $y \in M$;
- (iii) If $x \notin M$, then $x \to y \in M$ for every $y \in A$.

Corollary 2.1. If A is a bounded Hilbert algebra and $M \in Ds(A), M \neq A$, then the following conditions are equivalent:

- (i) $M \in Max(A);$
- (ii) If $x \notin M$, then $x^* \in M$.

3. Bosbach states on Hilbert algebras

In this section we recall some results relative to the theory of Bosbach states on a Hilbert algebra A. This concept is obtained by using Bosbach condition ([1]).

Definition 3.1. ([2]) A Bosbach state on a Hilbert algebra A is a function $s : A \to [0, 1]$ such that the following axioms hold: $(a_{10}) \ s(1) = 1;$

 $(a_{11}) \ s(x) + s(x \to y) = s(y) + s(y \to x), \text{ for all } x, y \in A.$

Remark 3.1. In [2] I given (following a suggestion of a referee) another definition for a Bosbach state on a Hilbert algebra, namely, a function, $s : A \to [0, 1]$ is a Bosbach state if verify $(a_{10}), (a_{11})$ and

 (a_{12}) there exists an element $a \in A$ such that s(a) = 0.

In this paper we consider the notion of Bosbach state in the sense of Definition 3.1.

Example 3.1. The function $\mathbf{1} : A \to [0,1], \mathbf{1}(x) = 1$, for every $x \in A$ is a Bosbach state on A.

60

Example 3.2. If $M \in Max(A)$, then $s_M : A \to [0,1]$, defined by $s_M(x) = 1$ if $x \in M$ and 0 if $x \notin M$ is a Bosbach state on A. Indeed, since $1 \in M$, then $s_M(1) = 1$. Consider $x, y \in A$. If $x, y \in M$, then $x \to y, y \to x \in M$ and the axiom (a_{11}) is verified (1+1=1+1). If $x, y \notin M$, then by Theorem 2.1 we deduce that $x \to y, y \to x \in M$, so the axiom (a_{11}) is also verified (0+1=0+1). If $x \notin M$ and $y \in M$, then $x \to y \in M$ and $y \to x \notin M$, so the axiom (a_{11}) is also verified (0+1=1+0).

Example 3.3. If $s : A \to [0,1]$ is a Bosbach state, then for every $a \in A$, $s_a : A \to [0,1]$, $s_a(x) = s(a \to x)$ is also a Bosbach state on A. Indeed, $s_a(1) = s(a \to 1) = s(1) = 1$ and for $x, y \in A$, $s_a(x) + s_a(x \to y) = s(a \to x) + s(a \to (x \to y)) = s(a \to x) + s((a \to x) \to (a \to y)) = s(a \to y) + s((a \to y) \to (a \to x)) = s(a \to y) + s(a \to (y \to x)) = s_a(y) + s_a(y \to x).$

For a Bosbach state $s: A \to [0, 1]$ we define $Ker(s) = \{x \in A : s(x) = 1\}$.

Proposition 3.1. ([2]) $Ker(s) \in Ds(A)$.

Proposition 3.2. ([2]) If $s : A \to [0,1]$ is a Bosbach state on A, then for all $x, y \in A$ we have:

 $\begin{array}{l} (c_{29}) \hspace{0.1cm} x \leq y \Rightarrow s(x) \leq s(y); \\ (c_{30}) \hspace{0.1cm} s((x \rightarrow y) \rightarrow y) = s((y \rightarrow x) \rightarrow x). \end{array}$

4. State-morphisms on Hilbert algebras

In this section we develop a theory of state-morphisms on Hilbert algebras. Let us denote by [0, 1] the standard MV-algebra of real unit interval [0, 1], where for $x, y \in [0, 1], x \oplus y = \min\{x + y, 1\}, x \odot y = \max\{x + y - 1, 0\}, x \rightsquigarrow y = \min\{1 - x + y, 1\}, x \land y = \min\{x, y\}$ and $x \lor y = \max\{x, y\}$. Clearly, $x \rightsquigarrow x = 1, x \rightsquigarrow 1 = 1, 1 \rightsquigarrow x = x$ and $x \land a \leq y$ iff $a \leq x \rightsquigarrow y$ for every $x, y, a \in [0, 1]$. Also, $(x \rightsquigarrow y) \rightsquigarrow y = (y \rightsquigarrow x) \rightsquigarrow x = x \lor y$, for every $x, y \in [0, 1]$.

Definition 4.1. A state-morphism on a Hilbert algebra A is a function $f : A \to [0, 1]$ such that for every $x, y \in A$:

 $(a_{13}) \ f(x \to y) = f(x) \rightsquigarrow f(y).$

If A is bounded we add the condition $(a_{14}) f(0) = 0.$

Clearly, $\mathbf{1} : A \to [0, 1], \mathbf{1}(x) = 1$, for every $x \in A$ is a state morphism (called *trivial*). From (a_{13}) we deduce that $f(1) = f(1 \to 1) = f(1) \rightsquigarrow f(1) = 1$. If A is bounded, then for every $x \in A$ we have $f(x^*) = f(x \to 0) = f(x) \rightsquigarrow f(0) = f(x) \rightsquigarrow 0 = (f(x))^* = 1 - f(x)$.

Proposition 4.1. Let A be a Hilbert algebra and $f : A \rightarrow [0,1]$ a state-morphism. Then:

(i) f is a Bosbach state;

(ii) If A is a bounded Hilbert algebra, then $f(x \downarrow y) = f(x) \odot f(y)$, for every $x, y \in A$.

Proof. (i). For every $x, y \in A$ we have $f(x) + f(x \to y) = f(x) + [f(x) \to f(y)] = f(x) + \min\{1 - f(x) + f(y), 1\} = \min\{1 + f(y), 1 + f(x)\} = f(y) + \min\{1, 1 + f(x) - f(y)\} = f(y) + \min\{1 - f(y) + f(x), 1\} = f(y) + [f(y) \to f(x)] = f(y) + f(y \to x),$ that is, f is a Bosbach state.

(*ii*). Suppose A is a bounded Hilbert algebra and consider $x, y \in A$. We have $f(x \land y) = f((x \rightarrow y^*)^*) = 1 - [f(x) \rightsquigarrow (f(y))^*] = 1 - [f(x) \rightsquigarrow (1 - f(y))] = 1 - [f(x) \land (1$

C. BUŞNEAG

 $\min\{1-f(x)+1-f(y),1\} = 1+\max\{f(x)+f(y)-2,-1\} = \max\{f(x)+f(y)-1,0\} = f(x) \odot f(y).$

Proposition 4.2. Let A be a Hilbert algebra and $s : A \to [0,1]$ a Bosbach state on A. Then the following are equivalent:

(*i*) *s* is a nontrivial state-morphism;

(*ii*) $Ker(s) \in Max(A)$.

Proof. $(i) \Rightarrow (ii)$. Since s is a nontrivial state-morphism, then $Ker(s) \neq A$. To prove $Ker(s) \in Max(A)$, let $x, y \in A$ such that $x \sqcup y \in Ker(s)$.

Then $s(x \sqcup y) = 1 \Rightarrow s(x \to y) \rightsquigarrow s((y \to x) \to x) = 1 \Rightarrow [s(x) \rightsquigarrow s(y)] \rightsquigarrow s((y \to x) \to x) = 1.$

If $s(x) \leq s(y)$ then we obtain that $s((y \to x) \to x) = 1 \Rightarrow [s(y) \rightsquigarrow s(x)] \rightsquigarrow s(x) = 1 \Rightarrow s(x) \lor s(y) = 1 \Rightarrow s(y) = 1 \Rightarrow y \in Ker(s).$

Analogously, since $x \sqcup y = y \sqcup x$, if $s(y) \le s(x)$, then $x \in Ker(s)$, hence by Theorem 2.1 we deduce that $Ker(s) \in Max(A)$.

 $(ii) \Rightarrow (i)$. Suppose $Ker(s) \in Max(A)$ and consider $x, y \in A$. Since by (c_{12}) , $x \sqcup (x \to y) = 1 \in Ker(s) \Rightarrow x \in Ker(s)$ or $x \to y \in Ker(s)$.

If $x \in Ker(s) \Rightarrow s(x) = 1 \Rightarrow s(x) \rightsquigarrow s(y) = s(y)$. Since s is supposed Bosbach state, then $s(x) + s(x \to y) = s(y) + s(y \to x)$. But $x \in Ker(s) \Rightarrow y \to x \in Ker(s) \Rightarrow s(x) = s(y \to x) = 1$, so we obtain that $1 + s(x \to y) = s(y) + 1 \Rightarrow s(x \to y) = s(y) = s(x) \rightsquigarrow s(y)$.

If $x \to y \in Ker(s) \Rightarrow s(x \to y) = 1$. Since $s(x) + s(x \to y) = s(y) + s(y \to x) \Rightarrow s(x) - s(y) = s(y \to x) - 1 \le 0 \Rightarrow$

 $s(x) - s(y) = s(y \to x) - 1 \le 0 \Rightarrow s(x) \le s(y) \Rightarrow s(x) \rightsquigarrow s(y) = 1 = s(x \to y)$, so (a_{13}) is verified.

If A is a Hilbert algebra and $D \in Ds(A)$, then for $x \in A$ we denote by x/D the equivalence class of x relative to D and by A/D the quotient Hilbert algebra (see [6] and [8]).

We recall that for $x, y \in A, x/D = y/D$ iff $x \to y, y \to x \in D$.

Lemma 4.1. Let A be a Hilbert algebra and $s : A \to [0, 1]$ a Bosbach state on A. For all $x, y \in A$, the following are equivalent:

(i) x/Ker(s) = y/Ker(s);(ii) s(x) = s(y).

Proof. We have $x/Ker(s) = y/Ker(s) \Leftrightarrow x \to y, y \to x \in Ker(s) \Leftrightarrow s(x \to y) = s(y \to x) = 1.$

Since $s(x) + s(x \to y) = s(y) + s(y \to x)$ we obtain that s(x) = s(y).

Following Lemma 4.1, if A is a Hilbert algebra and $s: A \to [0, 1]$ is a Bosbach state on A, then the function $\hat{s}: A/Ker(s) \to [0, 1], \hat{s}(x/Ker(s)) = s(x)$, is well-defined. It follows immediately that \hat{s} is a state on A/Ker(s).

Proposition 4.3. Let A be a bounded Hilbert algebra and $s_1, s_2 : A \to [0, 1]$ two Bosbach states such that s_1 is a state-morphism. If $Ker(s_1) = Ker(s_2)$, then $s_1 = s_2$.

Proof. We denote $M = Ker(s_1)$; following Proposition 4.2, $M \in Max(A)$. Since $Ker(s_2) = M$ we get that $Ker(s_2)$ is also maximal.

From Proposition 4.2, it follows that s_2 is a state-morphism. Clearly, if $x \in M$, then $s_1(x) = s_2(x) = 1$.

62

Consider now $x \notin M$. Since $M \in Max(A)$, then $x^* \in M$ (by Corollary 2.1), since $s_1(x^*) = s_2(x^*) = 1 \Leftrightarrow 1 - s_1(x) = 1 - s_2(x) = 1 \Leftrightarrow s_1(x) = s_2(x)$, hence $s_1 = s_2$. \Box

Open question 1. Proposition 4.3 is true if A is unbounded?

Corollary 4.1. Let A be a bounded Hilbert algebra and $M \in Max(A)$. Then there is a unique Bosbach state $s : A \to [0, 1]$ such that Ker(s) = M.

Proof. Following Example 3.2, the function $s_M : A \to [0, 1]$, defined by $s_M(x) = 1$ if $x \in M$ and 0 if $x \notin M$ is a Bosbach state on A and Ker(s) = M. Following Proposition 4.3, if $s : A \to [0, 1]$ is another Bosbach state such that $Ker(s) = M = Ker(s_M)$, then $s = s_M$.

Corollary 4.2. If A is a bounded Hilbert algebra, then the assignment $s \rightsquigarrow Ker(s)$ establishes a bijection between the Bosbach states on A and Max(A).

Let A be a Hilbert algebra and $s: A \to [0, 1]$ a Bosbach state on A.

Definition 4.2. We say that s is an extremal state if for any $0 < \lambda < 1$ and for any two states $s_1, s_2 : A \to [0, 1]$ such that $s = \lambda s_1 + (1 - \lambda)s_2$, then $s_1 = s_2$.

Theorem 4.1. Let A be a Hilbert algebra.

(i) If $s: A \to [0, 1]$ is an extremal state, then s = 1;

(ii) If A is bounded and s is a state-morphism then s is an extremal state.

Proof. (i). For a fixed element $a \in A$ and $x \in A$ we have $s(x)+s(x \to a) = s(a)+s(a \to x)$. If consider $s_1^a, s_2^a : A \to [0, 1], s_1^a(x) = s(a \to x)$ and $s_2^a(x) = s(x) - s(x \to a) + s(a)$ then $s = \frac{1}{2}s_1^a + \frac{1}{2}s_2^a$. From Example 3.3 we deduce that s_1^a is a Bosbach state on A. We will prove that s_2^a is also a Bosbach state on A. Indeed, for $x, y \in A$ we have following sequence of equivalences: $s_2^a(x) + s_2^a(x \to y) = s_2^a(y) + s_2^a(y \to x) \Leftrightarrow s(x) - s(x \to a) + s(a) + s(a) + s(x \to y) - s((x \to y) \to a) + s(a) =$

 $s(y) - s(y \to a) + s(a) + s(y \to x) - s((y \to x) \to a) + s(a) \Leftrightarrow$

- $\begin{array}{l} s(y \to a) + s((y \to x) \to a) = s(x \to a) + s((x \to y) \to a) \Leftrightarrow s(y \to a) + s(y \to x) + s((y \to x) \to a) + s(x \to y) = s(x \to a) + s(x \to y) + s((x \to y) \to a) + s(y \to x) \end{array}$
- $\Leftrightarrow s(y \to a) + s(a) + s(a \to (y \to x)) + s(x \to y) = s(x \to a) + s(a) + s(a \to (x \to y)) + s(y \to x) \Leftrightarrow s((a \to y) \to (a \to x)) s((a \to x) \to (a \to y)) = s(x \to a) + s(x \to y) = s(x \to y) = s(x \to y) + s(x \to y) = s(x \to y) = s(x \to y) + s(x \to y) + s(x \to y) = s(x \to y) + s$
- $\begin{array}{l} s(x \rightarrow a) + s(y \rightarrow x) s(y \rightarrow a) s(x \rightarrow y) \Leftrightarrow s(a \rightarrow x) s(a \rightarrow y) = s(x \rightarrow a) + s(y \rightarrow x) s(y \rightarrow a) s(x \rightarrow y) \Leftrightarrow \end{array}$
- $[s(a \rightarrow x) s(x \rightarrow a)] + [s(y \rightarrow a) s(a \rightarrow y)] + [s(x \rightarrow y) s(y \rightarrow x)] = 0 \Leftrightarrow [s(x) s(a)] + [s(a) s(y)] + [s(y) s(x)] = 0 \Leftrightarrow 0 = 0.$

If s is supposed extremal, from $s = \frac{1}{2}s_1^a + \frac{1}{2}s_2^a \Rightarrow s_1^a = s_2^a$. Then for every $x \in A$ we have $s(a \to x) = s(x) - s(x \to a) + s(a) \Rightarrow s(a \to x) - s(x) = s(a) - s(x \to a)$. Since $x \leq a \to x$ and $a \leq x \to a$ we deduce that $s(a \to x) - s(x) = s(a) - s(x \to a)$.

Since $x \leq u \rightarrow x$ and $u \leq x \rightarrow u$ we deduce that $s(u \rightarrow x) - s(x) - s(u) - s(x \rightarrow u) = 0$.

So $s(a \to x) = s(x)$, for every $a, x \in A$. In particular for a = x we obtain s(x) = s(1) = 1, for every $x \in A$, hence s = 1.

(*ii*). Assume $s = \lambda s_1 + (1 - \lambda)s_2$, which $0 < \lambda < 1$ and s_1, s_2 states on A. It is easy to prove that $Ker(s) = Ker(s_1) \cap Ker(s_2)$. But $Ker(s) \in Max(A)$, so $Ker(s) = Ker(s_1) = Ker(s_2)$. Apply now Proposition 4.3 we get that $s_1 = s_2$. \Box

Open question 2. If A is a bounded Hilbert algebra, then every extremal state $s : A \rightarrow [0,1]$ is a state-morphism? (as in the case of pseudo-MV algebras and pseudo-BL algebras - see [9] and [12]).

C. BUŞNEAG

References

- [1] B. Bosbach, Residuation groupoids, Resultate der Mathematik 5 (1982), 107–122.
- [2] C. Buşneag, States on Hilbert algebrs, $Studia\ Logica\ \mathbf{94}\ (2010),$ no. 2, 177–188.
- [3] D. Buşneag, Contributions to the study of Hilbert algebras (in romanian), Ph. D Thesis, Univ. of Bucharest, 1985.
- [4] D. Buşneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math. 5 (1988), 161–172.
- [5] D. Buşneag, On extensions of pseudo-valuation on Hilbert algebra, Discrete Mathematics 263 (2003), 11–24.
- [6] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane, Bucharest, 2006.
- [7] L. Ciungu, States on pseudo-BCK algebras, Math. Reports 10 (2008), no. 60, 17–36.
- [8] A. Diego, Sur les algèbres de Hilbert, Coll. Logique Math., Serie A (1966), no. 21, 1–54.
- [9] A. Dvurecenskij, States on pseudo-MV algebras, Studia Logica 68 (2001), 301–327.
- [10] A. Dvurecenskij and S. Pulmannova, New trends in quantum structures, Kluver & Ister Science, Bratislava, 2000.
- [11] A. Dvurecenskij and J. Rachünek, On Riečan and Bosbach states for bounded non-commutative RL-monoids, Math. Slovaca 5 (2006), 487–500.
- [12] G. Georgescu, Bosbach states of fuzzy structures, Soft Computing 8 (2004), 217–230.
- [13] F. Kôpka and F. Chovanec, D-posets, Math. Slovaca 44 (1994), 21–34.
- [14] B. Riečan, On the probability on BL-algebras, Acta Math. Nitra 4 (2000), 3–13.
- [15] D.D.Taşcău, Some properties of the operation $x \sqcup y = (x \to y) \to ((y \to x) \to x)$ in a Hilbert algebra, Anals of the University of Craiova, Math. Comp. Sci. Ser. **34** (2007), no. 1, 79–82.

(Cătălin Bușneag) Faculty of Mathematics and Computer Science, University of Craiova, 13, Al.I. Cuza st., 200585, Craiova, Romania

E-mail address: catalinbusneag@yahoo.com, catalin.busneag@pirelli.com