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A theorem of representation for Hilbert algebras

Dan Dorin Taşcău

Abstract. The main scope of this paper is to prove the following theorem of representation
for a Hilbert algebra A : There exist a complete residuated lattice Lr(A) which is a G− algebra
and an injective morphism of Hilbert algebras iA : A → Lr(A). As a consequence, we deduce
that the free Hertz algebra HA over A (see [15]) is isomorphic with a Hertz subalgebra of
Lr(A). Also, I give the description of the elements of Lr(A).
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1. Introduction

The concept of Hilbert algebras was introduced in the 50’s by Henkin and Skolem
for investigations in intuitionistic and other non-classical logics, as an algebraic coun-
terpart of Hilbert’s positive implicative propositional calculus ([16]). Hilbert algebras
were intensively studied by A. Diego ([5]) and this theory was further developed by
Busneag ([3]). BCK algebras were introduced by Iséki in 1966 ([9], [11]) to give an
algebraic framework for Meredit’s implicational logic BCK. Since Iséki’s definition,
these algebras have been studied by several authors. For further information see for
example [2], [4], [7], [10], [12] and the references given there.

The paper is organized as follows: In Section 2 we recall the basic definitions and
some results relative to BCK algebras; also we put in evidence some rules of calculus
in Hilbert and BCK algebras (which we need in Section 3). In the final of Section 2
we put in evidence a theorem of embedding for Hilbert algebras into complete integral
residuated lattices which is G− algebra (Theorem 2.2).

In Section 3 we give a characterization of the elements of the complete integral
residuated lattice Lr(A) from Section 2.

2. Preliminaries

In this paper the symbols⇒ and⇔ are used for logical implication and respectively
logical equivalence.

Definition 2.1. ([4], [10]) A BCK algebra is an algebra (A,→, 1) of type (2,0) such
that the following axioms are verified for every x, y, z ∈ A:
(a1) x → x = 1;
(a2) If x → y = y → x = 1, then x = y;
(B) (x → y) → ((y → z) → (x → z)) = 1;
(C) x → (y → z) = y → (x → z);
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(K) x → (y → x) = 1.

The relation a ≤ b iff a → b = 1 is a partial order on A (called the natural order
on A ); with respect to this order 1 is the largest element of A.

For examples of BCK algebras see [4] and [10].
A Hilbert algebra ( [3], [5], [10]) is a BCK algebra (A,→, 1) which verifies one of

the following equivalent conditions for all x, y ∈ A :
(a3): x → (x → y) = x → y;
(a4): (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y).
In a BCK algebra we have ([4], [7], [10], [12]) the following rules of calculus for

x, y, z ∈ A :
(c1) x ≤ y → x;
(c2) x ≤ (x → y) → y;
(c3) ((x → y) → y) → y = x → y;
(c4) If x ≤ y, then for every z ∈ A, z → x ≤ z → y and y → z ≤ x → z;
(c5) x → y ≤ (z → x) → (z → y) ≤ z → (x → y);
(c6) x → y ≤ (y → z) → (x → z).

If A is a Hilbert algebra, then
(c7) x → (y → z) = (x → y) → (x → z).

If A is a BCK algebra and x1, ..., xn, x ∈ A (n ≥ 1) we define (x1, ..., xn;x) =
x1 → (x2 → ...(xn → x)...).

Following (C) we deduce that if σ is permutation of (1, 2, ..., n), then for every
x, y, x1, ..., xn ∈ A :
(c8) (xσ(1), ..., xσ(n);x) = (x1, ..., xn;x);
(c9) (x1, ..., xn; x → y) = x → (x1, ..., xn; y).

If A is a Hilbert algebra then :
(c10) (x1, ..., xn; x → y) = (x1, ..., xn; x) → (x1, ..., xn; y).

For a BCK algebra A, two elements x, y ∈ A and a natural number n ≥ 1 we
denote x →n y = (x, x, ..., x; y), where n indicates the number of occurrences of x.
Clearly, if A is a Hilbert algebra, then x →n y = x → y, for every n ≥ 1.

A deductive system (or i-filter) of a BCK algebra A is a nonempty subset D ⊆ A
such that:
(a5) 1 ∈ D;
(a6) If x, x → y ∈ D, then y ∈ D.

It is clear that if D is a deductive system, a ≤ b and a ∈ D, then y ∈ D (that is,
D is increasing subset of A).

We denote by Ds(A) the set of all deductive systems of A (clearly, {1}, A ∈ Ds(A)).
For a nonempty subset X ⊆ A, the deductive system generated by X will be denoted

by [X). It is known ([7], [12]) that [X) = {x ∈ A : (x1, ..., xn; x) = 1, for some
x1, ..., xn ∈ X }. In particular for a ∈ A, [{a}) not= [a) = {x ∈ A : a →n x = 1, for
some n ≥ 1}.

If D ∈ Ds(A) and a ∈ A\D, then [D ∪ {a}) not= D(a) = {x ∈ A : a →n x ∈ D, for
some n ≥ 1}.

In particular, if A is a Hilbert algebra, then for X = {x1, ..., xn}, [X) = {x ∈
A : (x1, ..., xn; x) = 1} and if D ∈ Ds(A) and a ∈ A\D, then D(a) = {x ∈ A :
a → x ∈ D}.
Remark 2.1. If A is a Hilbert algebra, then if X = {x1, ..., xm} and Y = {y1, ..., yn},
[X ∪ Y ) = [X)(y1, ..., yn) = [Y )(x1, ..., xm)

(where [X)(y1, ..., yn) = (...([X)(y1))(y2)...)(yn)).
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For a BCK algebra A we let W (A) denote the set of all words X = x1x2...xn

(n ≥ 1) over A.
For any word W = x1x2...xn ∈ W (A) and an element a ∈ A, we shall write

W → a = (x1, x2, ..., xn; a) ∈ A.

Remark 2.2. If W ∈ W (A), then W → a = 1 ⇒ a ∈ [W). If A is a Hilbert algebra,
then W → a = 1 ⇔ a ∈ [W).

From (C) we deduce that for X ,Y ∈ W (A) and a ∈ A, then:
(c12) X → (Y → a) = Y → (X → a) = (XY) → a, where XY ∈ W (A) stand for

concatenation of X and Y.
Let Fin(W (A)) be the set of all finite non-empty subsets of W (A).
One readily sees ([13]) that the relation ρA defined on Fin(W (A)) by the stipulation

{X1, ...,Xn} ρA{Y1, ...,Yn} iff for all W ∈ W (A) and a ∈ A we have
W → (Xi → a) = 1 for all i = 1, 2, ...,m iff W → (Yj → a) = 1 for all j = 1, 2, ..., n

is an equivalence on Fin(W (A)); the ρA -class of {X1, ...,Xn} will be briefly denoted
as < X1, ...,Xn > . Further, we equip the quotient set MA

not= Fin(W (A))/ρA with
two binary operations u and ?, as follows:

< X1, ...,Xm > u < Y1, ...,Yn >=< X1, ...,Xm,Y1, ...,Yn >,

< X1, ...,Xm > ? < Y1, ...,Yn >=< XiYj : i = 1, 2, ..., m, j = 1, 2, ..., n > .

Definition 2.2. By a meet-semilattice-orderd monoid we mean an algebra (M,∧, •, e)
such that :
(a7) (M,∧) is a meet-semilattice;
(a8) (M, •, e) is a monoid;
(a9) (x∧ y)• z = (x• z)∧ (y • z) and z • (x∧ y) = (z •x)∧ (z • y) for every x, y, z ∈ A.

If the identity element e is the least element of M (that is, e play the role of 0),
then M is called dually integral.

In [13] it is proved the following result:

Proposition 2.1. For every BCK algebra A, the structure (MA,u, ?, < 1 >) is a
dually integral meet-semilattice-orderd monoid.

Remark 2.3. In [13], the above result is obtained for the case of a pseudo BCK
algebra A; if A is a BCK algebra, then the operation ? is commutative. Indeed, if
α = < X1, ...,Xm >, β = < Y1, ...,Yn > ∈ MA, then α?β =< XiYj : i = 1, 2, ..., m, j =
1, 2, ..., n > . If W ∈ W (A) and a ∈ A, then W → (XiYj → a) = 1 iff W → (Xi →
(Yj → a)) = 1 iff W → (Yj → (Xi → a)) = 1 iff W → (YjXi → a)) = 1,for all
i = 1, 2, ...,m and j = 1, 2, ..., n, so α ? β = β ? α.

Lemma 2.1. Let (M,∧, •, e) a dually integral meet-semilattice-orderd (commutative)
monoid. Then for every x, y ∈ M :

(c13): x ≤ x • y, y ≤ x • y;
(c14): x ≤ x • x.

Proof. (c13). We have x • (y ∧ e) = (x • y) ∧ (x • e) ⇒ x • e = (x • y) ∧ x ⇒ x =
(x • y) ∧ x ⇒ x ≤ x • y.

(c14). Clearly.
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Remark 2.4. It is worth noticing that the partial order v associated with the meet
operation u on MA we have < X1, ...,Xm >v < Y1, ...,Yn > iff for all W ∈ W (A)
and a ∈ A, W → (Xi → a) = 1 for all i = 1, 2, ...,m, then W → (Yj → a) = 1 for all
j = 1, 2, ..., n.

Corollary 2.1. If A is a Hilbert algebra, then α ? α = α for every α ∈ MA.

Proof. By (c14) we deduce that α v α ? α. To prove that α ? α v α,
let α =< X1, ...,Xm > ∈ MA, W ∈ W (A) and a ∈ A such that W → (α ? α →

a) = 1. Since α ? α =< X1X1,X1X2, ...,X2X2, ...,Xn−1Xn,XnXn >, then in particular
we have W → (XiXi → a) = 1 for all i = 1, 2, ..., m.

Since A is a Hilbert algebra, then for all i = 1, 2, ..., m we have W → (Xi → (Xi →
a)) = 1 ⇒ W → (Xi → a) = 1, hence α ? α v α, so α ? α = α.

We recall that if (M,∧) is a meet-semilattice, then F ⊆ M is a filter ([1]) if
x, y ∈ F ⇒ x ∧ y ∈ F and if x ≤ y and x ∈ F ⇒ y ∈ F.

For (M,∧, •, e) a dually integral meet-semilattice-orderd monoid, let F(M) the set
of all filters of (M,∧) augmented by Ø.

Let us introduce the following notation for F, G ∈ F(M) :

F ∨G = the filter generated by F ∪G = {a ∈ M : x ∧ y ≤ a for some x, y ∈ F ∪G},
F ¯G = {a ∈ M : x • y ≤ a for some x ∈ F and y ∈ G},

F → G = {a ∈ M : {a} • F ⊆ G} =
= {a ∈ M : if x ∈ M and x ≥ a • f with f ∈ F, then x ∈ G}.

We recall ([6], [14]) that an integral residuated lattice is an algebra
(L,∨,∧,¯,→, 0, 1) such that (L,∨,∧, 0, 1) is a bounded lattice, (L,¯, 1) is a (com-
mutative) monoid whose identity 1 is the greatest element of the lattice and x¯a ≤ y
iff a ≤ x → y for all a, x, y ∈ L.

Remark 2.5. ([6], [14]) If (L,∨,∧,¯,→, 0, 1) is an integral residuated lattice then
(L,→, 1) is a BCK algebra.

In [13] it is proved the following result:

Lemma 2.2. If A is a BCK algebra, then (F(MA),∨,∩,¯,→, O, MA) is a complete
integral residuated lattice.

For a ∈ A, we put iA(a) = {< X1, ...,Xm >∈ MA : Xi → a = 1, for all i =
1, 2, ...,m}.

In [13] it is proved the following result:

Theorem 2.1. If A is a BCK algebra, then the map iA : A → Lr(A) = F(MA) is
an injective morphism of BCK algebras. Moreover, if for a, b ∈ A there exists a ∨ b
in A, then iA(a ∨ b) = iA(a) ∨ iA(b).

Taking as guide-line the case of BL algebras (see [8], Definition 4.2.12), an integral
residuated lattice L is a G -algebra if x¯ x = x,for every x ∈ L.

We have the following results:

Proposition 2.2. ([14]) Let (L,∨,∧,¯,→, 0, 1) is an integral residuated lattice. Then
the following are equivalent:

(i): L is a G -algebra;
(ii): x¯ y = x ∧ y, for every x, y ∈ L;
(iii): x¯ (x → y) = x ∧ y, for every x, y ∈ L.
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Proposition 2.3. ([14])For an integral residuated lattice (L,∨,∧,¯,→, 0, 1) the fol-
lowing are equivalent:

(i): (L,→, 1) is a Hilbert algebra;
(ii): (L,∨,∧,¯,→, 0, 1) is a G -algebra.

Lemma 2.3. If A is a Hilbert algebra, then the integral residuated lattice Lr(A) is a
G-algebra.

Proof. We must prove that for F ∈ Lr(A), F ¯ F = F. Since Lr(A) is an integral
residuated lattice, then F ¯ F ⊆ F ([6], [14]). If α ∈ F, by Corollary 2.1, α = α ? α,
hence α ∈ F ¯ F ⇒ F ⊆ F ¯ F, so F = F ¯ F.

From Lemma 2.3 and Theorem 2.1 we obtain the following theorem of representa-
tion for Hilbert algebras:

Theorem 2.2. If A is a Hilbert algebra, then there exist a complete integral residuated
lattice Lr(A) which is a G − algebra and an injective morphism of Hilbert algebras
iA : A → Lr(A). Moreover, if for a, b ∈ A there exists a ∨ b in A, then iA(a ∨ b) =
iA(a) ∨ iA(b).

Remark 2.6. For others theorems of representation for Hilbert algebras, see [3], [5].

3. A characterization of the elements of Lr(A)

If (S,∧) is a meet-semilattice, for a nonempty subset M ⊆ S, by [M) we denote
the filter of S generated by M.

We have ([1]): [M) = {x ∈ S : x1 ∧ ... ∧ xn ≤ x for some x1, ..., xn ∈ M}. In
particular, if M = {a}, [{a}) not= [a) = {x ∈ S : a ≤ x}.
Remark 3.1. We recall ([1]) that if (S,∧) is a meet-semilattice then:

(i): If a, b ∈ S and a ≤ b ⇒ [b) ⊆ [a);
(ii): If a1, a2, ..., an ∈ S then [a1 ∧ a2 ∧ ... ∧ an) = [a1) ∨ [a2) ∨ ... ∨ [an).

Lemma 3.1. If A is a BCK algebra, then for every a ∈ A, iA(a) = [< a >).

Proof. If < X1, ...,Xn >∈ [< a >) ⇒< a >v< X1, ...,Xn > . Since 1 → (a → a) =
1 ⇒ 1 → (Xi → a) = 1, for i = 1, 2, ..., n ⇒< X1, ...,Xn >∈ iA(a) ⇒ [< a >) ⊆ iA(a).

Conversely, let < X1, ...,Xn >∈ iA(a), that is, Xi → a = 1, for i = 1, 2, ..., n.
To prove < a >v< X1, ...,Xn >, let W = a1a2...am ∈ W (A) and x ∈ A such that
W → (a → x) = 1.

For i ∈ {1, 2, ..., n} consider Xi = x1...xt ∈ W (A). ¿From W → (a → x) = 1 ⇒
a → (W → x) = 1 ⇒ a ≤ (a1, ..., am; x)

(c3)⇒ (x1, ..., xt; a) ≤ (x1, ..., xt, a1, ..., am;x) ⇒
(x1, ..., xt, a1, ..., am;x) = 1 ⇒ Xi → (W → a) = 1

(C)⇒ W → (Xi → a) = 1, for
i = 1, 2, ..., n ⇒< X1, ...,Xn >∈ [< a >) ⇒ iA(a) = [< a >).

Lemma 3.2. Let A be a BCK algebra and < X1, ...,Xn >∈ MA. Then

[< X1, ...,Xn >) = [< X1 >) ∨ ... ∨ [< Xn >).

Proof. We have [< X1, ...,Xn >) = [< X1 > u...u < Xn >)
Re mark3.1,(ii)

=
[< X1 >) ∨ ... ∨ [< Xn >).

Lemma 3.3. If A is a Hilbert algebra and a1, a2, ..., an ∈ A, then [< a1a2...an >) =
[< a1 >) ∩ ... ∩ [< an >).
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Proof. It is suffice to prove that for two elements a, b ∈ A, we have the equality
[< ab >) = [< a >) ∩ [< b >).

Indeed, < a > ? < b >=< ab > and since < a >, < b >v< a > ? < b >=< ab >
we deduce that [< ab >) ⊆ [< a >), [< b >) ⇒ [< ab >) ⊆ [< a >) ∩ [< b >).

To prove the converse inclusion, let < X1, ...,Xn >∈ [< a >) ∩ [< b >). Then
< a >,< b >⊆ < X1, ...,Xn > .

Consider W ∈ W (A) and a ∈ A such that W → (ab → x) = 1. Then W → (a →
(b → x)) = 1. Since < a >⊆ < X1, ...,Xn >, then W → (Xi → (b → x)) = 1, for all
i = 1, 2, ..., n ⇒ W → (b → (Xi → x)) = 1, for all i = 1, 2, ..., n ⇒
W → (Xi → (Xi → x)) = 1, for all i = 1, 2, ..., n ⇒ W → (Xi → x) = 1, for all

i = 1, 2, ..., n ⇒< ab >v< X1, ...,Xn >⇒< X1, ...,Xn >∈ [< ab >) ⇒ [< a >) ∩ [<
b >) ⊆ [< ab >) ⇒ [< a >) ∩ [< b >) = [< ab >).

Corollary 3.1. If A is a Hilbert algebra and W = a1a2...an ∈ W (A), then

[< W >) = iA(a1) ∩ ... ∩ iA(an).

Proof. By Lemma 3.3 we deduce that [< W >) = [< a1a2...an >) =
[< a1 >) ∩ ... ∩ [< an >) = iA(a1) ∩ ... ∩ iA(an).

From the above results we obtain the following theorem of characterization for the
elements of Lr(A) when A is a Hilbert algebra:

Theorem 3.1. Let A be a Hilbert algebra. Then for F ∈ Lr(A) = F(MA) we have
F = ∨

<X1,...,Xn>∈F
[( ∩

x∈X1
iA(x)) ∨ ... ∨ ( ∩

x∈Xn

iA(x))] .

Proof. For F ∈ Lr(A) = F(MA) we have F = ∨
<X1,...,Xn>∈F

[< X1, ...,Xn >) Lemma3.2=

= ∨
<X1,...,Xn>∈F

[[< X1 >) ∨ ... ∨ [< Xn >)] Lemma3.3=

= ∨
<X1,...,Xn>∈F

[( ∩
x∈X1

iA(x)) ∨ ... ∨ ( ∩
x∈Xn

iA(x))].

Definition 3.1. A Hertz algebra is a Hilbert algebra A with the property that for
every x, y ∈ A, the infimum x ∧ y (relative to the natural ordering) exists in A (that
is, A is meet-semilattice relative to the natural order) and for every x, y ∈ A we have
the relation:

(P): x → (y → (x ∧ y)) = 1.

In [15] it is proved the equivalence of above definition with:

Definition 3.2. A Hertz algebra is an algebra (A,→,∧) of type (2, 2) satisfying the
following axioms:

(a10): x → x = y → y;
(a11): (x → y) ∧ y = y;
(a12): x ∧ (x → y) = x ∧ y;
(a13): x → (y ∧ z) = (x → y) ∧ (x → z).

Definition 3.3. If A is a Hilbert algebra, a Hertz algebra HA (together with an
injective morphism of Hilbert algebras ϕA : A → HA) is said to be free over A if:

(a14): HA is generated (as a Hertz algebra) by ϕA(A);
(a15): For every Hertz algebra H and every morphism of Hilbert algebras f : A →

H, there exists a unique morphism of Hertz algebras f ′ : HA → H such that
f ′ ◦ ϕA = f.
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Theorem 3.2. ([15]) For every Hilbert algebra A, there exists the free Hertz algebra
HA over A, unique up to an isomorphism of Hertz algebras.

In what follow we only recall the construction of the Hertz algebra HA (using the
model and notations from [15]).

Let F(A) the set of all finite and nonempty subsets of A and I = {1}.
For X = {x1, x2, ..., xm} and Y = {y1, ..., yn} ∈ F(A) we define

X → Y = ∪
1≤j≤n

{(x1, x2, ..., xm; yj)} and X ∧ Y = X ∪ Y .

Consider the relation θA on F(A) defined for X ,Y ∈ F(A) by

X θAY iff X → Y = Y → X = I.

Then θA is an equivalence relation on F(A) compatible with the operations → and
∧.

For X ∈ F(A) we denote by [X ]θA
the equivalence class of X modulo θA and by

HA = F(A)/θA.
For a ∈ A we define ϕA : A → HA, ϕA(a) = [{a}]θA

. Then (HA,→,1) is the free
Hertz algebra over A (where for X ,Y ∈ F(A), [X ]θA

→ [Y]θA
= [X → Y]θA

, [X ]θA
∧

[Y]θA
= [X ∧ Y]θA

and 1 = [{1}]θA
).

If H is a Hertz algebra and f : A → H is a morphism of Hilbert algebras, then
f ′ : HA → H, f ′([X ]θA

) =
m∧

i=1
f(xi) (X = {x1, x2, ..., xm}) is the unique morphism of

Hertz algebras such that f ′ ◦ ϕA = f.
For a Hilbert algebra A I want to re-write the relation θA using the notation from

Section 2.
So, we can consider an element X = {x1, x2, ..., xm} ∈ F(A) as the word X =

x1x2...xn ∈ W (A) and for a ∈ A, X → a = (x1, x2, ..., xn; a) ∈ A.

Lemma 3.4. If A is a Hilbert algebra, then ρA = θA.

Proof. Clearly, for X = {x1, x2, ..., xm}, Y = {y1, ..., yn} ∈ F(A), X θAY iff X → yj =
Y → xi = 1 for every i = 1, 2, ..., m, j = 1, 2, ..., n ⇔ xi ∈ [Y) and yj ∈ [X ) for every
i = 1, 2, ...,m, j = 1, 2, ..., n ⇔ [Y) = [X ).

Suppose XρAY (that is, if W ∈ W (A), a ∈ A, then W → (X → a) = 1 iff
W → (Y → a) = 1). Since 1 → (X → xi) = 1 for every i = 1, 2, ..., m, then
1 → (Y → xi) = 1 for every i = 1, 2, ..., m ⇒ [X ) ⊆ [Y). Analogously we deduce
[Y) ⊆ [X ), so [X ) = [Y), hence X θAY.

Suppose that X θAY (hence [X ) = [Y)) and consider W ∈ W (A) and a ∈ A such
that W → (X → a) = 1. Then a ∈ [W ∪ X ) = [X )(W). Since [X ) = [Y) ⇒ a ∈
[Y)(W) ⇒ a ∈ [Y ∪W) ⇒W → (Y → a) = 1 ⇒ XρAY.

Corollary 3.2. If A is a Hilbert algebra, then HA = F(A)/θA = W (A)/ρA.

Theorem 3.3. If A is a Hilbert algebra, then there exist an injective morphism of
Hertz algebras ΨA : HA → Lr(A) such that ΨA ◦ ϕA = iA.

Proof. The existence of ΨA : HA → Lr(A) is assured by Theorem 3.2 and for X =
{x1, x2, ..., xm} ∈ F(A), ΨA([X ]θA

) =
m∧

i=1
iA(xi) .

To prove the injectivity of ΨA, consider Y = {y1, ..., yn} ∈ F(A) such that
ΨA([X ]θA) = ΨA([Y]θA) ⇔ m∧

i=1
iA(xi) =

n∧
j=1

iA(yj). Then for every j = 1, 2, ..., n :
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m∧
i=1

iA(xi) ≤ iA(yj) ⇒ (
m∧

i=1
iA(xi)) → iA(yj) = 1 ⇒ (iA(x1), ..., iA(xm); iA(yj)) =

1 ⇒ iA((x1, ..., xm; yj)) = 1 ⇒ (x1, ..., xm; yj) = 1 ⇒ [Y) ⊆ [X ) and analogously
[X ) ⊆ [Y), hence [X ) = [Y), that is, ΨA is injective.

Corollary 3.3. If A is a Hilbert algebra, then the free Hertz algebra HA over A is
isomorphic with a Hertz subalgebra of Lr(A).
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[8] P. Hájek, Metamathematics of Fuzzy Logic, In Trends in Logic-Studia Logica Library 4, Dor-

drecht, Kluwer Academic Publishers, (1998).
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