A theorem of representation for Hilbert algebras

Dan Dorin Taşcău

Abstract

The main scope of this paper is to prove the following theorem of representation for a Hilbert algebra A : There exist a complete residuated lattice $L_{r}(A)$ which is a G - algebra and an injective morphism of Hilbert algebras $i_{A}: A \rightarrow L_{r}(A)$. As a consequence, we deduce that the free Hertz algebra H_{A} over A (see [15]) is isomorphic with a Hertz subalgebra of $L_{r}(A)$. Also, I give the description of the elements of $L_{r}(A)$.

2010 Mathematics Subject Classification. Primary 06F35; Secondary 03G25.
Key words and phrases. Hilbert algebra, $B C K$ - algebra, G-algebra, integral residuated lattice.

1. Introduction

The concept of Hilbert algebras was introduced in the 50's by Henkin and Skolem for investigations in intuitionistic and other non-classical logics, as an algebraic counterpart of Hilbert's positive implicative propositional calculus ([16]). Hilbert algebras were intensively studied by A. Diego ([5]) and this theory was further developed by Busneag ([3]). BCK algebras were introduced by Iséki in 1966 ([9], [11]) to give an algebraic framework for Meredit's implicational logic $B C K$. Since Iséki's definition, these algebras have been studied by several authors. For further information see for example [2], [4], [7], [10], [12] and the references given there.

The paper is organized as follows: In Section 2 we recall the basic definitions and some results relative to $B C K$ algebras; also we put in evidence some rules of calculus in Hilbert and $B C K$ algebras (which we need in Section 3). In the final of Section 2 we put in evidence a theorem of embedding for Hilbert algebras into complete integral residuated lattices which is G - algebra (Theorem 2.2).

In Section 3 we give a characterization of the elements of the complete integral residuated lattice $L_{r}(A)$ from Section 2.

2. Preliminaries

In this paper the symbols \Rightarrow and \Leftrightarrow are used for logical implication and respectively logical equivalence.
Definition 2.1. ([4], [10]) A BCK algebra is an algebra $(A, \rightarrow, 1)$ of type (2,0) such that the following axioms are verified for every $x, y, z \in A$:
$\left(a_{1}\right) x \rightarrow x=1$;
(a_{2}) If $x \rightarrow y=y \rightarrow x=1$, then $x=y$;
(B) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))=1$;
(C) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$;

Received July 07, 2010. Revision received September 06, 2010.
$(\mathbf{K}) x \rightarrow(y \rightarrow x)=1$.
The relation $a \leq b$ iff $a \rightarrow b=1$ is a partial order on A (called the natural order on A); with respect to this order 1 is the largest element of A.

For examples of $B C K$ algebras see [4] and [10].
A Hilbert algebra ([3], [5], [10]) is a $B C K$ algebra $(A, \rightarrow, 1)$ which verifies one of the following equivalent conditions for all $x, y \in A$:
$\left(a_{3}\right): x \rightarrow(x \rightarrow y)=x \rightarrow y ;$
$\left(a_{4}\right):(x \rightarrow y) \rightarrow((y \rightarrow x) \rightarrow x)=(y \rightarrow x) \rightarrow((x \rightarrow y) \rightarrow y)$.
In a $B C K$ algebra we have ([4], [7], [10], [12]) the following rules of calculus for $x, y, z \in A$:
(c_{1}) $x \leq y \rightarrow x$;
$\left(c_{2}\right) x \leq(x \rightarrow y) \rightarrow y$;
$\left(c_{3}\right)((x \rightarrow y) \rightarrow y) \rightarrow y=x \rightarrow y$;
$\left(c_{4}\right)$ If $x \leq y$, then for every $z \in A, z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$;
$\left(c_{5}\right) x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y) \leq z \rightarrow(x \rightarrow y)$;
$\left(c_{6}\right) x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$.
If A is a Hilbert algebra, then
$\left(c_{7}\right) x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z)$.
If A is a $B C K$ algebra and $x_{1}, \ldots, x_{n}, x \in A(n \geq 1)$ we define $\left(x_{1}, \ldots, x_{n} ; x\right)=$ $x_{1} \rightarrow\left(x_{2} \rightarrow \ldots\left(x_{n} \rightarrow x\right) \ldots\right)$.

Following (C) we deduce that if σ is permutation of $(1,2, \ldots, n)$, then for every $x, y, x_{1}, \ldots, x_{n} \in A$:
(c. $\left.c_{8}\right)\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)} ; x\right)=\left(x_{1}, \ldots, x_{n} ; x\right)$;
$\left(c_{9}\right)\left(x_{1}, \ldots, x_{n} ; x \rightarrow y\right)=x \rightarrow\left(x_{1}, \ldots, x_{n} ; y\right)$.
If A is a Hilbert algebra then :
$\left(c_{10}\right)\left(x_{1}, \ldots, x_{n} ; x \rightarrow y\right)=\left(x_{1}, \ldots, x_{n} ; x\right) \rightarrow\left(x_{1}, \ldots, x_{n} ; y\right)$.
For a $B C K$ algebra A, two elements $x, y \in A$ and a natural number $n \geq 1$ we denote $x \rightarrow_{n} y=(x, x, \ldots, x ; y)$, where n indicates the number of occurrences of x. Clearly, if A is a Hilbert algebra, then $x \rightarrow_{n} y=x \rightarrow y$, for every $n \geq 1$.

A deductive system (or i-filter) of a $B C K$ algebra A is a nonempty subset $D \subseteq A$ such that:
(a_{5}) $1 \in D$;
(a_{6}) If $x, x \rightarrow y \in D$, then $y \in D$.
It is clear that if D is a deductive system, $a \leq b$ and $a \in D$, then $y \in D$ (that is, D is increasing subset of A).

We denote by $D s(A)$ the set of all deductive systems of A (clearly, $\{1\}, A \in D s(A)$).
For a nonempty subset $X \subseteq A$, the deductive system generated by X will be denoted by $[X)$. It is known $([7],[12])$ that $[X)=\left\{x \in A:\left(x_{1}, \ldots, x_{n} ; x\right)=1\right.$, for some $\left.x_{1}, \ldots, x_{n} \in X\right\}$. In particular for $a \in A,[\{a\}) \stackrel{\text { not }}{=}[a)=\left\{x \in A: a \rightarrow_{n} x=1\right.$, for some $n \geq 1\}$.

If $D \in D s(A)$ and $a \in A \backslash D$, then $[D \cup\{a\}) \stackrel{\text { not }}{=} D(a)=\left\{x \in A: a \rightarrow_{n} x \in D\right.$, for some $n \geq 1\}$.

In particular, if A is a Hilbert algebra, then for $X=\left\{x_{1}, \ldots, x_{n}\right\},[X)=\{x \in$ $\left.A:\left(x_{1}, \ldots, x_{n} ; x\right)=1\right\}$ and if $D \in D s(A)$ and $a \in A \backslash D$, then $D(a)=\{x \in A:$ $a \rightarrow x \in D\}$.

Remark 2.1. If A is a Hilbert algebra, then if $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, $[X \cup Y)=[X)\left(y_{1}, \ldots, y_{n}\right)=[Y)\left(x_{1}, \ldots, x_{m}\right)$
$\left(\right.$ where $\left.[X)\left(y_{1}, \ldots, y_{n}\right)=\left(\ldots\left([X)\left(y_{1}\right)\right)\left(y_{2}\right) \ldots\right)\left(y_{n}\right)\right)$.

For a $B C K$ algebra A we let $W(A)$ denote the set of all words $\mathcal{X}=x_{1} x_{2} \ldots x_{n}$ $(n \geq 1)$ over A.

For any word $\mathcal{W}=x_{1} x_{2} \ldots x_{n} \in W(A)$ and an element $a \in A$, we shall write $\mathcal{W} \rightarrow a=\left(x_{1}, x_{2}, \ldots, x_{n} ; a\right) \in A$.

Remark 2.2. If $\mathcal{W} \in W(A)$, then $\mathcal{W} \rightarrow a=1 \Rightarrow a \in[\mathcal{W})$. If A is a Hilbert algebra, then $\mathcal{W} \rightarrow a=1 \Leftrightarrow a \in[\mathcal{W})$.

From (\mathbf{C}) we deduce that for $\mathcal{X}, \mathcal{Y} \in W(A)$ and $a \in A$, then:
$\left(c_{12}\right) \mathcal{X} \rightarrow(\mathcal{Y} \rightarrow a)=\mathcal{Y} \rightarrow(\mathcal{X} \rightarrow a)=(\mathcal{X} \mathcal{Y}) \rightarrow a$, where $\mathcal{X} \mathcal{Y} \in W(A)$ stand for concatenation of \mathcal{X} and \mathcal{Y}.
Let $\operatorname{Fin}(W(A))$ be the set of all finite non-empty subsets of $W(A)$.
One readily sees ([13]) that the relation ρ_{A} defined on $\operatorname{Fin}(W(A))$ by the stipulation $\left\{\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\} \rho_{A}\left\{\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}\right\}$ iff for all $\mathcal{W} \in W(A)$ and $a \in A$ we have
$\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow a\right)=1$ for all $i=1,2, \ldots, m$ iff $\mathcal{W} \rightarrow\left(\mathcal{Y}_{j} \rightarrow a\right)=1$ for all $j=1,2, \ldots, n$ is an equivalence on $\operatorname{Fin}(W(A))$; the ρ_{A}-class of $\left\{\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\}$ will be briefly denoted as $\left.<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\rangle$. Further, we equip the quotient set $M_{A} \stackrel{\text { not }}{=} \operatorname{Fin}(W(A)) / \rho_{A}$ with two binary operations Π and \star, as follows:

$$
\begin{gathered}
<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}>\sqcap<\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}>=<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}, \mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}> \\
<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}>\star<\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}>=<\mathcal{X}_{i} \mathcal{Y}_{j}: i=1,2, \ldots, m, j=1,2, \ldots, n>.
\end{gathered}
$$

Definition 2.2. By a meet-semilattice-orderd monoid we mean an algebra (M, \wedge, \bullet, e) such that:
$\left(a_{7}\right)(M, \wedge)$ is a meet-semilattice;
$\left(a_{8}\right)(M, \bullet, e)$ is a monoid;
$\left(a_{9}\right)(x \wedge y) \bullet z=(x \bullet z) \wedge(y \bullet z)$ and $z \bullet(x \wedge y)=(z \bullet x) \wedge(z \bullet y)$ for every $x, y, z \in A$.
If the identity element e is the least element of M (that is, e play the role of 0), then M is called dually integral.

In [13] it is proved the following result:
Proposition 2.1. For every $B C K$ algebra A, the structure $\left(M_{A}, \sqcap, \star,<1>\right)$ is a dually integral meet-semilattice-orderd monoid.

Remark 2.3. In [13], the above result is obtained for the case of a pseudo BCK algebra A; if A is a $B C K$ algebra, then the operation \star is commutative. Indeed, if $\alpha=<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}>, \beta=<\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}>\in M_{A}$, then $\alpha \star \beta=<\mathcal{X}_{i} \mathcal{Y}_{j}: i=1,2, \ldots, m, j=$ $1,2, \ldots, n>$. If $\mathcal{W} \in W(A)$ and $a \in A$, then $\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \mathcal{Y}_{j} \rightarrow a\right)=1$ iff $\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow\right.$ $\left.\left(\mathcal{Y}_{j} \rightarrow a\right)\right)=1$ iff $\mathcal{W} \rightarrow\left(\mathcal{Y}_{j} \rightarrow\left(\mathcal{X}_{i} \rightarrow a\right)\right)=1$ iff $\left.\mathcal{W} \rightarrow\left(\mathcal{Y}_{j} \mathcal{X}_{i} \rightarrow a\right)\right)=1$,for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$, so $\alpha \star \beta=\beta \star \alpha$.

Lemma 2.1. Let (M, \wedge, \bullet, e) a dually integral meet-semilattice-orderd (commutative) monoid. Then for every $x, y \in M$:
$\left(c_{13}\right): x \leq x \bullet y, y \leq x \bullet y ;$
$\left(c_{14}\right): x \leq x \bullet x$.
Proof. (c_{13}). We have $x \bullet(y \wedge e)=(x \bullet y) \wedge(x \bullet e) \Rightarrow x \bullet e=(x \bullet y) \wedge x \Rightarrow x=$ $(x \bullet y) \wedge x \Rightarrow x \leq x \bullet y$.
$\left(c_{14}\right)$. Clearly.

Remark 2.4. It is worth noticing that the partial order \sqsubseteq associated with the meet operation \sqcap on M_{A} we have $<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}>\sqsubseteq<\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{n}>$ iff for all $\mathcal{W} \in W(A)$ and $a \in A, \mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow a\right)=1$ for all $i=1,2, \ldots, m$, then $\mathcal{W} \rightarrow\left(\mathcal{Y}_{j} \rightarrow a\right)=1$ for all $j=1,2, \ldots, n$.

Corollary 2.1. If A is a Hilbert algebra, then $\alpha \star \alpha=\alpha$ for every $\alpha \in M_{A}$.
Proof. By $\left(c_{14}\right)$ we deduce that $\alpha \sqsubseteq \alpha \star \alpha$. To prove that $\alpha \star \alpha \sqsubseteq \alpha$,
let $\alpha=<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}>\in M_{A}, \mathcal{W} \in W(A)$ and $a \in A$ such that $\mathcal{W} \rightarrow(\alpha \star \alpha \rightarrow$ $a)=1$. Since $\alpha \star \alpha=<\mathcal{X}_{1} \mathcal{X}_{1}, \mathcal{X}_{1} \mathcal{X}_{2}, \ldots, \mathcal{X}_{2} \mathcal{X}_{2}, \ldots, \mathcal{X}_{n-1} \mathcal{X}_{n}, \mathcal{X}_{n} \mathcal{X}_{n}>$, then in particular we have $\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \mathcal{X}_{i} \rightarrow a\right)=1$ for all $i=1,2, \ldots, m$.

Since A is a Hilbert algebra, then for all $i=1,2, \ldots, m$ we have $\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow\left(\mathcal{X}_{i} \rightarrow\right.\right.$ $a))=1 \Rightarrow \mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow a\right)=1$, hence $\alpha \star \alpha \sqsubseteq \alpha$, so $\alpha \star \alpha=\alpha$.

We recall that if (M, \wedge) is a meet-semilattice, then $F \subseteq M$ is a filter ([1]) if $x, y \in F \Rightarrow x \wedge y \in F$ and if $x \leq y$ and $x \in F \Rightarrow y \in F$.

For (M, \wedge, \bullet, e) a dually integral meet-semilattice-orderd monoid, let $\mathcal{F}(M)$ the set of all filters of (M, \wedge) augmented by \varnothing.

Let us introduce the following notation for $F, G \in \mathcal{F}(M)$:
$F \vee G=$ the filter generated by $F \cup G=\{a \in M: x \wedge y \leq a$ for some $x, y \in F \cup G\}$,

$$
F \odot G=\{a \in M: x \bullet y \leq a \text { for some } x \in F \text { and } \mathrm{y} \in G\}
$$

$$
\begin{aligned}
F & \rightarrow G=\{a \in M:\{a\} \bullet F \subseteq G\}= \\
& =\{a \in M: \text { if } x \in M \text { and } x \geq a \bullet f \text { with } f \in F, \text { then } x \in G\}
\end{aligned}
$$

We recall $([6],[14])$ that an integral residuated lattice is an algebra $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ such that $(L, \vee, \wedge, 0,1)$ is a bounded lattice, $(L, \odot, 1)$ is a (commutative) monoid whose identity 1 is the greatest element of the lattice and $x \odot a \leq y$ iff $a \leq x \rightarrow y$ for all $a, x, y \in L$.
Remark 2.5. ([6], [14]) If $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ is an integral residuated lattice then $(L, \rightarrow, 1)$ is a $B C K$ algebra.

In [13] it is proved the following result:
Lemma 2.2. If A is a $B C K$ algebra, then $\left(\mathcal{F}\left(M_{A}\right), \vee, \cap, \odot, \rightarrow, O, M_{A}\right)$ is a complete integral residuated lattice.

For $a \in A$, we put $i_{A}(a)=\left\{<\mathcal{X}_{1}, \ldots, \mathcal{X}_{m}>\in M_{A}: \mathcal{X}_{i} \rightarrow a=1\right.$, for all $i=$ $1,2, \ldots, m\}$.

In [13] it is proved the following result:
Theorem 2.1. If A is a $B C K$ algebra, then the map $i_{A}: A \rightarrow L_{r}(A)=\mathcal{F}\left(M_{A}\right)$ is an injective morphism of $B C K$ algebras. Moreover, if for $a, b \in A$ there exists $a \vee b$ in A, then $i_{A}(a \vee b)=i_{A}(a) \vee i_{A}(b)$.

Taking as guide-line the case of $B L$ algebras (see [8], Definition 4.2.12), an integral residuated lattice L is a G-algebra if $x \odot x=x$,for every $x \in L$.

We have the following results:
Proposition 2.2. ([14]) Let $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ is an integral residuated lattice. Then the following are equivalent:
(i): L is a G-algebra;
(ii): $x \odot y=x \wedge y$, for every $x, y \in L$;
(iii): $x \odot(x \rightarrow y)=x \wedge y$, for every $x, y \in L$.

Proposition 2.3. ([14])For an integral residuated lattice $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ the following are equivalent:
(i): $(L, \rightarrow, 1)$ is a Hilbert algebra;
(ii): $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ is a G-algebra.

Lemma 2.3. If A is a Hilbert algebra, then the integral residuated lattice $L_{r}(A)$ is a G-algebra.

Proof. We must prove that for $F \in L_{r}(A), F \odot F=F$. Since $L_{r}(A)$ is an integral residuated lattice, then $F \odot F \subseteq F([6],[14])$. If $\alpha \in F$, by Corollary 2.1, $\alpha=\alpha \star \alpha$, hence $\alpha \in F \odot F \Rightarrow F \subseteq F \odot F$, so $F=F \odot F$.

From Lemma 2.3 and Theorem 2.1 we obtain the following theorem of representation for Hilbert algebras:

Theorem 2.2. If A is a Hilbert algebra, then there exist a complete integral residuated lattice $L_{r}(A)$ which is a $G-$ algebra and an injective morphism of Hilbert algebras $i_{A}: A \rightarrow L_{r}(A)$. Moreover, if for $a, b \in A$ there exists $a \vee b$ in A, then $i_{A}(a \vee b)=$ $i_{A}(a) \vee i_{A}(b)$.

Remark 2.6. For others theorems of representation for Hilbert algebras, see [3], [5].

3. A characterization of the elements of $L_{r}(A)$

If (S, \wedge) is a meet-semilattice, for a nonempty subset $M \subseteq S$, by $[M)$ we denote the filter of S generated by M.

We have ([1]): $[M)=\left\{x \in S: x_{1} \wedge \ldots \wedge x_{n} \leq x\right.$ for some $\left.x_{1}, \ldots, x_{n} \in M\right\}$. In particular, if $M=\{a\},[\{a\}) \stackrel{\text { not }}{=}[a)=\{x \in S: a \leq x\}$.

Remark 3.1. We recall ([1]) that if (S, \wedge) is a meet-semilattice then:
(i): If $a, b \in S$ and $a \leq b \Rightarrow[b) \subseteq[a)$;
(ii): If $a_{1}, a_{2}, \ldots, a_{n} \in S$ then $\left[a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)=\left[a_{1}\right) \vee\left[a_{2}\right) \vee \ldots \vee\left[a_{n}\right)$.

Lemma 3.1. If A is a $B C K$ algebra, then for every $a \in A, i_{A}(a)=[\langle a\rangle)$.
Proof. If $<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in[<a>) \Rightarrow<a>\sqsubseteq<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>$. Since $1 \rightarrow(a \rightarrow a)=$ $1 \Rightarrow 1 \rightarrow\left(\mathcal{X}_{i} \rightarrow a\right)=1$, for $i=1,2, \ldots, n \Rightarrow<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in i_{A}(a) \Rightarrow[<a>) \subseteq i_{A}(a)$. Conversely, let $<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in i_{A}(a)$, that is, $\mathcal{X}_{i} \rightarrow a=1$, for $i=1,2, \ldots, n$. To prove $<a>\sqsubseteq<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>$, let $\mathcal{W}=a_{1} a_{2} \ldots a_{m} \in W(A)$ and $x \in A$ such that $\mathcal{W} \rightarrow(a \rightarrow x)=1$.

For $i \in\{1,2, \ldots, n\}$ consider $\mathcal{X}_{i}=x_{1} \ldots x_{t} \in W(A)$. ¿From $\mathcal{W} \rightarrow(a \rightarrow x)=1 \Rightarrow$ $a \rightarrow(\mathcal{W} \rightarrow x)=1 \Rightarrow a \leq\left(a_{1}, \ldots, a_{m} ; x\right) \stackrel{\left(c_{3}\right)}{\Rightarrow}\left(x_{1}, \ldots, x_{t} ; a\right) \leq\left(x_{1}, \ldots, x_{t}, a_{1}, \ldots, a_{m} ; x\right) \Rightarrow$ $\left(x_{1}, \ldots, x_{t}, a_{1}, \ldots, a_{m} ; x\right)=1 \Rightarrow \mathcal{X}_{i} \rightarrow(\mathcal{W} \rightarrow a)=1 \stackrel{(C)}{\Rightarrow} \mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow a\right)=1$, for $\left.\left.i=1,2, \ldots, n \Rightarrow<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in[<a\rangle\right) \Rightarrow i_{A}(a)=[<a\rangle\right)$.

Lemma 3.2. Let A be a $B C K$ algebra and $<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in M_{A}$. Then

$$
\left[<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\right)=\left[<\mathcal{X}_{1}>\right) \vee \ldots \vee\left[<\mathcal{X}_{n}>\right)
$$

Proof. We have $\left[<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\right)=\left[<\mathcal{X}_{1}>\sqcap \ldots \sqcap<\mathcal{X}_{n}>\right) \stackrel{\operatorname{Re}}{\text { mark3.1,(ii) }}=$ $\left[<\mathcal{X}_{1}>\right) \vee \ldots \vee\left[<\mathcal{X}_{n}>\right)$.
Lemma 3.3. If A is a Hilbert algebra and $a_{1}, a_{2}, \ldots, a_{n} \in A$, then $\left.\left[<a_{1} a_{2} \ldots a_{n}\right\rangle\right)=$ $\left.\left[<a_{1}\right\rangle\right) \cap \ldots \cap\left[<a_{n}>\right)$.

Proof. It is suffice to prove that for two elements $a, b \in A$, we have the equality $[<a b>)=[<a>) \cap[)$.

Indeed, $\langle a\rangle \star<b\rangle=<a b\rangle$ and since $\langle a\rangle,<b\rangle \sqsubseteq<a\rangle \star<b\rangle=<a b\rangle$ we deduce that $[\langle a b\rangle) \subseteq[\langle a\rangle),[\langle b\rangle) \Rightarrow[\langle a b\rangle) \subseteq[\langle a\rangle) \cap[\langle b\rangle)$.

To prove the converse inclusion, let $<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in[<a>) \cap[)$. Then $\left.\langle a\rangle,\langle b\rangle \subseteq<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\rangle$.

Consider $\mathcal{W} \in W(A)$ and $a \in A$ such that $\mathcal{W} \rightarrow(a b \rightarrow x)=1$. Then $\mathcal{W} \rightarrow(a \rightarrow$ $(b \rightarrow x))=1$. Since $<a>\subseteq<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>$, then $\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow(b \rightarrow x)\right)=1$, for all $i=1,2, \ldots, n \Rightarrow \mathcal{W} \rightarrow\left(b \rightarrow\left(\mathcal{X}_{i} \rightarrow x\right)\right)=1$, for all $i=1,2, \ldots, n \Rightarrow$
$\mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow\left(\mathcal{X}_{i} \rightarrow x\right)\right)=1$, for all $i=1,2, \ldots, n \Rightarrow \mathcal{W} \rightarrow\left(\mathcal{X}_{i} \rightarrow x\right)=1$, for all $i=1,2, \ldots, n \Rightarrow<a b>\sqsubseteq<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\Rightarrow<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in[<a b>) \Rightarrow[<a>) \cap[<$ $b>) \subseteq[<a b>) \Rightarrow[<a>) \cap[)=[<a b>)$.

Corollary 3.1. If A is a Hilbert algebra and $\mathcal{W}=a_{1} a_{2} \ldots a_{n} \in W(A)$, then

$$
[<\mathcal{W}>)=i_{A}\left(a_{1}\right) \cap \ldots \cap i_{A}\left(a_{n}\right)
$$

Proof. By Lemma 3.3 we deduce that $[<\mathcal{W}>)=\left[<a_{1} a_{2} \ldots a_{n}>\right)=$

$$
\left[<a_{1}>\right) \cap \ldots \cap\left[<a_{n}>\right)=i_{A}\left(a_{1}\right) \cap \ldots \cap i_{A}\left(a_{n}\right) .
$$

From the above results we obtain the following theorem of characterization for the elements of $L_{r}(A)$ when A is a Hilbert algebra:

Theorem 3.1. Let A be a Hilbert algebra. Then for $F \in L_{r}(A)=\mathcal{F}\left(M_{A}\right)$ we have $F=\underset{\left\langle\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in F\right.}{\vee}\left[\left(\cap_{x \in \mathcal{X}_{1}}^{\cap} i_{A}(x)\right) \vee \ldots \vee\left(\underset{x \in \mathcal{X}_{n}}{\cap} i_{A}(x)\right)\right]$.

Proof. For $F \in L_{r}(A)=\mathcal{F}\left(M_{A}\right)$ we have $F=\underset{\left\langle\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\in F\right.}{ }{ }^{\left(<\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}>\right)} \stackrel{\text { Lemma3.2 }}{=}$

Definition 3.1. A Hertz algebra is a Hilbert algebra A with the property that for every $x, y \in A$, the infimum $x \wedge y$ (relative to the natural ordering) exists in A (that is, A is meet-semilattice relative to the natural order) and for every $x, y \in A$ we have the relation:
$(\mathbf{P}): x \rightarrow(y \rightarrow(x \wedge y))=1$.
In [15] it is proved the equivalence of above definition with:
Definition 3.2. A Hertz algebra is an algebra (A, \rightarrow, \wedge) of type $(2,2)$ satisfying the following axioms:

$$
\begin{aligned}
& \left(a_{10}\right): x \rightarrow x=y \rightarrow y \\
& \left(a_{11}\right):(x \rightarrow y) \wedge y=y \\
& \left(a_{12}\right): x \wedge(x \rightarrow y)=x \wedge y \\
& \left(a_{13}\right): x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z) .
\end{aligned}
$$

Definition 3.3. If A is a Hilbert algebra, a Hertz algebra H_{A} (together with an injective morphism of Hilbert algebras $\varphi_{A}: A \rightarrow H_{A}$) is said to be free over A if:
$\left(a_{14}\right): H_{A}$ is generated (as a Hertz algebra) by $\varphi_{A}(A)$;
$\left(a_{15}\right):$ For every Hertz algebra H and every morphism of Hilbert algebras $f: A \rightarrow$ H, there exists a unique morphism of Hertz algebras $f^{\prime}: H_{A} \rightarrow H$ such that $f^{\prime} \circ \varphi_{A}=f$.

Theorem 3.2. ([15]) For every Hilbert algebra A, there exists the free Hertz algebra H_{A} over A, unique up to an isomorphism of Hertz algebras.

In what follow we only recall the construction of the Hertz algebra H_{A} (using the model and notations from [15]).

Let $\mathcal{F}(A)$ the set of all finite and nonempty subsets of A and $I=\{1\}$.
For $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $\mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\} \in \mathcal{F}(A)$ we define

$$
\mathcal{X} \rightarrow \mathcal{Y}=\underset{1 \leq j \leq n}{\cup}\left\{\left(x_{1}, x_{2}, \ldots, x_{m} ; y_{j}\right)\right\} \text { and } \mathcal{X} \wedge \mathcal{Y}=\mathcal{X} \cup \mathcal{Y}
$$

Consider the relation θ_{A} on $\mathcal{F}(A)$ defined for $\mathcal{X}, \mathcal{Y} \in \mathcal{F}(A)$ by

$$
\mathcal{X} \theta_{A} \mathcal{Y} \text { iff } \mathcal{X} \rightarrow \mathcal{Y}=\mathcal{Y} \rightarrow \mathcal{X}=\mathcal{I}
$$

Then θ_{A} is an equivalence relation on $\mathcal{F}(A)$ compatible with the operations \rightarrow and \wedge.

For $\mathcal{X} \in \mathcal{F}(A)$ we denote by $[\mathcal{X}]_{\theta_{A}}$ the equivalence class of \mathcal{X} modulo θ_{A} and by $H_{A}=\mathcal{F}(A) / \theta_{A}$.

For $a \in A$ we define $\varphi_{A}: A \rightarrow H_{A}, \varphi_{A}(a)=[\{a\}]_{\theta_{A}}$. Then $\left(H_{A}, \rightarrow \mathbf{1}\right)$ is the free Hertz algebra over A (where for $\mathcal{X}, \mathcal{Y} \in \mathcal{F}(A),[\mathcal{X}]_{\theta_{A}} \rightarrow[\mathcal{Y}]_{\theta_{A}}=[\mathcal{X} \rightarrow \mathcal{Y}]_{\theta_{A}},[\mathcal{X}]_{\theta_{A}} \wedge$ $[\mathcal{Y}]_{\theta_{A}}=[\mathcal{X} \wedge \mathcal{Y}]_{\theta_{A}}$ and $\left.\mathbf{1}=[\{1\}]_{\theta_{A}}\right)$.

If H is a Hertz algebra and $f: A \rightarrow H$ is a morphism of Hilbert algebras, then $f^{\prime}: H_{A} \rightarrow H, f^{\prime}\left([\mathcal{X}]_{\theta_{A}}\right)={ }_{i=1}^{m} f\left(x_{i}\right)\left(\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right)$ is the unique morphism of Hertz algebras such that $f^{\prime} \circ \varphi_{A}=f$.

For a Hilbert algebra A I want to re-write the relation θ_{A} using the notation from Section 2.

So, we can consider an element $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \in \mathcal{F}(A)$ as the word $\mathcal{X}=$ $x_{1} x_{2} \ldots x_{n} \in W(A)$ and for $a \in A, \mathcal{X} \rightarrow a=\left(x_{1}, x_{2}, \ldots, x_{n} ; a\right) \in A$.

Lemma 3.4. If A is a Hilbert algebra, then $\rho_{A}=\theta_{A}$.
Proof. Clearly, for $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\} \in \mathcal{F}(A), \mathcal{X} \theta_{A} \mathcal{Y}$ iff $\mathcal{X} \rightarrow y_{j}=$ $\mathcal{Y} \rightarrow x_{i}=1$ for every $i=1,2, \ldots, m, j=1,2, \ldots, n \Leftrightarrow x_{i} \in[\mathcal{Y})$ and $y_{j} \in[\mathcal{X})$ for every $i=1,2, \ldots, m, j=1,2, \ldots, n \Leftrightarrow[\mathcal{Y})=[\mathcal{X})$.

Suppose $\mathcal{X} \rho_{A} \mathcal{Y}$ (that is, if $\mathcal{W} \in W(A), a \in A$, then $\mathcal{W} \rightarrow(\mathcal{X} \rightarrow a)=1$ iff $\mathcal{W} \rightarrow(\mathcal{Y} \rightarrow a)=1)$. Since $1 \rightarrow\left(\mathcal{X} \rightarrow x_{i}\right)=1$ for every $i=1,2, \ldots, m$, then $1 \rightarrow\left(\mathcal{Y} \rightarrow x_{i}\right)=1$ for every $i=1,2, \ldots, m \Rightarrow[\mathcal{X}) \subseteq[\mathcal{Y})$. Analogously we deduce $[\mathcal{Y}) \subseteq[\mathcal{X})$, so $[\mathcal{X})=[\mathcal{Y})$, hence $\mathcal{X} \theta_{A} \mathcal{Y}$.

Suppose that $\mathcal{X} \theta_{A} \mathcal{Y}$ (hence $[\mathcal{X})=[\mathcal{Y})$) and consider $\mathcal{W} \in W(A)$ and $a \in A$ such that $\mathcal{W} \rightarrow(\mathcal{X} \rightarrow a)=1$. Then $a \in[\mathcal{W} \cup \mathcal{X})=[\mathcal{X})(\mathcal{W})$. Since $[\mathcal{X})=[\mathcal{Y}) \Rightarrow a \in$ $[\mathcal{Y})(\mathcal{W}) \Rightarrow a \in[\mathcal{Y} \cup \mathcal{W}) \Rightarrow \mathcal{W} \rightarrow(\mathcal{Y} \rightarrow a)=1 \Rightarrow \mathcal{X} \rho_{A} \mathcal{Y}$.

Corollary 3.2. If A is a Hilbert algebra, then $H_{A}=\mathcal{F}(A) / \theta_{A}=W(A) / \rho_{A}$.
Theorem 3.3. If A is a Hilbert algebra, then there exist an injective morphism of Hertz algebras $\Psi_{A}: H_{A} \rightarrow L_{r}(A)$ such that $\Psi_{A} \circ \varphi_{A}=i_{A}$.

Proof. The existence of $\Psi_{A}: H_{A} \rightarrow L_{r}(A)$ is assured by Theorem 3.2 and for $\mathcal{X}=$ $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \in \mathcal{F}(A), \Psi_{A}\left([\mathcal{X}]_{\theta_{A}}\right)=\bigwedge_{i=1}^{m} i_{A}\left(x_{i}\right)$.

To prove the injectivity of Ψ_{A}, consider $\mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\} \in \mathcal{F}(A)$ such that $\Psi_{A}\left([\mathcal{X}]_{\theta_{A}}\right)=\Psi_{A}\left([\mathcal{Y}]_{\theta_{A}}\right) \Leftrightarrow \bigwedge_{i=1}^{m} i_{A}\left(x_{i}\right)=\wedge_{j=1}^{n} i_{A}\left(y_{j}\right)$. Then for every $j=1,2, \ldots, n$:
$\bigwedge_{i=1}^{m} i_{A}\left(x_{i}\right) \leq i_{A}\left(y_{j}\right) \Rightarrow\left(\wedge_{i=1}^{m} i_{A}\left(x_{i}\right)\right) \rightarrow i_{A}\left(y_{j}\right)=1 \Rightarrow\left(i_{A}\left(x_{1}\right), \ldots, i_{A}\left(x_{m}\right) ; i_{A}\left(y_{j}\right)\right)=$ $1 \Rightarrow i_{A}\left(\left(x_{1}, \ldots, x_{m} ; y_{j}\right)\right)=1 \Rightarrow\left(x_{1}, \ldots, x_{m} ; y_{j}\right)=1 \Rightarrow[\mathcal{Y}) \subseteq[\mathcal{X})$ and analogously $[\mathcal{X}) \subseteq[\mathcal{Y})$, hence $[\mathcal{X})=[\mathcal{Y})$, that is, Ψ_{A} is injective.

Corollary 3.3. If A is a Hilbert algebra, then the free Hertz algebra H_{A} over A is isomorphic with a Hertz subalgebra of $L_{r}(A)$.

References

[1] R. Balbes and Ph. Dwinger, Distributive Lattices, University of Missouri Press, 1974.
[2] W. Block and I.G. Raftery, On the quasivariety of BCK algebras and its subvarieties, Alg. Universalis 33 (1995), 68-90.
[3] D. Buşneag, Categories of algebraic logic, Editura Academiei Române, Bucharest, 2006.
[4] R. Cignoli and A. Torens, Glivenko like theorems in natural expansions of BCK-logic, Math. Log. Quart. 50 (2004), no. 2, 111-125.
[5] A. Diego, Sur les algèbres de Hilbert, Coll. Logique Math. Serie A (1966), no. 21, 1-54.
[6] N. Galatos, P. Jipsen, T. Kowalski and H. Ono,An algebraic glimpse at substructural logics, In Studies in Logic and the foundations of mathematics, vol. 151, Elsevier, (2007).
[7] J. Gispert and A. Torrens, Boolean representation of bounded BCK-algebras, Soft Comput. 12 (2008), 941-954.
[8] P. Hájek, Metamathematics of Fuzzy Logic, In Trends in Logic-Studia Logica Library 4, Dordrecht, Kluwer Academic Publishers, (1998).
[9] Y.Iamani and K. Iséki, On axiom systems of propositional calculi, Proc. Japan Academy 42 (1966), 19-22.
[10] A. Iorgulescu, Algebras of logic as BCK algebras, Ed. ASE, Bucharest, 2008.
[11] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[12] K. Iséki and S. Tanaka, An introduction to the theory of BCK algebras, Math. Japonica 23 (1978), no.1, 1-25.
[13] J. Kühr, Pseudo BCK algebras and related structures, Univerzita Plackého v Olomonci, 2007.
[14] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
[15] H. Porta, Sur quelques algèbres de la logique, Portugal. Math. 40 (1981), no. 1, 41-47.
[16] H. Rasiova, An algebraic approach to non-classical logics, In Studies in logic and the Foundations of Mathematics 78, Nort-Holland and PNN, (1974).
(Dan Dorin Taşcău) University of Craiova, Faculty of Mathematics and Computer Science, 13 A.I. Cuza Street, Craiova, 200585, Romania
E-mail address: dorintascau@yahoo.com

