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A theorem of representation for Hilbert algebras

DAN DORIN TASCAU

ABSTRACT. The main scope of this paper is to prove the following theorem of representation
for a Hilbert algebra A : There exist a complete residuated lattice L, (A) which is a G— algebra
and an injective morphism of Hilbert algebras i4 : A — L,(A). As a consequence, we deduce
that the free Hertz algebra H4 over A (see [15]) is isomorphic with a Hertz subalgebra of
Ly (A). Also, I give the description of the elements of L,(A).
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1. Introduction

The concept of Hilbert algebras was introduced in the 50’s by Henkin and Skolem
for investigations in intuitionistic and other non-classical logics, as an algebraic coun-
terpart of Hilbert’s positive implicative propositional calculus ([16]). Hilbert algebras
were intensively studied by A. Diego ([5]) and this theory was further developed by
Busneag ([3]). BCK algebras were introduced by Iséki in 1966 ([9], [11]) to give an
algebraic framework for Meredit’s implicational logic BCK. Since Iséki’s definition,
these algebras have been studied by several authors. For further information see for
example [2], [4], [7], [10], [12] and the references given there.

The paper is organized as follows: In Section 2 we recall the basic definitions and
some results relative to BCK algebras; also we put in evidence some rules of calculus
in Hilbert and BCK algebras (which we need in Section 3). In the final of Section 2
we put in evidence a theorem of embedding for Hilbert algebras into complete integral
residuated lattices which is G— algebra (Theorem 2.2).

In Section 3 we give a characterization of the elements of the complete integral
residuated lattice L,(A) from Section 2.

2. Preliminaries

In this paper the symbols = and <> are used for logical implication and respectively
logical equivalence.

Definition 2.1. ([4], [10]) A BCK algebra is an algebra (A, —,1) of type (2,0) such
that the following axioms are verified for every xz,y,z € A:

(a1) z —x=1;

(ag) If x »y=y — x =1, then x = y;

(B) (=) — ((y— 2) — (x — 2)) = 1

(C) 2 (y—2) =y — (z— 2)
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(K) = (y— )= 1.

The relation a < b iff a — b = 1 is a partial order on A (called the natural order
on A ); with respect to this order 1 is the largest element of A.

For examples of BCK algebras see [4] and [10].

A Hilbert algebra ([3], [5], [10]) is a BCK algebra (A, —,1) which verifies one of
the following equivalent conditions for all z,y € A :

(a3): = (z —y) =z —y;

(ag): (x—y) = (y— ) —2)=(y—z)— (z—y) —y).

In a BCK algebra we have ([4], [7], [10], [12]) the following rules of calculus for
x,y,z € A:
(1) v <y —
(c2) z<(z—y) =y
(c3) (z—y)—y) my=2—y;
(ch) If z <y, thenforevery z€ A,z wrx<z—yandy — z <z — z;
(c5) z—y<(z—z)—>(z—y <z—(x—y)
() 2 =y < (y—2)—(z—2)

If A is a Hilbert algebra, then
(c7) 2= (y—2)=(x—y)—(z—2)

If Ais a BCK algebra and z1,....,z,,2 € A (n > 1) we define (x1,...,x,;2) =
1 — (X3 — Ty — 2)...).

Following (C) we deduce that if ¢ is permutation of (1,2,...,n), then for every
Ty Y, X1,y Ty € A
(CS) (x0(1)7 o To(n)i J)) = (3317 vy I 1‘),

(09) (Z‘l, vy Ty & — y) =T — (.I‘l, -~-,$n;y)~

If A is a Hilbert algebra then :

(c10) (1, Zn;x = Y) = (T1, ey Ty ) — (T1y ooy T3 Y).

For a BCK algebra A, two elements x,y € A and a natural number n > 1 we
denote z —,, y = (z,z,...,2;y), where n indicates the number of occurrences of x.
Clearly, if A is a Hilbert algebra, then © —,, y =z — y, for every n > 1.

A deductive system (or i-filter) of a BCK algebra A is a nonempty subset D C A
such that:

(CL5) 1eD;
(ag) f z,2 — y € D, then y € D.

It is clear that if D is a deductive system, a < b and a € D, then y € D (that is,
D is increasing subset of A).

We denote by Ds(A) the set of all deductive systems of A (clearly, {1}, A € Ds(A)).

For a nonempty subset X C A, the deductive system generated by X will be denoted
by [X). It is known ([7], [12]) that [X) = {&# € A : (21, ...,zy;2) = 1, for some
1, ...,y € X }. In particular for a € A,[{a}) "L [a) = {z € A:a —, z =1, for
some n > 1}.

If D € Ds(A) and a € A\D, then [DU{a}) "2 D(a) = {z € A: a —, z € D, for
some n > 1}.

In particular, if A is a Hilbert algebra, then for X = {z1,...,2,},[X) = {z €
A (r1,..,zp;x) = 1} and if D € Ds(A) and a € A\D, then D(a) = {x € A :
a — x € D}.

Remark 2.1. If A is a Hilbert algebra, then if X = {x1,...,xm} andY = {y1, ..., Yn},
(XUY)=[X)(y1,-yyn) = [Y) (@1, oey Tin)
(where [X)(y1, ., yn) = (- ([X) (1)) (y2)--) (yn))-
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For a BCK algebra A we let W(A) denote the set of all words X = zqxa...z,
(n>1) over A.

For any word W = zyx5...2,, € W(A) and an element a € A, we shall write
W —a= (21,22 ...,2n;0) € A.

Remark 2.2. If W e W(A), then W —a=1= a € W). If A is a Hilbert algebra,
then W —a=1%& a e W).

From (C) we deduce that for X, € W(A) and a € A, then:

(c12) X = (VY —=a) =Y — (X — a) = (XY) — a, where XY € W(A) stand for
concatenation of X and ).

Let Fin(W(A)) be the set of all finite non-empty subsets of W(A).

One readily sees ([13]) that the relation p 4 defined on Fin(W (A)) by the stipulation
{X1, .., X} pa{dh, ..., Yu} iff for all W € W(A) and a € A we have

W= (X;—a)=1foralli=1,2,...mif W— (J; —a)=1forall j=1,2,...,n
is an equivalence on Fin(W(A)); the py -class of {1, ..., X, } will be briefly denoted

not

as < Xi,..., X, > . Further, we equip the quotient set My = Fin(W(A))/p, with
two binary operations M and *, as follows:

<X, ., Xy >N < V1o, Vo >=< X1, e, Xty V1y oo, Vi >,

<X,y Xy > * < Vi, Y >=< XY 11 =1,2,...,m,j=1,2,...,n>.

Definition 2.2. By a meet-semilattice-orderd monoid we mean an algebra (M, A, e, €)
such that :

(a7) (M, A) is a meet-semilattice;

(ag) (M, e,e) is a monoid;

(ag) (xAy)ez= (xez)A(yez) and ze(xAy) = (zex)A(zey) for every x,y,z € A.

If the identity element e is the least element of M (that is, e play the role of 0),
then M is called dually integral.
In [13] it is proved the following result:

Proposition 2.1. For every BCK algebra A, the structure (Ma,M,*x,< 1 >) is a
dually integral meet-semilattice-orderd monoid.

Remark 2.3. In [13], the above result is obtained for the case of a pseudo BCK
algebra A; if A is a BCK algebra, then the operation x is commutative. Indeed, if
a=< X, Xy >B8=<M1,., V> My, thenoxff =< X;Y; :1=1,2,..,m,j =
1,2,..,n>.IfWeW(A) and a € A, then W — (X;Y; — a) =1 iff W — (X; —
Yj—a)=1iff W—(Y; = (X —=a) =1iff W— (V;X; — a)) = 1,for all
1=1,2,....mand j=1,2,...n, soaxB=F*a.

Lemma 2.1. Let (M, A, e ¢e) a dually integral meet-semilattice-orderd (commutative)
monoid. Then for every x,y € M :

(c13): < Toyy<Toy

(c14): x <z 0.

Proof. (c13). We have z @ (yANe) = (zoy)A(rvoe) => xe0e= (zoy) ANz =1 =
(zoey)Nz=z<zey.
(c14). Clearly. I
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Remark 2.4. It is worth noticing that the partial order T associated with the meet
operation M on Ma we have < X1,..., Xy >C < V1, ..., V0 > iff for all W € W(A)
anda € A, W — (X; —a) =1 foralli =1,2,....m, then W — (V; — a) =1 for all
i=1,2,....n.

Corollary 2.1. If A is a Hilbert algebra, then ax a = « for every a € M 4.

Proof. By (c14) we deduce that o C « * . To prove that ax a C «,

let @ =< Xy, ..., X, > € Mg, We W(A) and a € A such that W — (axa —
a) = 1. Since axa =< X1 X1, X1 Xa, ..., XoXa,y ooy X1 X, XXy, >, then in particular
we have W — (X;X; — a) =1foralli=1,2,...,m.

Since A is a Hilbert algebra, then for all ¢ = 1,2, ...,m we have W — (X; — (X; —
a)=1=W — (X; —a)=1,hence axaCa,so axa=a. I

We recall that if (M,A) is a meet-semilattice, then ' C M is a filter ([1]) if
z2yeEF=xNyeFandifz<yandzx e F =yecF.

For (M, A, e, ) a dually integral meet-semilattice-orderd monoid, let F (M) the set
of all filters of (M, A) augmented by @.

Let us introduce the following notation for F,G € F(M) :

F Vv G = the filter generated by FUG ={a € M : x Ay < a for some z,y € F UG},
FoG={aeM:zey<aforsomex e F and y € G},
F - G={aeM:{a}e FCG}=
= {aeM: ifreMandz>aef with f € F, then z € G}.
We recall ([6], [14]) that an integral residuated lattice is an algebra
(L,V,\,®,—,0,1) such that (L,V,A,0,1) is a bounded lattice, (L, ®,1) is a (com-
mutative) monoid whose identity 1 is the greatest element of the lattice and z®a <y

iffa <z —yforallazyec L.

Remark 2.5. ([6], [14]) If (L,V,A,®,—,0,1) is an integral residuated lattice then
(L,—,1) is a BCK algebra.

In [13] it is proved the following result:

Lemma 2.2. If A is a BCK algebra, then (F(Ma),V,N,®,—,0, M) is a complete
integral residuated lattice.

For a € A, we put ia(a) = {< X1,...,Xm >€ My : Xy — a =1, for all i =
1,2,...,m}.
In [13] it is proved the following result:

Theorem 2.1. If A is a BCK algebra, then the map ia : A — L.(A) = F(Ma) is
an injective morphism of BCK algebras. Moreover, if for a,b € A there exists a V b
in A, thenia(aVb)=is(a)Via(b).

Taking as guide-line the case of BL algebras (see [8], Definition 4.2.12), an integral
residuated lattice L is a G -algebra if x ® © = x,for every x € L.
We have the following results:

Proposition 2.2. ([14]) Let (L,V, A, ®,—,0,1) is an integral residuated lattice. Then
the following are equivalent:

(7): L is a G -algebra;

(i1): x @y =z Ay, for every x,y € L;

(tii): z O (x = y) =x Ay, for every z,y € L.
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Proposition 2.3. ([14])For an integral residuated lattice (L,V,A\,®,—,0,1) the fol-
lowing are equivalent:

(¢): (L,—,1) is a Hilbert algebra;

(ii): (L,V,A,®,—,0,1) is a G -algebra.

Lemma 2.3. If A is a Hilbert algebra, then the integral residuated lattice L,(A) is a
G-algebra.

Proof. We must prove that for F € L.(A),F ® F = F. Since L,(A) is an integral
residuated lattice, then FF © F C F ([6], [14]). If « € F, by Corollary 2.1, a = a x «,
henceae FOF=FCFQOF,soF=FOF.1

From Lemma 2.3 and Theorem 2.1 we obtain the following theorem of representa-
tion for Hilbert algebras:

Theorem 2.2. If A is a Hilbert algebra, then there exist a complete integral residuated
lattice L,.(A) which is a G — algebra and an injective morphism of Hilbert algebras
ia: A — L.(A). Moreover, if for a,b € A there exists a Vb in A, then is(aV b) =
iA(a) V iA(b).

Remark 2.6. For others theorems of representation for Hilbert algebras, see [3], [5].

3. A characterization of the elements of L,(A)

If (S,A) is a meet-semilattice, for a nonempty subset M C S, by [M) we denote
the filter of S generated by M.
We have ([1]): [M) ={z € S : 21 A... Nx,, < x for some x1,...,2, € M}. In

particular, if M = {a},[{a}) "2 [a) = {z € S :a < z}.

Remark 3.1. We recall ([1]) that if (S, A) is a meet-semilattice then:
(i): Ifa,be S and a <b=[b) C [a);
(14): If ay,a9,...;an € S then [a1 Aaz A ... Nay) =la1) V[az) V...V [a,).
Lemma 3.1. If A is a« BCK algebra, then for every a € A,ia(a) = [< a >).
Proof. If < Xy,...,X, >€ [<a>)=><a>C< Xy,.., &, > .Since 1l — (a — a) =
l=1—- (X, —a)=1fori=1,2,...,n=><Xy,... X, >€is(a) = [<a>)Cisla).
Conversely, let < Xi,...,X, >€ ia(a), that is, X; — a = 1, for i = 1,2,...,n.
To prove < a >C< Xy, ..., X, >, let W = aqa3...a,,, € W(A) and = € A such that
W—(a—z)=1.
For i € {1,2,...,n} consider X; = z1..2; € W(A). ;From W — (a — z) =1 =
a— W—-2z)=1=a<(a1,....,am;) (3) (X1, ey @13 0) < (T1y ooy Tty A1y ooy Q3 T) =
(15 ooy T, A1y ey @3 2) = 1 = X - W —a) =1 D (X; — a) =1, for
i=1,2,.,n=><X,.. X >€[<a>)=is(a)=[<a>). 1
Lemma 3.2. Let A be a BCK algebra and < Xy, ..., X, >€ M. Then
[<X,...,. X, >)=[<X >)V..V[< A, >).

Proof. We have [< X1,...,X, >) =[< X >MN.N< X, >) femark 10

[<X >)V..V[<X,>). 1

Lemma 3.3. If A is a Hilbert algebra and ay,as, ...,a, € A, then [< ajas...a, >) =
[<ar>)N..N[<a, >).
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Proof. Tt is suffice to prove that for two elements a,b € A, we have the equality
[<ab>)=[<a>)N[<b>).

Indeed, < a > % < b >=<ab > and since < a >, <b>C<a>x<b>=<ab>
we deduce that [< ab>) C[<a>),[<b>)=[<ab>) C[<a>)N[<b>).

To prove the converse inclusion, let < Xj,..., &, >€ [< a >)N[< b >). Then
<a>,<b>C < Xp, ., Xy>.

Consider W € W(A) and a € A such that W — (ab — z) = 1. Then W — (a —
(b — x)) = 1. Since < a >C < &y,..., X, >, then W — (X; — (b — z)) = 1, for all
i=12,.,n=>W-—->0b—- (X, —x)=1foralli=1,2,...,n=

W— (X - (X —ax)=1foralli=1,2,...n =W — (X; — z) =1, for all
1=1,2,..,n=><ab>C< Xy, ..., X, >=>< X, X, >€[<ab>) = [<a>)N[
b>)Cl<ab>)=[<a>)N[<b>)=[<ab>). 11

Corollary 3.1. If A is a Hilbert algebra and W = ajas...a, € W(A), then
[< 4% >) = iA(al) n...N iA(an).

Proof. By Lemma 3.3 we deduce that [< W >) = [< a1a3...a,, >) =
[<ar>)N..N[<ap>)=tda(ar)N...Nialay). B

From the above results we obtain the following theorem of characterization for the
elements of L,(A) when A is a Hilbert algebra:

Theorem 3.1. Let A be a Hilbert algebra. Then for F € L.(A) = F(Ma) we have

F :<X1,...?é(">eF [(wem)(1 ia(z)) V..V (wean ia(z))] -
Proof. For F' € L,.(A) = F(M4) we have F :<X1,...YXn>eF (< Xpy oy Xy >) Lemma3.2
= e ser [< X >) V.V [< &, >)) Fommeds

= v Veser oy, i@)V V(0 ia(@)]- 8

Definition 3.1. A Hertz algebra is a Hilbert algebra A with the property that for
every x,y € A, the infimum x Ay (relative to the natural ordering) exists in A (that
is, A is meet-semilattice relative to the natural order) and for every x,y € A we have
the relation:

(P): 2 — (y— (wAy) = 1.

In [15] it is proved the equivalence of above definition with:

Definition 3.2. A Hertz algebra is an algebra (A, —, A) of type (2,2) satisfying the
following azioms:

(a10): ¢ =z =y —y;

(ann): (x—=y) Ny =uy;
Eau;: zA(x—y)=xzAvy;

a13): ¢ — (YAz)=(x —=y)A(z — 2).

Definition 3.3. If A is a Hilbert algebra, a Hertz algebra Ha (together with an
injective morphism of Hilbert algebras @ 5 : A — H ) is said to be free over A if:
(a14): Ha is generated (as a Hertz algebra) by v 4(A);
(a15): For every Hertz algebra H and every morphism of Hilbert algebras f: A —
H, there exists a unique morphism of Hertz algebras ' : Hqa — H such that

f/O‘PA:f-
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Theorem 3.2. ([15]) For every Hilbert algebra A, there exists the free Hertz algebra
H 4 over A, unique up to an isomorphism of Hertz algebras.

In what follow we only recall the construction of the Hertz algebra H 4 (using the
model and notations from [15]).

Let F(A) the set of all finite and nonempty subsets of A and I = {1}.

For X = {z1, 22, ...,z } and Y = {y1, ..., yn} € F(A) we define

X—=YV= U {(z1,22,...,xm;y;)} and Y AY =X UD.
1<j<n

Consider the relation 84 on F(A) defined for X',Y € F(A) by
XO,Yit X -Yy=Y->X=1.

Then 6 4 is an equivalence relation on F(A) compatible with the operations — and
A.

For X € F(A) we denote by [X]g, the equivalence class of X modulo 64 and by
Hy=F(A)/04.

For a € A we define 9, : A — Ha,p4(a) = [{a}]g,. Then (H4,—,1) is the free
Hertz algebra over A (where for X, € F(A),[X]g, — Vo = [X — Voa, [X]oa A
Vlos = [X A Vo, and 1 = [{1}]s,).

If H is a Hertz algebra and f : A — H is a morphism of Hilbert algebras, then
f'iHas— H, f'([X]o,) :,& flxy) (X ={x1,29,...,xm}) is the unique morphism of

Hertz algebras such that f/ o, = f.

For a Hilbert algebra A I want to re-write the relation 64 using the notation from
Section 2.

So, we can consider an element X = {x1,2z2,...,2,} € F(A) as the word X =
X12Zo...x, € W(A) and for a € A, X — a = (x1, %2, ...,2y;0) € A.

Lemma 3.4. If A is a Hilbert algebra, then py, = 0 4.

Proof. Clearly, for X = {z1,22,....xm}, Y ={y1,....,yn} € F(A), X0,V if X — y; =
Y-z, =1foreveryi=1,2,..,m,j=1,2,...,n < x; € [Y) and y; € [X) for every
i=1,2,m,j=1,2,...ns V) = [X).

Suppose Xp, )Y (that is, if W € W(A),a € A, then W — (X — a) = 1 iff
W — (Y —a) =1). Sincel - (¥ — z;) = 1 for every i = 1,2,...,m, then
1= (Y —x) =1forevery i =1,2,....m = [X) C [V). Analogously we deduce
[V) C [X), so [X) =[V), hence X04).

Suppose that X0,4Y (hence [X) = [))) and consider W € W(A) and a € A such
that W — (X — a) = 1. Then a € WU X) = [X)(W). Since [X) = [V) = a €
D)V) = a € PUW) = W — (¥ —a) =1 = Xp, V. B

Corollary 3.2. If A is a Hilbert algebra, then Hy = F(A)/0a =W (A)/p4.

Theorem 3.3. If A is a Hilbert algebra, then there exist an injective morphism of
Hertz algebras W4 : Hy — L, (A) such that Va0 @, =ig4.
Proof. The existence of W4 : Hy — L,(A) is assured by Theorem 3.2 and for X =
{21,232, s @} € F(A), Cal[Xo,) = A ialw:) .

To prove the injectivity of W4, consider Y = {y1,...,yn} € F(A) such that
Uu([X]o,) =Pa([V]os) (:)igl ia(z;) :jZ\1 i4(y;). Then for every j =1,2,...,n:



A THEOREM OF REPRESENTATION FOR HILBERT ALGEBRAS 137

A ia@) <ialy) = (A ia@) = ialy) = 1= (a(r),mialem):iay)) =
1= ial(z1, . 2m;y;) =1 = (21,...,em;y;) = 1 = [Y) C [X) and analogously
[X) C [V), hence [X) = [V), that is, U 4 is injective. I

Corollary 3.3. If A is a Hilbert algebra, then the free Hertz algebra Ha over A is
isomorphic with a Hertz subalgebra of L.(A).

>3
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