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Representations for certain crossed simplicial groups
generated by braided Hopf algebras

Gefry Barad

Abstract. We find solutions of a nonlinear equation which provide representations for the
new groups R(n) defined in [1]. The groups are crossed simplicial groups in the sense of Loday
[8] (Sec.6.3). These solutions are based on the Bulacu and Beattie construction of braided Hopf
algebras in the category of Yetter-Drinfeld modules [2]. We discuss the connection of these
solutions with Hopf equation in a braided monoidal category (a system of mixed Yang-Baxter
type equations presented in [1]). Generalized quantum doubles for pairs of Hopf algebras can
afford weak projections.
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1. Introduction

The Drinfeld double for a Hopf algebra plays an important role in solving a non-
linear equation (QYBE) which provide representations for the Braid groups of type A.
Majid [9]referred to it as a toy model for quantum mechanics and it is an example of
algebra factorisation i.e. using certain structures, the multiplication on tensor product
of two algebras is modified [14]. Following a similar line of research, we begin with
a generalisation of Drinfeld double construction due to Bulacu and Beattie. In same
cases, generalized Drinfeld doubles are Hopf algebras with a projection, so there are
Radford biproducts with a Hopf algebra in the category of Yetter-Drinfeld modules.

According to Theorem 4.2 [1], any braided Hopf algebra as above has a fusion
operator which satisfy the braided Hopf equation, introduced in [1]. The classical
Hopf or pentagonal equation was studied by Militaru [6]. Representations for certain
groups are given by braided Hopf equation, so the braided Hopf algebras of Bulacu and
Beattie give representations for these groups. In the present paper we prove that the
same algebraic data, under some relaxed assumptions, give different representations.
We study the connection between these two solutions of a non-linear equation.

The groups R(n) form the algebraic structure of an operad. Menichi proved
[10] that any cyclic operad with multiplication gives a cyclic module . Loday and
Fiedorowicz introduced the concept of crossed simplicial groups and stated a classifi-
cation theorem for them in 1991. The groups R(n) are crossed simplicial groups, so
it is possible to study them in the context of the classical non-commutative geometry
and cyclic homology. As a further line of research, we open the problem to quantize
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these groups at the level of Lie algebras, as the Braid groups of type A and B fit into
the theory of Drinfeld associators, Malcev completions and Lie algebras [7].

2. Generalized Quantum Doubles which are Hopf algebras with a projec-
tion

We review after [2] (Sec.2 and 3) the construction of the generalized guantum
double associated with two Hopf algebras in pairing, of Bulacu and Beattie , and the
conditions have to be fullfilled for these Hopf algebras to be Hopf algebras with a
projection. For convenience, we particularize certain constructions associated with
two bialgebras in the case of one Hopf algebra with bijective antipode S. A Hopf
algebra endomorphism p is a projection if p(p(x))=p(x) and its image is a Hopf
algebra.

Let A be a Hopf algebra. A 2-cocycle is a convolution invertible bilinear form
t: A⊗A → k which satisfies for any a,b,c ∈ A:
t(x⊗ 1) = ε(x);
t(a1 ⊗ b1)t(a2b2 ⊗ c) = t(b1 ⊗ c1)t(a⊗ b2c2);
t(1⊗ x) = ε(x)
Given (A,t) a Hopf algebra with a 2-cocycle, on A a new product ? is defined and

the axioms for t imply that the new multiplication is associative and unital:

a ? b = t(a1 ⊗ b1)a2b2t
−1(a3 ⊗ b3)

Let H be a Hopf algebra. A pairing is a convolution invertible bilinear r: H⊗H → k
which satisfy the following axioms:

r(x⊗ 1) = ε(x);
r(xy ⊗ z) =

∑
r(x⊗ z(1))r(y ⊗ z(2));

r(1⊗ x) = ε(x);
r(x⊗ yz) =

∑
r(x(1) ⊗ y)r(x(2) ⊗ z); for any x, y, z ∈ H.

In this case, the Hopf algebra A=H ⊗H has a 2-cocycle t defined as:

t((a, x)⊗ (b, y)) = ε(ay)r(b⊗ x)
The new bialgebra D(H,r)=(A, ?) with the comultiplication of H⊗H is a Hopf al-

gebra whose antipode is T, T (a⊗x) = r(S(a3), S(x3))S(a2)⊗S(x2)r−1(S(a1), S(x1)).
There are two Hopf subalgebras of A, isomorphic with H and given by the canonical

inclusions of H in A, x → x⊗1 and x → 1⊗x. We are interested in the first inclusion
i.

Theorem 2.1. (Proposition 3.1 [2])
There exists a bialgebra projection π from D(H,r) to H that splits i if and only if

there is a bialgebra endomorphism φ of H which satisfy ((3.1) and (3.3) Remark 3.4
from [2]):

∑
r(x(1) ⊗ y(1))x(2)φ(y(2)) =

∑
r(x(2) ⊗ y2))φ(y(1))x(1)

In this case, π(x⊗ y) = xφ(y).
Let C be a strict braided monoidal category, with braiding c (Definition 4.6 [18],

[17]). Let B be a braided Hopf algebra in C. So, B is an object in this category,
togeter with a comultiplication δ: B → B ⊗ B, multiplication m, unit and counit ε
which are morphisms in C, which satisfy the usual axioms for a Hopf algebra. δ is a
braided algebra morphism:
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δ(xy) = (m⊗m)(id⊗ c⊗ id)(δ(x)⊗ δ(y))
We can define a fusion operator T : B ⊗B → B ⊗B

T (x⊗ y) = (m⊗ id) ◦ (id⊗ c) ◦ (δ ⊗ id).
We consider the following system. The indices show the positions on tensor product

of three objects where the operators act.

R(23)R(12)R(23) = R(12)c(23)R(12)

R(23)c(12)c(23) = c(12)c(23)R(12)
The first equation of the system (called [1] the Hopf equation in the braided cate-

gory C), has the following diagramatic form:

The braiding morphism is represented diagramatically as a crossing; the trivalent
graphs represent multiplication or comultiplication. The composition of morphisms
are read from top to the bottom of the figure.

Theorem 2.2. (Theorem 4.2, [1])
The Hopf equation is verified for (T,c), where c is a braiding of a braided monoidal

category, and T is the fusion operator associated with a braided Hopf algebra B in this
category.

Theorem 2.3. (Propositions 3.7 and 3.8 [2])
Given a triple (H,r,φ) which satisfy the conditions from the theorem 2.1 above, the

vector space H has a structure of a Hopf algebra in the braided monoidal category of
left-left Yetter-Drinfeld modules over H.

In the next section, we will relax some of the properties of the triple (H,r,φ). In
the same way the data above generate Radford biproduct and braided Hopf algebras,
this generalization will fit into the theory of Hopf algebras with a weak projection.

3. Hopf algebras with a weak projections

Let H be a Hopf algebra with invertible antipode S. p:H → H is called a weak
projection if p is a coalgebra map, if p(p(x))=p(x), if p(ap(x))=p(a)p(x) and if p◦S =
S ◦ p. Im(p)=H’is a sub-Hopf algebra of H.

Let B be the set of elements x from H, such that x1 ⊗ p(x2) = x⊗ 1.
We present after Schauenburg [15] and Stefan [16] the following structures of the

Hopf algebras with a weak projection (H,p).



68 G. BARAD

Let H’=Im(p) and i is its inclusion in H; let B be the set of elements x ∈ A such
that x1 ⊗ p(x2) = x⊗ 1.

Let q(x)=x1p(S(x2)) ∈ B.
1) a product ? on B, not necessarly associative, defined as x ? y =q(xy);
2) a comultiplication on B, ∆R(x) = q(x1)⊗ q(x2) = x[1] ⊗ x[2];
3) a cocycle t: B ⊗B → H ′, t(x,y)=p(xy);
4) an action H ′ ⊗B → B, denoted b → r = q(br);
5) a map H ′ ⊗B → H ′, b ← r = p(br);
6) a left coaction B → H ′ ⊗B, ρ(x) = p(x1)⊗ x2 = x(−1) ⊗ x(o).

Theorem 3.1. (Theorem 2.12 [16], Theorem 5.1 [15])
On vector space B ⊗H ′ there are the following multiplication and comultiplication

maps, such that the application B ⊗ H ′ → H given by (b,h)→ bh is a bialgebra
isomorphism:

(q ⊗ y)(p⊗ x) = (q[1] ? (q[2](−1)y1 → p[1])⊗ t(q[2](o), y2 → p[2])(y3 ← p[3])x).

The comultiplication on B ⊗H ′ is given by ∆(b, h) = ∆(b, 1)∆(1, h).
The comultiplication of h is given by the Hopf algebra structure of Im(p) and

∆(b, 1) = (b[1], b[2](−1) ⊗ (b[2](o), 1).
There is also a converse of the theorem above, which says that a Hopf algebra

H’, a coalgebra B and the six maps above generate on the vector space A=R ⊗ B a
structure of a Hopf algebra with a weak projection onto B if a long list of relations
among them is fullfiled.

Remark 3.1. Schauenburg uses the following definition of a Hopf algebra with a
weak projection: p(p(x)y)=p(x)p(y); Stefan proved that the statements above are true
in any braided monoidal category. If we work with regular Hopf algebras, (H,p) is a
weak algebra as above if and only if (Hop, p) is a Hopf algebra with a weak projection
in the sense of Schauenburg. B has to be replaced by the set B’ of elements x ∈ H
such that p(x1)⊗ x2 = 1⊗ x and H will be isomorphic with H ′ ⊗B′.

The coaction will be to the right B → B ⊗H ′, ρ(x) = x1 ⊗ p(x2) = x(o) ⊗ x(1) and
q(x)=p(S(x1))x2 ∈ B.

3.1. Applications. Let (H,r) a Hopf algebra with bijective antipode and with a
pairing.Let φ be a map from H to H. We will use Sweedler notation and for convenience
we supress the symbol for tensor product and multiple sums.

Lemma 3.1. If φ is a coalgebra map, then

π : D(H, r) → D(H, r), π(x⊗ y) = xφ(y)⊗ 1
is a weak projection: it is a coalgebra endomorphism and π(π(x)y) = π(x)π(y).

Proof. π is a coalgebra map because it is a composition of coalgebra maps.
If x =(a,b) and y = (c,d), then π(x)π(y)=(aφ(b)cφ(d)⊗ 1)
π(π(x)y) = π((aφ(b)⊗ 1)(c⊗ d))= π((aφ(b)c⊗ d) = aφ(b)cφ(d)⊗ 1 ¤

Lemma 3.2. If φ is a coalgebra map, then π : D(H, r) → D(H, r), π(x⊗y) = xφ(y)⊗1
satisfies: π(yπ(x))=π(y)π(x) if and only if

∑
r(x(1) ⊗ y(1))x(2)φ(y(2)) =

∑
r(x(2) ⊗ y2))φ(y(1))x(1)

for any x and y ∈ H.
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Proof. y=(c,d); x=(a,b)
π(yπ(x))=π(y)π(x) ⇔ π[(c, d)(aφ(b), 1)] = (cφ(d)aφ(b), 1) ⇔
π[cr(a1φ(b1), d1)a2φ(b2)⊗ d2r

−1(a3φ(b3), d3)] = (cφ(d)aφ(b), 1) ⇔
cr(a1φ(b1), d1)a2φ(b2)φ(d2)r−1(a3φ(b3), d3) = cφ(d)aφ(b) ⇔
cr(a1φ(b1), d1)a2φ(b2)φ(d2) = cφ(d1)a1φ(b1)r(a2φ(b2), d2);
we used the distorted multiplication of D(H,r), as defined in the previous section

or formula 2.10 ([2]).
If this equality is true for any a,b,c,d, for c=b=1H we get the relation stated in

the lemma.
If ∑

r(x(1) ⊗ y(1))x(2)φ(y(2)) =
∑

r(x(2) ⊗ y2))φ(y(1))x(1)

then for y=d and x=aφ(b) we get the equality equivalent to the relation

π(yπ(x)) = π(y)π(x).

¤

Let D= D(H, r, φ) a triple where φ is a coalgebra map. D(H, r, φ) is a Hopf algebra
with a left weak projection.

We suppose φ and the antipode of H commute.
Let B= {x ∈ D|p(x1)⊗ x2 = 1⊗ x} = {π(S(x1))x2, x ∈ D}
Let R= {x ∈ D|x1 ⊗ p(x2) = x⊗ 1} = {x1π(S(x2)), x ∈ D}

Remark 3.2. The antipode of D and its inverse (as any bijective anti-coalgebra map
which commute with the projection π) is a bijection between B and R.

In our special case, a better description is possible, according to Prop. 3.6 ([2]):
B= {φ(S(x1))⊗ x2, x ∈ H}
R= {φ(S(x2))⊗ x1, x ∈ H}
D will be isomorphic with H ⊗B, where the multiplication on H ⊗B is defined as

([15] Thm.5.1):

(x⊗ p)(y ⊗ q) = (x(p1 → y1)t(p2 ← y2, q1[o])⊗ (p3 ← y3q1[1]) ? q2).

Remark 3.3. t: B ⊗B → H, t(x,y)=π(xy). Using the isomorphism above

(1, x)(1, y) = (t(x1, y1), x2 ? y2).

In our case, t(φ(S(x1))⊗ x2, φ(S(y1))⊗ y2) = π(φ(S(x1))⊗ x2).

(φ(S(y1)⊗ y2)) = r(φ(S(y3)), x2)φ(S(x1)φ(S(y2)φ(x3y4)r−1(φ(S(y1)), x4)

The cocycle is trivial i.e. t(x,y)= ε(xy) if and only if:

r(φ(b1), d1)φ(b2d2) = φ(d1)φ(b1)r(φ(b2), d2).

In particular, if H is co-commutative, non-commutative, and φ is a Hopf algebra
anti-morphism, the relation above is respected and π is not an algebra map.

Remark 3.4. Let D be a Hopf algebra with a left weak projection as above.
Let A = {h = p[S(c)p(S(x1b))x2], b, c ∈ R, x ∈ D}

h = p[S(c)p(S(x1b))x2] = p[S(c)p(S(x1b1))x2b2S(b3)]
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If b ∈ R, then b1 ⊗ b2 ⊗ b3 ∈ D ⊗D ⊗ R. Following remark 3.2, h=p(uyz), where
u,y,z ∈ B. u = S(c), y = p(S(x1b1))x2b2, z = S(b3)

Following remark 3.3, h=p(uyz) is a product of two cocycles. In general the pro-
jection π of a product of elements from B is a product of cocycles.

In particular, if the cocycle is trivial ([15] Sect.6.3-6.6) the elements of A are scalar
multiples of 1D.

Let (D, p) be a Hopf algebra with bijective antipode and left weak projection
(p(x)p(y)=p(p(x)y)), and trivial cocycle. For example D=D(H,r, φ, coalgebra map)
and r(φ(b1), d1)φ(b2d2) = φ(d1)φ(b1)r(φ(b2), d2); for any b and d. In the terminology
of ([15] Sect.6.3), D is a trivalent product, a concept which unifies Majid’s matched
pairs of bialgebras, bicrossed products and double crossed products. Any coalge-
bra map φ which is a anti-morphism of algebras for H co-commutative satisfies the
condition above.

Let X ={x1p(S(x2)), x ∈ D}. Under these assumptions we have the following
theorem:

Theorem 3.2. Consider the following map R : X ⊗X → X ⊗X
R(a⊗ b) = a1b1p(S(a2b2))⊗ a3 and its inverse
T (x⊗y) = y3⊗S−1(y2)x1p(S(S−1(y1)x2)). Then R satisfies the following equation

on
X ⊗X ⊗X ⊗X : R34R23R12R34R23R34T23T34T12T23 = R23R12R23T12T23R34

Proof. The equation above represents the equality of two maps defined
X ⊗X ⊗X ⊗X → X ⊗X ⊗X ⊗X.
We evaluate both terms on

∑
a⊗ b⊗ c⊗ d. We suppress the symbols for tensor

products and sums.
For the left hand side:

(a, b, c, d) → (a, b, c1d1p(S(c2d2), c3) → (a, b1c1d1p(S(b2c2d2)), b3, c3) →
→ (a1b1c1d1p(S(a2b2c2d2)), a3, b3, c3) →

→ (a1b1c1d1p(S(a2b2c2d2)), a3, b3c3p(S(b4, c4)), b5) →
→ (a1b1c1d1p(S(a2b2c2d2)), a3b3c3p(S(a4b4c4)), a5, b5) →

→ (a1b1c1d1p(S(a2b2c2d2)), a3b3c3p(S(a4b4c4)), a5b5p(S(a6b6)), a7) →
→ (a1b1c1d1p(S(a2b2c2d2)), a3b3p(S(a4b4)), p(a5b5)c3p(S(a6b6)), a7) →

→ (a1b1p(S(a2b2)), p(a3b3)c1d1p(S(c2d2)p(S(a4b4))), p(a5b5)c3p(S(a6b6)), a7) →
(a1b1p(S(a2b2)), p(a3b3)c1d1p(S(c2d2)p(S(a4b4))), a9,

S−1(a8)p(a5b5)c3p(S(c4)p(S(a6b6))a7)) →

(a1b1p(S(a2b2)), a11, S
−1

(a10)p(a3b3)c1d1p(S[p(a4b4)c2d2]a9), S
−1

(a8)p(a5b5)c3p(S(c4)p(S(a6b6))a7))

The right hand side is equal to:

(a, b, c, d) → (a, b1c1p(S(b2c2), b3, d) → (a1b1c1p(S(a2b2c2)), a3, b3, d) →
→ (a1b1c1p(S(a2b2c2)), a3b3p(S(a4b4)), a5, d) →

→ (a1b1p(S(a2b2), p(a3b3)c1p[S(c2)p(S(a4b4))], a5, d) →
→ (a1b1p(S(a2b2), a7, S

−1(a6)p(a3b3)c1p(S[p(a4b4)c2]a5), d) →
→ (a1b1p(S(a2b2)), a15, w, S−1(a12)p(a5b5)c3p(S(c4)p(S(a6b6))a11)),

where w=

S−1(a14)p(a3b3)c1p(S[p(a8b8)c6]a9)d1p[S(d2)p(S(a10)S
2[p(a7b7)c5])S(c2)p(S(a4b4))a13]



REPRESENTATIONS FOR CERTAIN CROSSED SIMPLICIAL GROUPS 71

If T=p(S[p(a7b7)c5]a8), then T1⊗p(WS(T2)Q) appears in the expression above, and does
not appear in the left hand side expression.

T1 = p(S[p(a8b8)c6]a9) and S(T2) = p(S(a10)S
2[p(a7b7)c5])

T and T1 are elements of type p(S[p(x1b)c]x2) described in Remark 3.4; The cocycle of
the Hopf algebra with a weak projection being trivial, these elements are scalar multiples of
1H . T1 ⊗ T2 = ε(T1)⊗ T2 = 1⊗ T = 1⊗ ε(T ).

The left and the right hand side are equal. T1d1p(S(T2d2)Z) = d1T1p(S(d2T2)Z) =
d1T1p(S(T2)S(d2)Z) = d1T1p(S(T2))p(S(d2)Z) = d1p(S(d2)Z).

¤

Solutions of the equation above provide representations for a sequence of groups
R(n) which appear in [1]. If the weak projection is also an algebra map, then the
maps above defined on multiple tensor products of X’s can be defined (transposed)
on tensor products of B, where B is a braided Hopf algebra, and the Theorem 2.2 in
the special case of the braided category of Yetter-Drinfeld modules is recovered (see
Theorem 2.2, whose proof is based on the diagramatic calculus in a braided category).
In the case above, the proof depends on the concrete, specific calculus above. The
operator R−1

12 R23R12R23R
−1
12 does not satisfy the Braid equation.

3.1.1. Crossed simplicial groups. Further directions. We state without proof, which
can be easily checked using the results [1], that the groups R(n) introduced in [1] are
crossed simplicial groups in the sense of Loday (Section 6.3, [8]). Following the last
remark, there is a cohomology theory for Hopf algebras H, having a pairing and a
coalgebra map with trivial cocycle as above, similar to the cyclic cohomology for Hopf
algebras having a modular pair in involution.

Definition 3.1. (Definition 6.3.0 [8])
A crossed simplicial group is a family of groups R(n), n > 0, such that there exists a

category C with objects [n], n > 0, containing the simplicial category as a subcategory
and such that:

1) the group of automorphisms of [n] is the opposite group of R(n),
2) any morphism from [n] to [m] in C can be uniquely written as the composition

between a morphism from the simplicial category and R(n).

Any triple (H, r, φ) provides in fact a representation of the operad given by the
groups R(n). We state without proof that the category C, which is a semidirect
product between the simplicial category and R(n) is represented in this way.

The groups R(n), n=0,1,2... have the following functions, well-defined because of
Lemma 2.1 and Lemma 2.2 of [1].

- face-operators d(i):R(n + 1) → R(n), which delete the i-th string.
- doubling- operators s(i):R(n) → R(n + 1), which double the i-th string.
- natural group morphisms b: R(n) → S(n)
The following relations are satisfied:

d(i)(xy) = d(i)(x)d(b(x)i)(y)

s(i)(xy) = s(i)(x)s(b(x)i)(y)
The functions above are crossed−group morphisms, so the groups R(n) form a system
of crossed-simplicial groups, this second definition being equivalent with the definition
above [8] [5].

We open the question to find the appropiate Lie algebras Ln such that there are
canonical group morphisms from R(n) into S(n) o exp(Ln), and to check the above
equation for a Hopf algebra with a weak projection in a braided category [16].
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