
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 37(4), 2010, Pages 93–98
ISSN: 1223-6934

On some 1,3H3 - helicoidal surfaces and their parallel surfaces
at a certain distance in 3 - dimensional Minkowski space

Alina-Mihaela Patriciu

Abstract. The surface obtained by rotating a curve from the plane (ξ1ξ3) around the space-
like axis ξ3, where ξ1 = (1, 0, 0) and ξ3 = (0, 0, 1), and simultaneously translating it along that

axis is called 1,3H3 - helicoidal surface. Let S and S̃ be two surfaces and let δ be a constant
positive real number. S and S̃ are parallel at distance δ if for each point P̃ ∈ S̃ we have

P̃ (u, v) = P (u, v) + δn(u, v), where n is the unit normal vector field on S. In this paper we
find some properties of some linear 1,3H3 - helicoidal surfaces and of their parallel surfaces in
3 - dimensional Minkowski space R3
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1. Introduction

Let R3 be a 3 - dimensional real vector space.

Definition 1.1. The 3 - dimensional Minkowski space is the pair
(
R3, 〈, 〉1

)
, denoted

R3
1, where the pseudo - inner product 〈·, ·〉1 is given by

〈x, y〉1 = xtηy

where x = (x1, x2, x3), y = (y1, y2, y3) and η = diag(−1, 1, 1).

Let {ξ1 = (1, 0, 0), ξ2 = (0, 1, 0), ξ3 = (0, 0, 1)} be an orthonormal base of R3
1,

α(u) = (a(u), 0, u) a curve from the plane ξ1ξ3 and β(v) = (0, 0, b(v)) an arbitrary
vector. If we rotate the curve around the spacelike axis ξ3 and simultaneously trans-
lating it, we obtain the surface of equation:

X(u, v) = (a(u) cosh v, a(u) sinh v, u + b(v)), (1)

which we have called in [3], 1,3H3 - helicoidal surface.
In terms of a local parametrization P (u, v) = X(u, v) of surface S, the coefficients

{E, F, G} of the first and {L,M, N} of the second fundamental forms of surface S,
are given by

E = 〈Xu, Xu〉1 , F = 〈Xu, Xv〉1 , G = 〈Xv, Xv〉1 , (2)

L = −〈nu, Xu〉1 ,M = −〈nu, Xv〉1 = −〈nv, Xu〉1 , N = −〈nv, Xv〉1 . (3)

Definition 1.2. A surface on which the Gaussian curvature is everywhere positive
(negative) is called synclastic (respectively, anticlastic).
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Definition 1.3. Let S be an orientable surface and let n be the unit normal vector
field of S. The surface S̃ is parallel to S at distance δ if the points P̃ (u, v) ∈ S̃ are
defined by

P̃ (u, v) = P (u, v) + δn(u, v)
where δ is a constant positive real number.

In [4] we have proved:

Theorem 1.1. Let S be a spacelike orientable surface with Gaussian curvature K and
mean curvature H and let δ be a real positive constant such that 1− 2δH − δ2K 6= 0.
Then, the curvatures K̃ and H̃ of the surface S̃ parallel to S at distance δ are given
by:

K̃ =
K

1− 2δH − δ2K
and H̃ =

H + δK

1− 2δH − δ2K
(4)

Theorem 1.2. Let S be a timelike orientable surface with Gaussian curvature K and
mean curvature H and let δ be a real positive constant such that 1− 2δH + δ2K 6= 0.
Then, the curvatures K̃ and H̃ of the surface S̃ parallel to S at distance δ are given
by:

K̃ =
K

1− 2δH + δ2K
and H̃ =

H − δK

1− 2δH + δ2K
(5)

2. Some 1,3H3 - helicoidal surfaces and their parallel surfaces in R3
1

For the 1,3H3 - helicoidal surface given by (1) we have

Xu = (a′(u) cosh v, a′(u) sinh v, 1) (6)

Xv = (a(u) sinh v, a(u) cosh v, b′(v)) (7)
and so

Xu ∧Xv =

∣∣∣∣∣∣

−e1 e2 e3

a′(u) cosh v a′(u) sinh v 1
a(u) sinh v a(u) cosh v b′(v)

∣∣∣∣∣∣
= (a(u) cosh v − a′(u)b′(v) sinh v, a(u) sinh v − a′(u)b′(v) cosh v, a(u)a′(u)),

‖Xu ∧Xv‖ =
√

(a′2(u)− 1)a2(u) + a′2(u)b′2(v).
We will study only the case:
(∗) a′2(u) = 1
where a(u) and b(v) are linear functions.
In the first case:
(∗∗) a′(u) = 1 (a(u) = u + B, b(v) = Cv + D),
we have successively:

Xu = (cosh v, sinh v, 1),

Xv = ((u + B) sinh v, (u + B) cosh v, C),

Xu ∧Xv =

∣∣∣∣∣∣

−e1 e2 e3

cosh v sinh v 1
(u + B) sinh v (u + B) cosh v C

∣∣∣∣∣∣
= ((u + B) cosh v − C sinh v, (u + B) sinh v − C sinh v, u + B)

and
‖Xu ∧Xv‖ = C, (8)
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from where, the unit normal vector field of this surface is:

n(u, v) =
(

u + B

C
cosh v − sinh v,

u + B

C
sinh v − cosh v,

u + B

C

)
(9)

Thus:

nu =
(

cosh v

C
,
sinh v

C
,

1
C

)
(10)

nv =
(

u + B

C
sinh v − cosh v,

u + B

C
cosh v − sinh v, 0

)
(11)

and the coefficients of the first fundamental form are:

E = 0, F = C, G = (u + B)2 + C2 (12)

and those of the second fundamental form are:

L = 0, M = −1, N =
u(u−B sinh v)

B cosh v
. (13)

Since

〈n, n〉1 = − (u + B)2

C
+ 1 +

(u + B)2

C
= 1

it follows that n is spacelike and so S is timelike. Using the formulas

K =
LN −M2

EG− F 2
,H =

1
2

EN − 2FM + GL

EG− F 2
(14)

for the Gaussian and mean curvature of surface Swe have:

K =
−1
−C2

=
1

C2
> 0 (15)

H =
1
2

2C

−C2
= − 1

C
(16)

From here, the first property of a 1,3H1-helicoidal surface:

Proposition 2.1. In the conditions (∗∗), any 1,3H3- helicoidal surface is umbilical
and synclastic.

Proof. Obviously, from (15) and (16), it follows H2 = K and K > 0, which end the
proof. ¤

Using the definition of the parallel surface we obtain for the parallel surface to S

at distance δ the equations X̃(u, v) = (x̃(u, v), ỹ(u, v), z̃(u, v)), where:




x̃(u, v) = (u + B) cosh v + δ

(
u + B

C
cosh v − sinh v

)

ỹ(u, v) = (u + B) sinh v + δ

(
u + B

C
sinh v − cosh v

)

z̃(u, v) = u + Cv + D + δ
u + B

C

(17)

We can compute the Gaussian curvature and the mean curvature of this surface
making similar computations as above, but, for simplicity, we will use Theorem 1.2
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and we get:

K̃ =
K

1− 2δH + δ2K
=

1
C2

1 + 2δ
1
C

+ δ2
1

C2

=

1
C2

C2 + 2δC + δ2

C2

=
1

C2 + 2δC + δ2

from where:
K̃ =

1
(C + δ)2

(18)

and

H̃ =
H − δK

1− 2δH + δ2K
=

− 1
C
− δ

1
C2

1 + 2δ
1
C

+ δ2
1

C2

=
−(C + δ)

C2 + 2δC + δ2
,

so
H̃ = − 1

C + δ
(19)

From here, the second property of this surface is:

Proposition 2.2. The parallel surface to a 1,3H3 - helicoidal surface, in conditions
(∗∗), at any distance δ with 1− 2δH + δ2K 6= 0 is umbilical and synclastic.

Proof. H̃2 − K̃ = 0, for every δ, so, S̃ is umbilical and K̃ > 0, so S̃ is synclastic. ¤

For the case
(∗ ∗ ∗) a′(u) = −1 (a(u) = −u + B, b(v) = Cv + D),
we have:

X = ((−u + B) cosh v, (−u + B) sinh v, u + Cv + D),
Xu = (− cosh v,− sinh v, 1),

Xv = ((−u + B) sinh v, (−u + B) cosh v, C),

Xu ∧Xv =

∣∣∣∣∣∣

−e1 e2 e3

− cosh v − sinh v 1
(−u + B) sinh v (−u + B) cosh v C

∣∣∣∣∣∣
,

from where

Xu ∧Xv = (C sinh v + (−u + B) cosh v, C cosh v + (−u + B) sinh v,−(−u + B)) ,
(20)

‖Xu ∧Xv‖ = C, (21)

n(u, v) =
(

sinh v +
−u + B

C
cosh v, cosh v +

−u + B

C
sinh v,−−u + B

C

)
(22)

nu =
(
− 1

C
cosh v,− 1

C
sinh v,

1
C

)
(23)

nv =
(

cosh v +
−u + B

C
sinh v, sinh v +

−u + B

C
cosh v, 0

)
(24)

E = 0, F = C, G = C2 + (−u + B)2 (25)
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L = 0, M = −1, N = − (−u + B)2

C
(26)

〈n, n〉1 = 1 > 0, (27)

so S is timelike.
Using (14) we get:

K =
−1
−C2

=
1

C2
> 0 (28)

H =
1
2

2C

−C2
= − 1

C
(29)

and, thus

Proposition 2.3. Any 1,3H3 - helicoidal surface in conditions (∗∗∗) is umbilical and
synclastic.

The proof is similar to the proof of Proposition 2.2, and thus, is omitted.
The parallel surface to this surface at distance δ will have the equations X̃(u, v) =

(x̃(u, v), ỹ(u, v), z̃(u, v)) where:





x̃(u, v) = (−u + B) cosh v + δ

(
sinh v +

−u + B

C
cosh v

)

ỹ(u, v) = (−u + B) sinh v + δ

(
cosh v +

−u + B

C
sinh v

)

z̃(u, v) = u + Cv + D − δ
−u + B

C

(30)

K̃ =
K

1− 2δH + δ2K
=

1
C2

1 + 2δ
1
C

+ δ2
1

C2

=

1
C2

(C + δ)2

C2

H̃ =
H − δK

1− 2δH + δ2K
=

− 1
C
− δ

1
C2

1 + 2δ
1
C

+ δ2
1

C2

= −
C + δ

C2

(C + δ)2

C2

thus,

K̃ =
1

(C + δ)2
, H̃ = − 1

C + δ
,

so, obviously,

Proposition 2.4. The parallel surface to a 1,3H3 - helicoidal surface, given by (30),
at any distance δ with 1− 2δH + δ2K 6= 0 is umbilical..

From the positivity of the Gaussian curvature of each of these surfaces we have

Proposition 2.5. Any 1,3H3 - helicoidal surface and any parallel surface to it at any
distance δ is synclastic.
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