Annals of the University of Craiova, Mathematics and Computer Science Series Volume 37(3), 2010, Pages 130–137 ISSN: 1223-6934

A theorem of representation for Hilbert algebras

Dan Dorin Taşcău

ABSTRACT. The main scope of this paper is to prove the following theorem of representation for a Hilbert algebra A: There exist a complete residuated lattice $L_r(A)$ which is a G- algebra and an injective morphism of Hilbert algebras $i_A : A \to L_r(A)$. As a consequence, we deduce that the free Hertz algebra H_A over A (see [15]) is isomorphic with a Hertz subalgebra of $L_r(A)$. Also, I give the description of the elements of $L_r(A)$.

2010 Mathematics Subject Classification. Primary 06F35; Secondary 03G25. Key words and phrases. Hilbert algebra, BCK- algebra, G-algebra, integral residuated lattice.

1. Introduction

The concept of Hilbert algebras was introduced in the 50's by Henkin and Skolem for investigations in intuitionistic and other non-classical logics, as an algebraic counterpart of Hilbert's positive implicative propositional calculus ([16]). Hilbert algebras were intensively studied by A. Diego ([5]) and this theory was further developed by Busneag ([3]). *BCK* algebras were introduced by Iséki in 1966 ([9], [11]) to give an algebraic framework for Meredit's implicational logic *BCK*. Since Iséki's definition, these algebras have been studied by several authors. For further information see for example [2], [4], [7], [10], [12] and the references given there.

The paper is organized as follows: In Section 2 we recall the basic definitions and some results relative to BCK algebras; also we put in evidence some rules of calculus in Hilbert and BCK algebras (which we need in Section 3). In the final of Section 2 we put in evidence a theorem of embedding for Hilbert algebras into complete integral residuated lattices which is G- algebra (Theorem 2.2).

In Section 3 we give a characterization of the elements of the complete integral residuated lattice $L_r(A)$ from Section 2.

2. Preliminaries

In this paper the symbols \Rightarrow and \Leftrightarrow are used for logical implication and respectively logical equivalence.

Definition 2.1. ([4], [10]) A BCK algebra is an algebra $(A, \rightarrow, 1)$ of type (2,0) such that the following axioms are verified for every $x, y, z \in A$:

 $(a_1) x \to x = 1;$

(a₂) If $x \to y = y \to x = 1$, then x = y;

 $(\mathbf{B}) \ (x \to y) \to ((y \to z) \to (x \to z)) = 1;$

(C) $x \to (y \to z) = y \to (x \to z);$

Received July 07, 2010. Revision received September 06, 2010.

(**K**) $x \to (y \to x) = 1$.

The relation $a \leq b$ iff $a \to b = 1$ is a partial order on A (called the *natural order* on A); with respect to this order 1 is the largest element of A.

For examples of BCK algebras see [4] and [10].

A Hilbert algebra ([3], [5], [10]) is a BCK algebra $(A, \rightarrow, 1)$ which verifies one of the following equivalent conditions for all $x, y \in A$:

 $(a_3): x \to (x \to y) = x \to y;$

 $(a_4): (x \to y) \to ((y \to x) \to x) = (y \to x) \to ((x \to y) \to y).$

In a BCK algebra we have ([4], [7], [10], [12]) the following rules of calculus for $x,y,z\in A$:

 $(c_1) x \leq y \rightarrow x;$

 $(c_2) \ x \le (x \to y) \to y;$

 $(c_3) ((x \to y) \to y) \to y = x \to y;$

(c₄) If $x \leq y$, then for every $z \in A$, $z \to x \leq z \to y$ and $y \to z \leq x \to z$;

 $(c_5) \ x \to y \le (z \to x) \to (z \to y) \le z \to (x \to y);$

 $(c_6) \ x \to y \le (y \to z) \to (x \to z).$

If A is a Hilbert algebra, then

 $(c_7) \ x \to (y \to z) = (x \to y) \to (x \to z).$

If A is a BCK algebra and $x_1, ..., x_n, x \in A$ $(n \ge 1)$ we define $(x_1, ..., x_n; x) = x_1 \rightarrow (x_2 \rightarrow ... (x_n \rightarrow x)...).$

Following (C) we deduce that if σ is permutation of (1, 2, ..., n), then for every $x, y, x_1, ..., x_n \in A$:

 $(c_8) \ (x_{\sigma(1)}, ..., x_{\sigma(n)}; x) = (x_1, ..., x_n; x);$

 $(c_9) (x_1, ..., x_n; x \to y) = x \to (x_1, ..., x_n; y).$

If A is a Hilbert algebra then :

 (c_{10}) $(x_1, ..., x_n; x \to y) = (x_1, ..., x_n; x) \to (x_1, ..., x_n; y).$

For a *BCK* algebra *A*, two elements $x, y \in A$ and a natural number $n \ge 1$ we denote $x \to_n y = (x, x, ..., x; y)$, where *n* indicates the number of occurrences of *x*. Clearly, if *A* is a Hilbert algebra, then $x \to_n y = x \to y$, for every $n \ge 1$.

A deductive system (or *i*-filter) of a BCK algebra A is a nonempty subset $D \subseteq A$ such that:

 $(a_5) \ 1 \in D;$

 (a_6) If $x, x \to y \in D$, then $y \in D$.

It is clear that if D is a deductive system, $a \leq b$ and $a \in D$, then $y \in D$ (that is, D is increasing subset of A).

We denote by Ds(A) the set of all deductive systems of A (clearly, $\{1\}, A \in Ds(A)$). For a nonempty subset $X \subseteq A$, the *deductive system generated by* X will be denoted by [X). It is known ([7], [12]) that $[X) = \{x \in A : (x_1, ..., x_n; x) = 1, \text{ for some}$

 $x_1, ..., x_n \in X$ }. In particular for $a \in A, [\{a\}) \stackrel{not}{=} [a] = \{x \in A : a \to_n x = 1, \text{ for some } n \ge 1\}.$

If $D \in Ds(A)$ and $a \in A \setminus D$, then $[D \cup \{a\}) \stackrel{not}{=} D(a) = \{x \in A : a \to_n x \in D, \text{ for some } n \ge 1\}.$

In particular, if A is a Hilbert algebra, then for $X = \{x_1, ..., x_n\}, [X] = \{x \in A : (x_1, ..., x_n; x) = 1\}$ and if $D \in Ds(A)$ and $a \in A \setminus D$, then $D(a) = \{x \in A : a \to x \in D\}$.

Remark 2.1. If A is a Hilbert algebra, then if $X = \{x_1, ..., x_m\}$ and $Y = \{y_1, ..., y_n\}$, $[X \cup Y) = [X)(y_1, ..., y_n) = [Y)(x_1, ..., x_m)$ (where $[X)(y_1, ..., y_n) = (...([X)(y_1))(y_2)...)(y_n)$).

For a *BCK* algebra A we let W(A) denote the set of all words $\mathcal{X} = x_1 x_2 \dots x_n$ $(n \ge 1)$ over A.

For any word $\mathcal{W} = x_1 x_2 \dots x_n \in W(A)$ and an element $a \in A$, we shall write $\mathcal{W} \to a = (x_1, x_2, \dots, x_n; a) \in A$.

Remark 2.2. If $\mathcal{W} \in W(A)$, then $\mathcal{W} \to a = 1 \Rightarrow a \in [\mathcal{W})$. If A is a Hilbert algebra, then $\mathcal{W} \to a = 1 \Leftrightarrow a \in [\mathcal{W})$.

From (C) we deduce that for $\mathcal{X}, \mathcal{Y} \in W(A)$ and $a \in A$, then:

 $(c_{12}) \ \mathcal{X} \to (\mathcal{Y} \to a) = \mathcal{Y} \to (\mathcal{X} \to a) = (\mathcal{X}\mathcal{Y}) \to a$, where $\mathcal{X}\mathcal{Y} \in W(A)$ stand for concatenation of \mathcal{X} and \mathcal{Y} .

Let Fin(W(A)) be the set of all finite non-empty subsets of W(A).

One readily sees ([13]) that the relation ρ_A defined on Fin(W(A)) by the stipulation $\{\mathcal{X}_1, ..., \mathcal{X}_n\} \rho_A\{\mathcal{Y}_1, ..., \mathcal{Y}_n\}$ iff for all $\mathcal{W} \in W(A)$ and $a \in A$ we have

 $\mathcal{W} \to (\mathcal{X}_i \to a) = 1$ for all i = 1, 2, ..., m iff $\mathcal{W} \to (\mathcal{Y}_j \to a) = 1$ for all j = 1, 2, ..., nis an equivalence on Fin(W(A)); the ρ_A -class of $\{\mathcal{X}_1, ..., \mathcal{X}_n\}$ will be briefly denoted as $\langle \mathcal{X}_1, ..., \mathcal{X}_n \rangle$. Further, we equip the quotient set $M_A \stackrel{not}{=} Fin(W(A))/\rho_A$ with two binary operations \sqcap and \star , as follows:

$$<\mathcal{X}_1,...,\mathcal{X}_m>\sqcap<\mathcal{Y}_1,...,\mathcal{Y}_n>=<\mathcal{X}_1,...,\mathcal{X}_m,\mathcal{Y}_1,...,\mathcal{Y}_n>,$$

 $< \mathcal{X}_1, ..., \mathcal{X}_m > \star < \mathcal{Y}_1, ..., \mathcal{Y}_n > = < \mathcal{X}_i \mathcal{Y}_j : i = 1, 2, ..., m, j = 1, 2, ..., n > .$

Definition 2.2. By a meet-semilattice-orderd monoid we mean an algebra (M, \land, \bullet, e) such that :

 (a_7) (M, \wedge) is a meet-semilattice;

 (a_8) (M, \bullet, e) is a monoid;

 $(a_9) \ (x \land y) \bullet z = (x \bullet z) \land (y \bullet z) \text{ and } z \bullet (x \land y) = (z \bullet x) \land (z \bullet y) \text{ for every } x, y, z \in A.$

If the identity element e is the least element of M (that is, e play the role of 0), then M is called *dually integral*.

In [13] it is proved the following result:

Proposition 2.1. For every BCK algebra A, the structure $(M_A, \sqcap, \star, <1>)$ is a dually integral meet-semilattice-orderd monoid.

Remark 2.3. In [13], the above result is obtained for the case of a pseudo BCK algebra A; if A is a BCK algebra, then the operation \star is commutative. Indeed, if $\alpha = \langle \mathcal{X}_1, ..., \mathcal{X}_m \rangle, \beta = \langle \mathcal{Y}_1, ..., \mathcal{Y}_n \rangle \in M_A$, then $\alpha \star \beta = \langle \mathcal{X}_i \mathcal{Y}_j : i = 1, 2, ..., m, j = 1, 2, ..., n \rangle$. If $\mathcal{W} \in W(A)$ and $a \in A$, then $\mathcal{W} \to (\mathcal{X}_i \mathcal{Y}_j \to a) = 1$ iff $\mathcal{W} \to (\mathcal{X}_i \to (\mathcal{Y}_j \to a)) = 1$ iff $\mathcal{W} \to (\mathcal{Y}_j \to (\mathcal{X}_i \to a)) = 1$ iff $\mathcal{W} \to (\mathcal{Y}_j \mathcal{X}_i \to a)) = 1$, for all i = 1, 2, ..., m and j = 1, 2, ..., n, so $\alpha \star \beta = \beta \star \alpha$.

Lemma 2.1. Let (M, \land, \bullet, e) a dually integral meet-semilattice-orderd (commutative) monoid. Then for every $x, y \in M$:

 $(c_{13}): x \le x \bullet y, y \le x \bullet y;$

 (c_{14}) : $x \leq x \bullet x$.

Proof. (c_{13}) . We have $x \bullet (y \land e) = (x \bullet y) \land (x \bullet e) \Rightarrow x \bullet e = (x \bullet y) \land x \Rightarrow x = (x \bullet y) \land x \Rightarrow x \le x \bullet y$.

 (c_{14}) . Clearly.

132

Remark 2.4. It is worth noticing that the partial order \sqsubseteq associated with the meet operation \sqcap on M_A we have $\langle \mathcal{X}_1, ..., \mathcal{X}_m \rangle \sqsubseteq \langle \mathcal{Y}_1, ..., \mathcal{Y}_n \rangle$ iff for all $\mathcal{W} \in W(A)$ and $a \in A$, $\mathcal{W} \to (\mathcal{X}_i \to a) = 1$ for all i = 1, 2, ..., m, then $\mathcal{W} \to (\mathcal{Y}_j \to a) = 1$ for all j = 1, 2, ..., n.

Corollary 2.1. If A is a Hilbert algebra, then $\alpha \star \alpha = \alpha$ for every $\alpha \in M_A$.

Proof. By (c_{14}) we deduce that $\alpha \sqsubseteq \alpha \star \alpha$. To prove that $\alpha \star \alpha \sqsubseteq \alpha$,

let $\alpha = \langle \mathcal{X}_1, ..., \mathcal{X}_m \rangle \in M_A$, $\mathcal{W} \in W(A)$ and $a \in A$ such that $\mathcal{W} \to (\alpha \star \alpha \to a) = 1$. Since $\alpha \star \alpha = \langle \mathcal{X}_1 \mathcal{X}_1, \mathcal{X}_1 \mathcal{X}_2, ..., \mathcal{X}_2 \mathcal{X}_2, ..., \mathcal{X}_{n-1} \mathcal{X}_n, \mathcal{X}_n \mathcal{X}_n \rangle$, then in particular we have $\mathcal{W} \to (\mathcal{X}_i \mathcal{X}_i \to a) = 1$ for all i = 1, 2, ..., m.

Since A is a Hilbert algebra, then for all i = 1, 2, ..., m we have $\mathcal{W} \to (\mathcal{X}_i \to (\mathcal{X}_i \to a)) = 1 \Rightarrow \mathcal{W} \to (\mathcal{X}_i \to a) = 1$, hence $\alpha \star \alpha \sqsubseteq \alpha$, so $\alpha \star \alpha = \alpha$.

We recall that if (M, \wedge) is a meet-semilattice, then $F \subseteq M$ is a filter ([1]) if $x, y \in F \Rightarrow x \wedge y \in F$ and if $x \leq y$ and $x \in F \Rightarrow y \in F$.

For (M, \wedge, \bullet, e) a dually integral meet-semilattice-orderd monoid, let $\mathcal{F}(M)$ the set of all filters of (M, \wedge) augmented by \emptyset .

Let us introduce the following notation for $F, G \in \mathcal{F}(M)$:

$$F \lor G =$$
the filter generated by $F \cup G = \{a \in M : x \land y \le a \text{ for some } x, y \in F \cup G\},$

 $F \odot G = \{ a \in M : x \bullet y \le a \text{ for some } x \in F \text{ and } y \in G \},\$

$$F \rightarrow G = \{a \in M : \{a\} \bullet F \subseteq G\} =$$

 $= \{a \in M : \text{ if } x \in M \text{ and } x \ge a \bullet f \text{ with } f \in F, \text{ then } x \in G \}.$

We recall ([6], [14]) that an *integral residuated lattice* is an algebra

 $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ such that $(L, \lor, \land, 0, 1)$ is a bounded lattice, $(L, \odot, 1)$ is a (commutative) monoid whose identity 1 is the greatest element of the lattice and $x \odot a \leq y$ iff $a \leq x \rightarrow y$ for all $a, x, y \in L$.

Remark 2.5. ([6], [14]) If $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is an integral residuated lattice then $(L, \rightarrow, 1)$ is a BCK algebra.

In [13] it is proved the following result:

Lemma 2.2. If A is a BCK algebra, then $(\mathcal{F}(M_A), \lor, \cap, \odot, \rightarrow, O, M_A)$ is a complete integral residuated lattice.

For $a \in A$, we put $i_A(a) = \{ < \mathcal{X}_1, ..., \mathcal{X}_m > \in M_A : \mathcal{X}_i \to a = 1, \text{ for all } i = 1, 2, ..., m \}.$

In [13] it is proved the following result:

Theorem 2.1. If A is a BCK algebra, then the map $i_A : A \to L_r(A) = \mathcal{F}(M_A)$ is an injective morphism of BCK algebras. Moreover, if for $a, b \in A$ there exists $a \lor b$ in A, then $i_A(a \lor b) = i_A(a) \lor i_A(b)$.

Taking as guide-line the case of BL algebras (see [8], Definition 4.2.12), an integral residuated lattice L is a G-algebra if $x \odot x = x$, for every $x \in L$.

We have the following results:

Proposition 2.2. ([14]) Let $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is an integral residuated lattice. Then the following are equivalent:

(i): L is a G -algebra;

(*ii*): $x \odot y = x \land y$, for every $x, y \in L$;

(*iii*): $x \odot (x \to y) = x \land y$, for every $x, y \in L$.

Proposition 2.3. ([14])For an integral residuated lattice $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ the following are equivalent:

(i): $(L, \rightarrow, 1)$ is a Hilbert algebra; (ii): $(L, \lor, \land, \odot, \rightarrow, 0, 1)$ is a G -algebra.

Lemma 2.3. If A is a Hilbert algebra, then the integral residuated lattice $L_r(A)$ is a G-algebra.

Proof. We must prove that for $F \in L_r(A)$, $F \odot F = F$. Since $L_r(A)$ is an integral residuated lattice, then $F \odot F \subseteq F$ ([6], [14]). If $\alpha \in F$, by Corollary 2.1, $\alpha = \alpha \star \alpha$, hence $\alpha \in F \odot F \Rightarrow F \subseteq F \odot F$, so $F = F \odot F$.

From Lemma 2.3 and Theorem 2.1 we obtain the following theorem of representation for Hilbert algebras:

Theorem 2.2. If A is a Hilbert algebra, then there exist a complete integral residuated lattice $L_r(A)$ which is a G – algebra and an injective morphism of Hilbert algebras $i_A : A \to L_r(A)$. Moreover, if for $a, b \in A$ there exists $a \lor b$ in A, then $i_A(a \lor b) =$ $i_A(a) \lor i_A(b)$.

Remark 2.6. For others theorems of representation for Hilbert algebras, see [3], [5].

3. A characterization of the elements of $L_r(A)$

If (S, \wedge) is a meet-semilattice, for a nonempty subset $M \subseteq S$, by [M) we denote the filter of S generated by M.

We have ([1]): $[M] = \{x \in S : x_1 \land ... \land x_n \leq x \text{ for some } x_1, ..., x_n \in M\}$. In particular, if $M = \{a\}, [\{a\}\}) \stackrel{not}{=} [a] = \{x \in S : a \leq x\}$.

Remark 3.1. We recall ([1]) that if (S, \wedge) is a meet-semilattice then:

(*i*): If $a, b \in S$ and $a \leq b \Rightarrow [b] \subseteq [a)$;

(*ii*): If $a_1, a_2, ..., a_n \in S$ then $[a_1 \land a_2 \land ... \land a_n) = [a_1) \lor [a_2) \lor ... \lor [a_n)$.

Lemma 3.1. If A is a BCK algebra, then for every $a \in A$, $i_A(a) = [\langle a \rangle]$.

 $\begin{array}{l} \textit{Proof. If } < \mathcal{X}_1, ..., \mathcal{X}_n > \in [< a >) \Rightarrow < a > \sqsubseteq < \mathcal{X}_1, ..., \mathcal{X}_n > . \text{ Since } 1 \rightarrow (a \rightarrow a) = \\ 1 \Rightarrow 1 \rightarrow (\mathcal{X}_i \rightarrow a) = 1, \text{ for } i = 1, 2, ..., n \Rightarrow < \mathcal{X}_1, ..., \mathcal{X}_n > \in i_A(a) \Rightarrow [< a >) \subseteq i_A(a). \\ \text{Conversely, let } < \mathcal{X}_1, ..., \mathcal{X}_n > \in i_A(a), \text{ that is, } \mathcal{X}_i \rightarrow a = 1, \text{ for } i = 1, 2, ..., n. \\ \text{To prove } < a > \sqsubseteq < \mathcal{X}_1, ..., \mathcal{X}_n >, \text{ let } \mathcal{W} = a_1 a_2 ... a_m \in W(A) \text{ and } x \in A \text{ such that} \\ \mathcal{W} \rightarrow (a \rightarrow x) = 1. \end{array}$

For $i \in \{1, 2, ..., n\}$ consider $\mathcal{X}_i = x_1...x_t \in W(A)$. ¿From $\mathcal{W} \to (a \to x) = 1 \Rightarrow a \to (\mathcal{W} \to x) = 1 \Rightarrow a \le (a_1, ..., a_m; x) \stackrel{(c_3)}{\Rightarrow} (x_1, ..., x_t; a) \le (x_1, ..., x_t, a_1, ..., a_m; x) \Rightarrow (x_1, ..., x_t, a_1, ..., a_m; x) = 1 \Rightarrow \mathcal{X}_i \to (\mathcal{W} \to a) = 1 \stackrel{(C)}{\Rightarrow} \mathcal{W} \to (\mathcal{X}_i \to a) = 1$, for $i = 1, 2, ..., n \Rightarrow < \mathcal{X}_1, ..., \mathcal{X}_n > \in [<a>) \Rightarrow i_A(a) = [<a>)$.

Lemma 3.2. Let A be a BCK algebra and $\langle \mathcal{X}_1, ..., \mathcal{X}_n \rangle \in M_A$. Then

$$[\langle \mathcal{X}_1, ..., \mathcal{X}_n \rangle] = [\langle \mathcal{X}_1 \rangle] \lor ... \lor [\langle \mathcal{X}_n \rangle]$$

 $\begin{array}{l} \textit{Proof. We have } [<\mathcal{X}_1,...,\mathcal{X}_n>) = [<\mathcal{X}_1>\sqcap...\sqcap <\mathcal{X}_n>) \overset{\text{Re mark3.1},(ii)}{=} \\ [<\mathcal{X}_1>) \lor ... \lor [<\mathcal{X}_n>). \blacksquare \end{array}$

Lemma 3.3. If A is a Hilbert algebra and $a_1, a_2, ..., a_n \in A$, then $[\langle a_1 a_2 ... a_n \rangle] = [\langle a_1 \rangle) \cap ... \cap [\langle a_n \rangle].$

134

Proof. It is suffice to prove that for two elements $a, b \in A$, we have the equality $[\langle ab \rangle) = [\langle a \rangle) \cap [\langle b \rangle]$.

Indeed, $\langle a \rangle \star \langle b \rangle = \langle ab \rangle$ and since $\langle a \rangle, \langle b \rangle \equiv \langle a \rangle \star \langle b \rangle = \langle ab \rangle$ we deduce that $[\langle ab \rangle) \subseteq [\langle a \rangle), [\langle b \rangle) \Rightarrow [\langle ab \rangle) \subseteq [\langle a \rangle) \cap [\langle b \rangle).$

To prove the converse inclusion, let $\langle \mathcal{X}_1, ..., \mathcal{X}_n \rangle \in [\langle a \rangle) \cap [\langle b \rangle]$. Then $\langle a \rangle, \langle b \rangle \subseteq \langle \mathcal{X}_1, ..., \mathcal{X}_n \rangle$.

Consider $\mathcal{W} \in W(A)$ and $a \in A$ such that $\mathcal{W} \to (ab \to x) = 1$. Then $\mathcal{W} \to (a \to (b \to x)) = 1$. Since $\langle a \rangle \subseteq \langle \mathcal{X}_1, ..., \mathcal{X}_n \rangle$, then $\mathcal{W} \to (\mathcal{X}_i \to (b \to x)) = 1$, for all $i = 1, 2, ..., n \Rightarrow \mathcal{W} \to (b \to (\mathcal{X}_i \to x)) = 1$, for all $i = 1, 2, ..., n \Rightarrow$

 $\mathcal{W} \to (\mathcal{X}_i \to (\mathcal{X}_i \to x)) = 1, \text{ for all } i = 1, 2, \dots, n \Rightarrow \mathcal{W} \to (\mathcal{X}_i \to x) = 1, \text{ for all } i = 1, 2, \dots, n \Rightarrow < ab > \sqsubseteq < \mathcal{X}_1, \dots, \mathcal{X}_n > \Rightarrow < \mathcal{X}_1, \dots, \mathcal{X}_n > \in [<ab >) \Rightarrow [<a >) \cap [) \le [<ab >) = [<ab >). \blacksquare$

Corollary 3.1. If A is a Hilbert algebra and $\mathcal{W} = a_1 a_2 \dots a_n \in W(A)$, then

$$[\langle \mathcal{W} \rangle) = i_A(a_1) \cap \dots \cap i_A(a_n).$$

Proof. By Lemma 3.3 we deduce that $[\langle W \rangle] = [\langle a_1 a_2 \dots a_n \rangle] = [\langle a_1 \rangle] \cap \dots \cap [\langle a_n \rangle] = i_A(a_1) \cap \dots \cap i_A(a_n)$.

From the above results we obtain the following theorem of characterization for the elements of $L_r(A)$ when A is a Hilbert algebra:

Theorem 3.1. Let A be a Hilbert algebra. Then for $F \in L_r(A) = \mathcal{F}(M_A)$ we have $F = \bigvee_{\substack{\langle \mathcal{X}_1, \dots, \mathcal{X}_n \rangle \in F}} \left[(\bigcap_{x \in \mathcal{X}_1} i_A(x)) \lor \dots \lor (\bigcap_{x \in \mathcal{X}_n} i_A(x)) \right].$

Proof. For
$$F \in L_r(A) = \mathcal{F}(M_A)$$
 we have $F = \bigvee_{\substack{<\mathcal{X}_1, \dots, \mathcal{X}_n > \in F \\ = \\ <\mathcal{X}_1, \dots, \mathcal{X}_n > \in F }} [<\mathcal{X}_1, \dots, \mathcal{X}_n >) \stackrel{Lemma3.2}{=} = \bigvee_{\substack{<\mathcal{X}_1, \dots, \mathcal{X}_n > \in F \\ = \\ <\mathcal{X}_1, \dots, \mathcal{X}_n > \in F }} [(\bigcap_{x \in \mathcal{X}_1} i_A(x)) \lor \dots \lor (\bigcap_{x \in \mathcal{X}_n} i_A(x))]. \blacksquare$

Definition 3.1. A Hertz algebra is a Hilbert algebra A with the property that for every $x, y \in A$, the infimum $x \wedge y$ (relative to the natural ordering) exists in A (that is, A is meet-semilattice relative to the natural order) and for every $x, y \in A$ we have the relation:

(P): $x \to (y \to (x \land y)) = 1.$

In [15] it is proved the equivalence of above definition with:

Definition 3.2. A Hertz algebra is an algebra (A, \rightarrow, \wedge) of type (2, 2) satisfying the following axioms:

 $\begin{array}{l} (a_{10}) \colon x \to x = y \to y; \\ (a_{11}) \colon (x \to y) \land y = y; \\ (a_{12}) \colon x \land (x \to y) = x \land y; \\ (a_{13}) \colon x \to (y \land z) = (x \to y) \land (x \to z). \end{array}$

Definition 3.3. If A is a Hilbert algebra, a Hertz algebra H_A (together with an injective morphism of Hilbert algebras $\varphi_A : A \to H_A$) is said to be free over A if:

- (a₁₄): H_A is generated (as a Hertz algebra) by $\varphi_A(A)$;
- (a₁₅): For every Hertz algebra H and every morphism of Hilbert algebras $f : A \to H$, there exists a unique morphism of Hertz algebras $f' : H_A \to H$ such that $f' \circ \varphi_A = f$.

Theorem 3.2. ([15]) For every Hilbert algebra A, there exists the free Hertz algebra H_A over A, unique up to an isomorphism of Hertz algebras.

In what follow we only recall the construction of the Hertz algebra H_A (using the model and notations from [15]).

Let $\mathcal{F}(A)$ the set of all finite and nonempty subsets of A and $I = \{1\}$.

For $\mathcal{X} = \{x_1, x_2, ..., x_m\}$ and $\mathcal{Y} = \{y_1, ..., y_n\} \in \mathcal{F}(A)$ we define

$$\mathcal{X} \to \mathcal{Y} = \bigcup_{1 \leq j \leq n} \{ (x_1, x_2, ..., x_m; y_j) \} \text{ and } \mathcal{X} \land \mathcal{Y} = \mathcal{X} \cup \mathcal{Y}.$$

Consider the relation θ_A on $\mathcal{F}(A)$ defined for $\mathcal{X}, \mathcal{Y} \in \mathcal{F}(A)$ by

$$\mathcal{X}\theta_A\mathcal{Y} \text{ iff } \mathcal{X} \to \mathcal{Y} = \mathcal{Y} \to \mathcal{X} = \mathcal{I}.$$

Then θ_A is an equivalence relation on $\mathcal{F}(A)$ compatible with the operations \rightarrow and \wedge .

For $\mathcal{X} \in \mathcal{F}(A)$ we denote by $[\mathcal{X}]_{\theta_A}$ the equivalence class of \mathcal{X} modulo θ_A and by $H_A = \mathcal{F}(A)/\theta_A$.

For $a \in A$ we define $\varphi_A : A \to H_A, \varphi_A(a) = [\{a\}]_{\theta_A}$. Then $(H_A, \to, \mathbf{1})$ is the free Hertz algebra over A (where for $\mathcal{X}, \mathcal{Y} \in \mathcal{F}(A), [\mathcal{X}]_{\theta_A} \to [\mathcal{Y}]_{\theta_A} = [\mathcal{X} \to \mathcal{Y}]_{\theta_A}, [\mathcal{X}]_{\theta_A} \land [\mathcal{Y}]_{\theta_A} = [\mathcal{X} \land \mathcal{Y}]_{\theta_A}$ and $\mathbf{1} = [\{1\}]_{\theta_A}$).

If H is a Hertz algebra and $f: A \to H$ is a morphism of Hilbert algebras, then $f': H_A \to H, f'([\mathcal{X}]_{\theta_A}) = \bigwedge_{i=1}^m f(x_i) \ (\mathcal{X} = \{x_1, x_2, ..., x_m\})$ is the unique morphism of Hertz algebras such that $f' \circ \varphi_A = f$.

For a Hilbert algebra A I want to re-write the relation θ_A using the notation from Section 2.

So, we can consider an element $\mathcal{X} = \{x_1, x_2, ..., x_m\} \in \mathcal{F}(A)$ as the word $\mathcal{X} = x_1x_2...x_n \in W(A)$ and for $a \in A, \ \mathcal{X} \to a = (x_1, x_2, ..., x_n; a) \in A$.

Lemma 3.4. If A is a Hilbert algebra, then $\rho_A = \theta_A$.

Proof. Clearly, for $\mathcal{X} = \{x_1, x_2, ..., x_m\}$, $\mathcal{Y} = \{y_1, ..., y_n\} \in \mathcal{F}(A)$, $\mathcal{X}\theta_A \mathcal{Y}$ iff $\mathcal{X} \to y_j = \mathcal{Y} \to x_i = 1$ for every $i = 1, 2, ..., m, j = 1, 2, ..., n \Leftrightarrow x_i \in [\mathcal{Y})$ and $y_j \in [\mathcal{X})$ for every $i = 1, 2, ..., m, j = 1, 2, ..., n \Leftrightarrow [\mathcal{Y}) = [\mathcal{X})$.

Suppose $\mathcal{X}\rho_A\mathcal{Y}$ (that is, if $\mathcal{W} \in W(A), a \in A$, then $\mathcal{W} \to (\mathcal{X} \to a) = 1$ iff $\mathcal{W} \to (\mathcal{Y} \to a) = 1$). Since $1 \to (\mathcal{X} \to x_i) = 1$ for every i = 1, 2, ..., m, then $1 \to (\mathcal{Y} \to x_i) = 1$ for every $i = 1, 2, ..., m \Rightarrow [\mathcal{X}) \subseteq [\mathcal{Y})$. Analogously we deduce $[\mathcal{Y}) \subseteq [\mathcal{X})$, so $[\mathcal{X}) = [\mathcal{Y})$, hence $\mathcal{X}\theta_A\mathcal{Y}$.

Suppose that $\mathcal{X}\theta_A\mathcal{Y}$ (hence $[\mathcal{X}] = [\mathcal{Y})$) and consider $\mathcal{W} \in W(A)$ and $a \in A$ such that $\mathcal{W} \to (\mathcal{X} \to a) = 1$. Then $a \in [\mathcal{W} \cup \mathcal{X}] = [\mathcal{X})(\mathcal{W})$. Since $[\mathcal{X}] = [\mathcal{Y}] \Rightarrow a \in [\mathcal{Y})(\mathcal{W}) \Rightarrow a \in [\mathcal{Y} \cup \mathcal{W}] \Rightarrow \mathcal{W} \to (\mathcal{Y} \to a) = 1 \Rightarrow \mathcal{X}\rho_A\mathcal{Y}$.

Corollary 3.2. If A is a Hilbert algebra, then $H_A = \mathcal{F}(A)/\theta_A = W(A)/\rho_A$.

Theorem 3.3. If A is a Hilbert algebra, then there exist an injective morphism of Hertz algebras $\Psi_A : H_A \to L_r(A)$ such that $\Psi_A \circ \varphi_A = i_A$.

Proof. The existence of $\Psi_A : H_A \to L_r(A)$ is assured by Theorem 3.2 and for $\mathcal{X} = \{x_1, x_2, ..., x_m\} \in \mathcal{F}(A), \Psi_A([\mathcal{X}]_{\theta_A}) = \bigwedge_{i=1}^m i_A(x_i)$. To prove the injectivity of Ψ_A , consider $\mathcal{Y} = \{y_1, ..., y_n\} \in \mathcal{F}(A)$ such that

To prove the injectivity of Ψ_A , consider $\mathcal{Y} = \{y_1, ..., y_n\} \in \mathcal{F}(A)$ such that $\Psi_A([\mathcal{X}]_{\theta_A}) = \Psi_A([\mathcal{Y}]_{\theta_A}) \Leftrightarrow_{i=1}^{n}^{m} i_A(x_i) = \bigwedge_{j=1}^{n}^{n} i_A(y_j)$. Then for every j = 1, 2, ..., n:

136

$$\bigwedge_{i=1}^{m} i_A(x_i) \leq i_A(y_j) \Rightarrow (\bigwedge_{i=1}^{m} i_A(x_i)) \rightarrow i_A(y_j) = 1 \Rightarrow (i_A(x_1), ..., i_A(x_m); i_A(y_j)) = 1 \Rightarrow i_A((x_1, ..., x_m; y_j)) = 1 \Rightarrow (x_1, ..., x_m; y_j) = 1 \Rightarrow [\mathcal{Y}) \subseteq [\mathcal{X}) \text{ and analogously } [\mathcal{X}) \subseteq [\mathcal{Y}), \text{ hence } [\mathcal{X}] = [\mathcal{Y}), \text{ that is, } \Psi_A \text{ is injective. } \blacksquare$$

Corollary 3.3. If A is a Hilbert algebra, then the free Hertz algebra H_A over A is isomorphic with a Hertz subalgebra of $L_r(A)$.

References

- [1] R. Balbes and Ph. Dwinger, *Distributive Lattices*, University of Missouri Press, 1974.
- [2] W. Block and I.G. Raftery, On the quasivariety of BCK algebras and its subvarieties, Alg. Universalis 33 (1995), 68–90.
- [3] D. Buşneag, Categories of algebraic logic, Editura Academiei Române, Bucharest, 2006.
- [4] R. Cignoli and A. Torens, Glivenko like theorems in natural expansions of BCK-logic, Math. Log. Quart. 50 (2004), no. 2, 111–125.
- [5] A. Diego, Sur les algèbres de Hilbert, Coll. Logique Math. Serie A (1966), no. 21, 1–54.
- [6] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, An algebraic glimpse at substructural logics, In Studies in Logic and the foundations of mathematics, vol. 151, Elsevier, (2007).
- [7] J. Gispert and A. Torrens, Boolean representation of bounded BCK-algebras, Soft Comput. 12 (2008), 941–954.
- [8] P. Hájek, Metamathematics of Fuzzy Logic, In Trends in Logic-Studia Logica Library 4, Dordrecht, Kluwer Academic Publishers, (1998).
- [9] Y.Iamani and K. Iséki, On axiom systems of propositional calculi, Proc. Japan Academy 42 (1966), 19–22.
- [10] A. Iorgulescu, Algebras of logic as BCK algebras, Ed. ASE, Bucharest, 2008.
- [11] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.
- [12] K. Iséki and S. Tanaka, An introduction to the theory of BCK algebras, Math. Japonica 23 (1978), no.1, 1–25.
- [13] J. Kühr, Pseudo BCK algebras and related structures, Univerzita Plackého v Olomonci, 2007.
- [14] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
- [15] H. Porta, Sur quelques algèbres de la logique, Portugal. Math. 40 (1981), no. 1, 41-47.
- [16] H. Rasiova, An algebraic approach to non-classical logics, In Studies in logic and the Foundations of Mathematics 78, Nort-Holland and PNN, (1974).

(Dan Dorin Taşcău) UNIVERSITY OF CRAIOVA, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,13 A.I. CUZA STREET, CRAIOVA, 200585, ROMANIA *E-mail address*: dorintascau@yahoo.com