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1. Introduction

The notion of state is an analogue of a probability measure and has a very important
role in the theory of quantum structures (see [10]). The state on MV -algebras was first
introduced by Képka and Chovanek in [13]; the state on BL—algebras was introduced
by Riecan in [14]. In the case of non-commutative fuzzy structures, these states were
introduced by Dvurecenskij for pseudo MV-algebras in [9], by Georgescu for pseudo
BL-algebras in [12], by Dvurecenskij and Rachiinek for bounded non-commutative
Rl-monoids in [11], and by Ciungu for pseudo BC K-algebras in [7].

Hilbert algebras are important tools for certain investigations in algebraic logic
since they can be considered as fragments of any propositional logic containing a
logical connective implication and the constant 1 which is considered as the logical
value "true”. The concept of Hilbert algebras was introduced by Henkin and Skolem
(under the name implicative models) for investigations in intuitionistic logics and
other non-classical logics. Diego in [8] proved that Hilbert algebras form a variety
which is locally finite.

This paper is organized as follows:

In Section 2 we recall the basic definitions and put in evidence many rules of
calculus in Hilbert algebras which we need in the rest of paper (especially ¢19 — cag).
Also we recall some results relative to maximal deductive systems for the case of
bounded and unbounded Hilbert algebras (Theorem 2.1 and Corollary 2.1). In Section
3 we recall some results relative to the theory of Bosbach states on Hilbert algebras
developed in [2]. In Section 4 we develop a theory of state-morphisms on Hilbert
algebras.

2. Preliminaries

In this paper the symbols = and < are used for logical implication and respectively
logical equivalence.
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Definition 2.1. ([2]-[6], [8])
A Hilbert algebra is an algebra (A, —, 1) of type (2,0) such that the following axioms
are fulfilled for every x,y,z € A:
(@) z— (y > )= 1;
(az) (z = (y—2)) > (2 —y) = (x—2) =1
(a3) Ifx s y=y—x=1, thenx =y.

In [8] it is proved that the system of axioms {a,as, a3} is equivalent with the
system {ay, as, ag, a7}, where:

(ag): * — x =1

(as): 1 -z =1;

(a6): z = (y = 2) = (z —y) — (v — 2);

(a7): (x—y) = (y—x) = 2)=(y—2z) = (—=y) —y).

For examples of Hilbert algebras see [3]-[6] and [8]. If A is a Hilbert algebra, then
the relation < defined by « < y iff + — y = 1 is a partial order on A (which will be
called the natural ordering); with respect to this ordering 1 is the largest element of
A. A bounded Hilbert algebra is a Hilbert algebra with a smallest element 0; in this
case for x € A we denote z* = x — 0.

From [2]-6], [8] in a Hilbert algebra A we have the following rules of calculus for

For z1,...,x, € A (n > 1) we will define (21,...,x_1;25) = @, if n = 1 and
1 — (T, ey Tp_1;Tp) if n > 1
Then we have:

(cg) If o is a permutation of {1,2,...,n — 1} (n > 2), then

(ma(l)a -~-a$a(n71);xn) = (xb --~7$n71;xn>;
(co) © = (1, ey Tne1;Tn) = (T,21, o0y Tne1;Tn) = (T1, T, X2, iy Tpe1;Tpy) = oo =
(T1y ey Tp—1, T; Tp).
For z,y € A we define x Uy = (x — y) — ((y — x) — ). Then we have the

following rules of calculus for z,y, z € A:

(c10) z,y<zUyand zUy=yUux;

(c11) zUz =2, 2U1=1;

(c12) zU(z —y)=1;

(c13) (x = y)U(y —a)=1;

(c1a) 2 = (y—2) = (z = 2) U (y — 2);

(c15) z = (yUz) = (z = y) U (z — 2);

(c16) (z = y)Uz =2 — (yU=2).

If A is a bounded Hilbert algebra and x,y € A, then we denote x Y y = * — y
and z A y = (z — y*)*. We have the following rules of calculus for x,y,z € A (see
2)):

(617) 0* = 17 1* = 0,

(c1s) z = y" =y —a™;

(cr9) z—a* =z 2" sz =" (y—a)" <z —y;

C15
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(co0) If z <y, then y* < z*;

(co1) myuy<zYy,xeYz=zzY0=z"zcyl=1Lzya*=1LzY(y— z2) =
(xYy)— (zY2);

(c2) Y (yY2)=(xYy) Yz=yY (xY 2);

(co3) 2*Uy* =z — y*;

(c21) (x = y)™ =™

Proposition 2.1. ([2]) Let A be a bounded Hilbert algebra and x,y,z € A. Then
co5) T A0=0,2 A1l =2a" 2 Ao =a"

EEN

(
(c26) Ay =y rx <™y,
(
(

Hy**:l‘%y**.

car) T<y=2x Ay=1z"
cog) TA(yAz)=(xAy) A 2.

Definition 2.2. If A is a Hilbert algebra, a subset D of A is a deductive system of
A if the following axioms are satisfied:

(ag) 1eD;

(ag) If ;2 — y € D, theny € D.

We denote by Ds(A) the set of all deductive systems of A.

We say that M € Ds(A), M # A, is maximal if it is a maximal element in the lattice
(Ds(A), Q). Let us denote by Maxz(A) the set of all maximal deductive systems of A.
We have the following theorem of characterization for maximal deductive systems:

Theorem 2.1. ([15]) Let A be a Hilbert algebra and M € Ds(A),M # A. The
following conditions are equivalent:
(i) M € Maz(A);
(i) If v,y € A and x Uy € M, then x € M ory € M;
(tit) If x ¢ M, then x — y € M for every y € A.

Corollary 2.1. If A is a bounded Hilbert algebra and M € Ds(A), M # A, then the
following conditions are equivalent:

(i) M € Maz(A);

(t3) If x ¢ M, then x* € M.

3. Bosbach states on Hilbert algebras

In this section we recall some results relative to the theory of Bosbach states on a
Hilbert algebra A. This concept is obtained by using Bosbach condition ([1]).

Definition 3.1. ([2]) A Bosbach state on a Hilbert algebra A is a function s: A —
[0,1] such that the following axioms hold:

(a10) s(1) =1;

(a11) s(z) + s(x = y) = s(y) + s(y — x), for all z,y € A.

Remark 3.1. In [2] I given (following a suggestion of a referee) another definition for
a Bosbach state on a Hilbert algebra, namely, a function, s : A — [0,1] is a Bosbach
state if verify (a10), (a11) and

(a12) there exists an element a € A such that s(a) = 0.

In this paper we consider the notion of Bosbach state in the sense of Definition 3.1.

Example 3.1. The function 1 : A — [0,1],1(z) = 1, for every x € A is a Bosbach
state on A.
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Example 3.2. If M € Max(A), then sy : A — [0,1], defined by sy(x) = 1 if
x € M and 0 if x ¢ M is a Bosbach state on A. Indeed, since 1 € M, then spr(1) = 1.
Consider z,y € A. If x,y € M, thenx — y,y — x € M and the axiom (a11) is verified
(1+1=1+1). Ifz,y ¢ M, then by Theorem 2.1 we deduce that x — y,y — © € M,
so the axiom (a11) is also verified O+ 1 =0+1). Ifx ¢ M and y € M, then
x—y€eMandy— x ¢ M, so the aziom (a11) is also verified (0+1=1+0).

Example 3.3. If s : A — [0,1] is a Bosbach state, then for every a € A, s, : A —
[0,1], sa(z) = s(a — x) is also a Bosbach state on A. Indeed, s,(1) = s(a — 1) =
s(1) =1 and for z,y € A, so(z) + so(x — y) = s(a = ) + s(a — (z — y)) = s(a —
z)+s((a—x) = (a—y)) =sla—y)+s(a—y) —(a—1x)) =s(a—y)+s(a—
(y = 2)) = 5a(y) + sa(y — 7).

For a Bosbach state s : A — [0,1] we define Ker(s) ={z € A: s(x) =1}.
Proposition 3.1. ([2]) Ker(s) € Ds(A).

Proposition 3.2. ([2]) If s: A — [0,1] is a Bosbach state on A, then for all x,y € A
we have:

(c20) = <y = s(x) < s(y);

(cs0) s((x —=y) =y) =s(ly = z) — ).

4. State-morphisms on Hilbert algebras

In this section we develop a theory of state-morphisms on Hilbert algebras. Let
us denote by [0, 1] the standard MV —algebra of real unit interval [0,1], where for
x,y € [0,1],z ®y = min{x + y,1},2 ©y = max{x + y — 1,0}, z ~> y = min{l —
x+y, 1tz Ay = min{z,y} and = Vy = max{z,y}. Clearly, © ~ z = 1,z ~
l=11~z=zand zAa < yiff a < x ~ y for every x,y,a € [0,1]. Also,
(x~y)~y=(y~x)~x=2xVy, for every z,y € [0, 1].

Definition 4.1. A state-morphism on a Hilbert algebra A is a function f : A — [0, 1]
such that for every xz,y € A :
(a13) f(z —y) = f(x) ~ f(y).
If A is bounded we add the condition
(a14) f(0) =0.

Clearly, 1 : A — [0,1],1(xz) = 1, for every x € A is a state morphism (called
trivial). From (a13) we deduce that f(1) = f(1 — 1) = f(1) ~ f(1) = 1. If Ais
bounded, then for every x € A we have f(z*) = f(x — 0) = f(z) ~ f(0) = f(x) ~
0=(f()" =1~ f(x).

Proposition 4.1. Let A be a Hilbert algebra and f : A — [0,1] a state-morphism.
Then:

(i) f is a Bosbach state;

(#3) If A is a bounded Hilbert algebra, then f(x Ay) = f(x)© f(y), for every x,y € A.

Proof. (i). For every z,y € A we have f(z) + f(z — y) = f(z) + [f(z) ~ f(y)] =
f(@) + min{l — f(z) + f(y), 1} = min{1 + f(y),1+ f(z)} = f(y) + min{L, 1+ f(z) —
fW)r = fly) + min{l — f(y) + f(2),1} = f(¥) + [f(y) ~ f(@)] = f(y) + fly = @),
that is, f is a Bosbach state.

(7i). Suppose A is a bounded Hilbert algebra and consider z,y € A. We have

flary) = flx = 7)) =1=[f(z) ~ (fW)] =1 [f(x) ~» A= Ffly)] =1-
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min{1— f(z)+1-f(y), 1} = T+max{f(z)+f(y) =2, -1} = max{f(2)+f(y) - 1,0} =
f(@)© f(y)-
O

Proposition 4.2. Let A be a Hilbert algebra and s : A — [0,1] a Bosbach state on
A. Then the following are equivalent:

(i) s is a nontrivial state-morphism;
(13) Ker(s) € Max(A).

Proof. (i) = (ii). Since s is a nontrivial state-morphism, then Ker(s) # A. To prove
Ker(s) € Max(A), let x,y € A such that x Uy € Ker(s).

Then s(zUy) =1= s(x —y) ~ s((y = 2) »> ) =1=[s(x) ~ s(y)] ~ s((y —
x) —x)=1.

If s(z) < s(y) then we obtain that s((y — z) — z) =1 = [s(y) ~ s(x)] ~ s(z) =
1=s(x)Vvs(ly) =1=s(y) =1=y e Ker(s).

Analogously, since zUy = yUz, if s(y) < s(z), then x € Ker(s), hence by Theorem
2.1 we deduce that Ker(s) € Max(A).

(#4) = (i). Suppose Ker(s) € Max(A) and consider z,y € A. Since by (c12),
zU(xr —y)=1€ Ker(s) =z € Ker(s) or z — y € Ker(s).

If © € Ker(s) = s(z) =1 = s(z) ~ s(y) = s(y). Since s is supposed Bosbach
state, then s(z) +s(x — y) = s(y) +s(y — z). But x € Ker(s) =y — x € Ker(s) =
s(z) = s(y — ) = 1, so we obtain that 1+ s(z — y) = s(y)+1 = s(z — y) = s(y) =
5(z) = 5(1).

If 2 —» y e Ker(s) = s(x — y) = 1. Since s(x) + s(z — y) = s(y) + s(y — z) =
s(x) —s(y)=sy—z)—1<0=

s(@) —s(y) =s(y = x) =1 < 0= s(x) < s(y) = s(x) ~ s(y) =1 =s(z —y), so
(a13) is verified. O

If A is a Hilbert algebra and D € Ds(A), then for x € A we denote by x/D the
equivalence class of x relative to D and by A/D the quotient Hilbert algebra (see [6]
and [8]).

We recall that for z,y € A,x2/D =y/D iff - y,y — x € D.

Lemma 4.1. Let A be a Hilbert algebra and s : A — [0, 1] a Bosbach state on A. For
all z,y € A, the following are equivalent:

(i) z/Ker(s) =y/Ker(s);

(i) s(z) = s(y)-

Proof. We have z/Ker(s) = y/Ker(s) & x — y,y — = € Ker(s) & s(v — y) =
s(y—xz) =1
Since s(z) + s(z — y) = s(y) + s(y — ) we obtain that s(x) = s(y). O

Following Lemma 4.1, if A is a Hilbert algebra and s : A — [0, 1] is a Bosbach state
on A, then the function §: A/Ker(s) — [0,1], s(z/Ker(s)) = s(x), is well-defined.
It follows immediately that 5 is a state on A/Ker(s).

Proposition 4.3. Let A be a bounded Hilbert algebra and s1,s9 : A — [0,1] two
Bosbach states such that sy is a state-morphism. If Ker(s1) = Ker(sa), then s1 = sa.

Proof. We denote M = Ker(sy); following Proposition 4.2, M € Max(A). Since
Ker(sy) = M we get that Ker(sg) is also maximal.

From Proposition 4.2, it follows that sy is a state-morphism. Clearly, if x € M,
then s1(z) = so(x) = 1.



STATE-MORPHISMS ON HILBERT ALGEBRAS 63

Consider now = ¢ M. Since M € Max(A),then 2* € M (by Corollary 2.1), since
si(@*) =sa(x*) =1 1—s1(x) =1—-s52(x) =1 < s1(x) = s2(z), hence 51 = so. O

Open question 1. Proposition 4.3 is true if A is unbounded?

Corollary 4.1. Let A be a bounded Hilbert algebra and M € Max(A). Then there is
a unique Bosbach state s : A — [0, 1] such that Ker(s) = M.

Proof. Following Example 3.2, the function sy : A — [0, 1], defined by sps(z) = 1 if
x € M and 0if x ¢ M is a Bosbach state on A and Ker(s) = M. Following Proposition
4.3,1if s : A — [0,1] is another Bosbach state such that Ker(s) = M = Ker(sy),
then s = syy. O

Corollary 4.2. If A is a bounded Hilbert algebra, then the assignment s ~~ Ker(s)
establishes a bijection between the Bosbach states on A and Max(A).

Let A be a Hilbert algebra and s : A — [0, 1] a Bosbach state on A.

Definition 4.2. We say that s is an extremal state if for any 0 < A < 1 and for any
two states s1, 82 : A — [0,1] such that s = As1 + (1 — \)sa,then s1 = ss.

Theorem 4.1. Let A be a Hilbert algebra.
(1) If s: A —[0,1] is an extremal state, then s = 1;
(13) If A is bounded and s is a state-morphism then s is an extremal state.

Proof. (i). For a fixed element a € A and x € A we have s(z)+s(z — a) = s(a)+s(a —
x). If consider s§,s5 : A — [0, 1], s§(x) = s(a — x) and s§(z) = s(z) —s(z — a)+s(a)
then s = %5‘11 + %sg. From Example 3.3 we deduce that s{ is a Bosbach state on A. We
will prove that s§ is also a Bosbach state on A. Indeed, for x,y € A we have following
sequence of equivalences: s§(z) + s§(z — y) = s%(y) + s%(y — z) < s(x) — s(x —
a) +s(a) +s(x = y) = s((x — y) = a) +s(a) =

$(y) — 5(y — a) + 5(a) + s(y — 7) — s((y — 7) — ) + s(a) &

sy — 0) + 5((y — ) — a) = s(z — a) + 5((z - 1) — @) © s(y — a) + s(y —
2)+s((y — 7) — 0) +5(z — ) = (v — @) + 5(& — y) +5((& — y) — @)+ 5(y — 7)

& sy —a)+s(a)+s(a—(y—r)+sx—y)=s@—a)+s)+s(a—(r—
1) + sy — ) & 5((a — y) — (a — 1) — s((a — 2) — (a — y)) =

s(r = a)+s(y —xz)—sly —a)—s(x = y) & sla—x)—s(a—vy) =sz—
a)+s(y —a)—s(y —a)—s(@—y)

[5(a — 2) — s(z — a)] + [s(y — @) — s(a — y)] + [s(z — y) — sy — )] =0 &

[s(x) = s(a)] + [s(a) — s(y)] + [s(y) — s(x)] =0 & 0= 0.

If 5 is supposed extremal, from s = 3s§ + 153 = s§ = s5. Then for every z € A
we have s(a — ) = s(z) — s(z — a) + s(a) = s(a — z) — s(z) = s(a) — s(x — a).

Since x < a — z and a < z — a we deduce that s(a — x) — s(z) = s(a) — s(z —
a) = 0.

So s(a — z) = s(x), for every a,z € A. In particular for a = x we obtain s(x) =
s(1) =1, for every x € A, hence s = 1.

(#7). Assume s = Asy + (1 — A)sg, which 0 < A < 1 and s1,s2 states on A.
It is easy to prove that Ker(s) = Ker(sy) N Ker(sz). But Ker(s) € Max(A), so
Ker(s) = Ker(s1) = Ker(sz). Apply now Proposition 4.3 we get that s; = sa. O

Open question 2. If A is a bounded Hilbert algebra, then every extremal state
s : A — [0,1] is a state-morphism? (as in the case of pseudo-MV algebras and
pseudo-BL algebras - see [9] and [12]).
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