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A note on BL-algebras with internal state

Nicolae Mircea Constantinescu

Abstract. The scope of this paper is to put in evidence some properties of the BL-algebras
with internal state. I introduce the concepts of prime and maximal state-filters, I prove
a Prime state-filter theorem 4.7 and I characterize the set Radσ (A), which represents the
intersection of all maximal state-filters of a state BL-algebra (A,σ) . Also, I introduce the
concepts of simple, semisimple and local state BL-algebras relative to its state-filter set.
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1. Introduction

The concept of state MV−algebras was firstly introduced by Flaminio and Mon-
tagna in [4] and [5] as a MV−algebra endowed with a unary operation σ (called a
state-operator), which preserves the usual properties of states. Di Nola and Dvurečen-
skij presented in [6] a stronger version of states MV−algebras namely state-morphism
MV−algebras. Afterwards Ciungu, Dvurečenskij and Hyčko extended in [2] the con-
cept of state (morphism) MV−algebra and in the case of BL−algebras and they
extended the properties of a state-operator. The present article is structured into five
sections.

In Section 2, basic properties regarding the concepts of MV−algebra, BL−algebra
are being presented, as well as some basic properties of the operations defined on these
algebras, which are to be used afterwards. The concept of state (morphism)−operator
on a BL−algebra also belongs to this section, as well some of its properties.

In Section 3 some examples of state BL−algebras are presented. In Section 4
the concept of state-filter on a state BL−algebra is introduced. There are presented
some examples of filters and state-filters, as well as the concepts of maximal state-
filter, prime state-filter, some of their characteristics and, if the state-operator σ is
a morphism, the set Radσ (A) is characterised, in which Radσ (A) represents the
intersection of all maximal state-filters of a state BL−algebra (A, σ) .

In Section 5, there are presented some classes of BL−algebras such as simple,
semisimple and local as well as simple, semisimple and local state BL−algebras.
There are introduced the concepts of simple, semisimple and local state BL−algebras
relative to its state-filters set and there are establishished relations between these
structures in certain conditions imposed to the state-operator σ.

2. Preliminaries

Definition 2.1. An algebra (A,∧,∨,¯,→, 0, 1) of the type (2, 2, 2, 2, 0, 0) is called a
BL−algebra if satisfies the following axioms:
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(1) (A,∧,∨, 0, 1) is a bounded lattice;
(2) (A,¯, 1) is a commutative monoid;
(3) x¯ y ≤ z iff x ≤ y → z;
(4) x ∧ y = x¯ (x → y) ;
(5) (x → y) ∨ (y → x) = 1;
for every x, y, z ∈ A.

We will denote x∗ = x → 0, x ∈ A. If x ∈ A, we define x0 = 1 and for n ≥ 1 we
define xn = xn−1 ¯ x.

Definition 2.2. Let A be a BL−algebra and x ∈ A. If there exists the least number
n ∈ N∗ such that xn = 0, then we set ord (x) = n. If there is no such a number
(that is, xn > 0, for every n ≥ 0) , then we set ord (x) = ∞.

We recall some results relative to BL−algebras:

Proposition 2.1. Let A be a BL−algebra. Then:
(1) if a ≤ b and c ≤ d then a¯ c ≤ b¯ d;
(2) a¯ (b ∨ c) = (a¯ b) ∨ (a¯ c) ;
(3) a ∨ (b¯ c) ≥ (a ∨ b)¯ (a ∨ c) ;
(4) am ∨ bn ≥ (a ∨ b)mn

,m, n ∈ N;
(5) (a¯ b)∗ = a → b∗;
(6) a¯ (a → (a¯ b)) = a¯ b;
for every a, b, c ∈ A.

Definition 2.3. An algebra (A,⊕, ∗, 0) of the type (2, 1, 0) is called a MV−algebra
if satisfies the following axioms:

(1) (A,⊕, 0) is a commutative monoid;
(2) x∗∗ = x, for every x ∈ A;
(3) x⊕ 0∗ = 0∗, for every x ∈ A;
(4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, for every x, y ∈ A.

On a BL−algebra (A,∧,∨,¯,→, 0, 1) we define the operation ⊕ on A by x⊕ y =
(x∗ ¯ y∗)∗ , x, y ∈ A. If x∗∗ = x, for every x ∈ A, then (A,⊕, ∗, 0) it becomes a
MV−algebra. We are now defining the concept of state-operator on a BL−algebra.

Definition 2.4. [2] Let A be a BL−algebra. An application σ : A → A which verifies
the properties:

(1)BL σ (0) = 0;
(2)BL σ (x → y) = σ (x) → σ (x ∧ y) ;
(3)BL σ (x¯ y) = σ (x)¯ σ (x → x¯ y) ;
(4)BL σ (σ (x)¯ σ (y)) = σ (x)¯ σ (y) ;
(5)BL σ (σ (x) → σ (y)) = σ (x) → σ (y) ;
for every x, y ∈ A, is called state-operator on A, and the pair (A, σ) is called a

state BL−algebra or, more precisely, a BL-algebra with internal state.

Some examples of state-operators will be presented in Section 3.

Proposition 2.2. [2] In a state BL−algebra (A, σ) the following hold:
(a) σ (1) = 1;
(b) σ (x∗) = σ (x)∗ , for every x ∈ A;
(c) if x, y ∈ A and x ≤ y then σ (x) ≤ σ (y) ;
(d) σ (x¯ y) ≥ σ (x)¯ σ (y) , for every x, y ∈ A;
(e) σ (x → y) ≤ σ (x) → σ (y) , for every x, y ∈ A;
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(f) σ (σ (x)) = σ (x) , for every x ∈ A;
(g) σ (A) is a BL−subalgebra of A and σ (A) = {x ∈ A | σ (x) = x} .

Definition 2.5. [2] A state-morphism operator on a BL−algebra A is an application
σ : A → A which verifies (1)BL , (2)BL , (4)BL , (5)BL and
(6)BL σ (x¯ y) = σ (x)¯ σ (y) , for every x, y ∈ A.

Remark 2.1. Any state-morphism operator σ on a BL−algebra A is a state-operator
on A. Indeed, by using (6)BL we have:

σ (x)¯ σ (x → x¯ y) = σ (x¯ (x → x¯ y)) = σ (x¯ y) , according to Proposition
2.1.

If σ is a state-operator on A, we define ker (σ) = {x ∈ A | σ (x) = 1} .

Definition 2.6. A state-operator σ : A → A is called faithful iff ker (σ) = 1.

3. Examples of state-operators on BL−algebras

Example 3.1. If A is a BL−algebra, then σ : A → A, defined by σ (x) = x, for every
x ∈ A, is a state-operator on A, called the identity state-operator on A. Thus (A, idA)
is a state BL−algebra.

Example 3.2. [2] Let A = {0, a, b, 1} be with 0 < a < b < 1.
Then (A,∧,∨,¯,→, 0, 1) with the following operations:
¯ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

it becomes a BL−algebra, but not a MV−algebra (since b∗∗ = 1 6= b).
The fact that σ : A → A, given by σ (0) = 0, σ (a) = a, σ (b) = σ (1) = 1, is a state-

operator on A, is verified. Moreover, (6)BL holds, so σ is a state-morphism operator
on A.

Example 3.3. [3] Let A = {0, a, b, c, d, 1} ,with the operations ¯ and → given by the
following tables:

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Then the BL−algebra (A,∧,∨,¯,→, 0, 1) is a MV−algebra.
We will determine the state-operators on A. Let σ : A → A be a state-operator.

From (1)BL we have σ (c → a) = σ (c) → σ (c ∧ a) , so
σ (c) = σ (c) → σ (a) . From the table of the operation→ we deduce that the equation

x = x → y has only the solutions x = c, y = a and x = y = 1.
In the first case we have σ (c) = c and σ (a) = a and then
σ (d) = σ (a∗) = σ (a)∗ (accordind to the Proposition 2.2, (b)) = a∗ = d, and σ (b) =

σ (c∗) = σ (c)∗ = b, so σ = idA. In the second case we have σ (c) = σ (a) = 1, and
then σ (d) = σ (a)∗ = 0, σ (b) = σ (c)∗ = 0, thus
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σ (0) = σ (b) = σ (d) = 0 and σ (c) = σ (a) = 1, which verifies (1)BL − (6)BL , so
this is also a state-morphism operator.

Example 3.4. [3] Let A = {0, a, b, c, d, 1}, with the following tables of operations:
¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 d 1 1
b c d 1 c d 1
c b b b 1 1 1
d a b b d 1 1
1 0 a b c d 1

Then it becomes a BL−algebra, which is a MV−algebra. Let σ : A → A be a
state-operator. As in the Example 3.3 we have

σ (d → c) = σ (d) → σ (d ∧ c) = σ (d) → σ (c) = σ (d) . Since the equation x = x →
y has only the solutions x = d, y = c and x = y = 1 we obtain σ (d) = d, σ (c) = c
or σ (d) = σ (c) = 1. In the first case we have σ = idA, and in the second case we
have σ (a) = σ (b) = σ (0) = 0 and σ (c) = σ (d) = σ (1) = 1, both operators being
state-morphism operators.

Example 3.5. [3] Let A = {0, c, a, b, 1}, in which 0 < c < a, b < 1 and a, b are
incomparable, with the following tables of operations :

¯ 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b c
1 0 c a b 1

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

The application σ : A → A, given by σ (0) = 0 and σ (x) = 1 otherwise, is a
state-morphism operator.

We recall that a t−norm is a function t : [0, 1] × [0, 1] → [0, 1], which verifies the
conditions:

(1) t (x, y) = t (y, x) , for every x, y ∈ [0, 1] ;
(2) t (t (x, y) , z) = t (x, t (y, z)) , for every x, y, z ∈ [0, 1] ;
(3) t (x, 1) = x, for every x ∈ [0, 1] ;
(4) if x ≤ y then t (x, z) ≤ t (y, z) , x, y, z ∈ [0, 1] .
If t is continuous, we define x¯t y = t (x, y) and
x →t y = sup {z ∈ [0, 1] | t (z, x) ≤ y} , for x, y ∈ [0, 1] . In these conditions It =

([0, 1] , min,max,¯t,→t, 0, 1) is a BL−algebra. Moreover, according to [1] , the variety
of BL−algebras is generated by all the It with a continuous norm t. There are three
basic continuous t−norms on [0, 1] :

(i) ÃLukasiewicz: ÃL(x, y) = max {x + y − 1, 0}, with
x →ÃL y = min {1− x + y, 1} ;
(ii) Gödel: G (x, y) = min {x, y}, with x →G y = 1 if x ≤ y and x →G y = y

otherwise;
(iii) product: P (x, y) = xy, with x →P y = 1 if x ≤ y and x →P y = y

x otherwise.
Then we have:

Proposition 3.1. [2]
(1)If σ is a state-operator on IÃL, then σ (x) = x, for every x ∈ [0, 1] .
(2) Let a ∈ [0, 1] and we define σa (x) = x if x ≤ a and σa (x) = 1 otherwise. For

a ∈ (0, 1] we define the application σa (x) = x if x < a and σa (x) = 1 otherwise.
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Then σa şi σa are state-morphism operators on IG and, if σ is a state-operator on
IG, then σ = σa or σ = σa for a certain a ∈ [0, 1] .

(3) If σ is a state-operator IP , then σ (x) = x, for every x ∈ [0, 1] or σ (x) = 1, for
every x > 0.

Proposition 3.2. [2] Let A be a finite linear Gödel BL−algebra, that is, x2 = x,
for every x ∈ A. Then, with the notations from Proposition 3.1 σa and σa are state-
morphism operators, and any state-operator on A is of the form σa or σa, for a certain
a ∈ [0, 1] .

Actually we have the following more general result:

Proposition 3.3. Let A be a linear Gödel BL−algebra and B ⊂ A such that 0 ∈
B, 1 /∈ B and, if x ∈ B, y ∈ A�B, then x < y. Then the application σB : [0, 1] →
[0, 1] , given by σB (x) = x if x ∈ B and σB (x) = 1 otherwise, is a state-morphism
operator on A, and, conversely, any state-operator on A is of such a form.

Proof. Firstly we observe that, if x, y ∈ A then
x¯ y ≥ x¯ (x ∧ y) = x¯ (x¯ (x → y)) = x2 ¯ (x → y) = x¯ (x → y)
= x ∧ y ≥ x¯ y, so x¯ y = x ∧ y = min {x, y} , for every x, y ∈ A.
Then x → y = sup {z ∈ A | x¯ z ≤ y} = sup {z ∈ A | x ∧ z ≤ y} .
If x ≤ y, then x → y = 1.
If x > y, then sup {z ∈ A | x ∧ z ≤ y} = sup {z ∈ A | min {x, z} ≤ y} = y.
We will verify the (1)BL − (5)BL axioms. Since 0 ∈ B we have that σB (0) = 0, so

the (1)BL is proved.
If x, y ∈ B, then we have: σB (x → y) = 1 = σB (x) → σB (x ∧ y) , if x ≤ y, and,

if x > y we have σB (x → y) = σB (y) , and σB (x) → σB (x ∧ y) = x → x ∧ y = x →
y = y = σB (y) = σB (x → y) .

If x, y ∈ A�B, then, since y ≤ x → y, it follows that x → y ∈ A�B, so
σB (x → y) = 1, and σB (x) → σB (x ∧ y) = 1 (since x ∧ y ∈ A�B).

If x ∈ B, y ∈ A�B, then σB (x → y) = σB (1) = 1 = σB (x) → σB (x ∧ y) .
If y ∈ B, x ∈ A�B, then σB (x → y) = σB (y) = y and σB (x) → σB (x ∧ y) = 1 →

y = y, so we have an equality again.
Thus (2)BL is proved.
We will now prove (6)BL, which means that, according to the Remark 2.1
(3)BL is proved. Indeed, if x, y ∈ B, then x¯ y = min {x, y} ∈ B, so σB (x¯ y) =

x ¯ y = σB (x) ¯ σB (y) . If x, y ∈ A�B, then x ¯ y = min {x, y} ∈ A�B, so
σB (x¯ y) = 1 = σB (x)¯ σB (y) .

If x ∈ B, y ∈ A�B, then x ¯ y = min {x, y} = x, so σB (x¯ y) = σB (x) = x =
σB (x)¯ 1 = σB (x)¯ σB (y) . Thus (6)BL is fulfilled.

If x ∈ B, then σB (σB (x)) = σB (x) , and if x ∈ A�B, then we have σB (σB (x)) =
σB (1) = 1 = σB (x) ,so σB (σB (x)) = σB (x) , ∀x ∈ A.

Then σB (σB (x)¯ σB (y)) = σB (σB (x¯ y)) (according to (6)BL) = σB (x¯ y) =
σB (x)¯ σB (y) , ∀x, y ∈ A, so (4)BL is verified.

In order to complete the first part of the proof, we still have to verify (5)BL . Indeed,
if x, y ∈ B, then σB (σB (x) → σB (y)) = σB (x → y) , and σB (x) → σB (y) = x → y.
If x ≤ y, then x → y = 1, so σB (x → y) = x → y. If x > y, x → y = y, and
σB (x → y) = σB (y) = y, so equality once more. Let’s now suppose that x, y ∈ A�B.
Then σB (σB (x) → σB (y)) = σB (1) = 1 = σB (x) → σB (y) .

If x ∈ B, y ∈ A�B, then σB (σB (x) → σB (y)) = σB (x → 1) = 1 = σB (x) →
σB (y) .



A NOTE ON BL-ALGEBRAS WITH INTERNAL STATE 121

Finally, if y ∈ B, x ∈ A�B, then σB (σB (x) → σB (y)) = σB (1 → y) = σB (y) =
σB (x) → σB (y) .

Conversely, let σ be a state-operator on A and let a ∈ (0, 1) .
We are going to prove σ (a) = a or σ (a) = 1. Let’s suppose that σ (a) < a.
Then, according to (2)BL , σ (a → σ (a)) = σ (a) → σ (a ∧ σ (a)) = σ (a) →

σ (σ (a)) = σ (a) → σ (a) = 1.
But a → σ (a) = σ (a) , so σ (a → σ (a)) = σ (a) , so σ (a) = 1, a contradiction.

If a < σ (a) , then , from (2)BL we have σ (σ (a) → a) = σ (σ (a)) → σ (σ (a) ∧ a) =
σ (a) → σ (a) = 1. Since σ (a) → a = a, we obtain σ (a) = 1.

Let B = {a ∈ [0, 1) | σ (a) = a} . Then σ (x) = x, if x ∈ B, and σ (x) = 1, if
x ∈ A�B. Obviously 0 ∈ B, 1 /∈ B. Let x ∈ B, y ∈ A�B. If y ≤ x, then σ (y) ≤ σ (x) ,
that is 1 ≤ x, a contradiction. So x < y. Thus σ = σB , in which B fulfills the
conditions from the enounciation. ¤

Example 3.6. [2] Let A be a BL−algebra. Then (A×A,∧,∨,¯,→, 0, 1) it becomes
a BL−algebra, where (a, b) ≤ (c, d) iff a ≤ c and b ≤ d, and the operations are defined
on the components. Let σ : A× A → A× A be, defined by σ (a, b) = (a, a) , for every
(a, b) ∈ A×A. It is easily to prove that σ is a state-morphism operator on A×A.

4. Filters and state-filters

Definition 4.1. Let A be a BL−algebra. A nonvoid subset F ⊆ A is called filter if
the following conditions are verified:

(1) x, y ∈ F implies x¯ y ∈ F ;
(2) x ∈ F and x ≤ y implies y ∈ F.
A proper filter of A is called a maximal filter if it doesn’t belong to any other proper

filter of A. The intersection all the maximal filters of A is denoted by Rad (A) .

Definition 4.2. [2] Let (A, σ) be a state(morphism) BL−algebra. A nonvoid subset
F ⊆ A is called a state( morphism)−filter of (A, σ) , if F is a filter of A with the
property that if x ∈ F , then σ (x) ∈ F. A proper state-filter of (A, σ) is called a
maximal state-filter if it doesn’t belong to any other proper state-filter of (A, σ). The
intersection all the maximal state-filters of (A, σ) is denoted by Radσ (A) .

Example 4.1. If we consider the Example 3.1 then the filters of A and the state-filters
of (A, σ) are the same.

For A the BL−algebra from Example 3.2 the filters are {1} , {b, 1} , A, and the state-
filters of (A, σ) are {1} , {b, 1} , A. The (state)filter {b, 1} is a maximal (state)filter.
In this case Rad (A) = Radσ (A) = {b, 1} .

Let’s now consider A the BL-algebra from Example 3.3 and the state-operator
σ : A → A, defined by σ (0) = σ (b) = σ (d) = 0, σ (a) = σ (c) = 1. The filters
of A are {1} , {d, 1} , {a, c, 1} , A, and the state-filters of (A, σ) are {1} , {a, c, 1} , A.
The BL-algebra A has two maximal filters: {d, 1} şi {a, c, 1} . There exists only an
maximal state-filter of (A, σ) , namely {a, c, 1} . In this case we have Rad (A) = {1} ,
and Radσ (A) = {a, c, 1} .

Let’s now the BL−algebra from Example 3.4 and the state-operator σ : A → A,
defined by σ (d) = σ (c) = σ (1) = 1, σ (a) = σ (b) = σ (0) = 0. The filters of A
are {1} , {b, 1} , {c, d, 1} , A, and the state-filters of (A, σ) are {1} , {c, d, 1} , A. There
are two maximal filters, namely {b, 1} and {c, d, 1} , so Rad (A) = {1} , and a single
maximal state-filter, {c, d, 1} , so Radσ (A) = {c, d, 1} .
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For A the BL−algebra from Example 3.5 and the state-operator σ : A → A, defined
by σ (0) = 0 and σ (x) = 1 otherwise, the filters and the state-filters are the same:
{1} , {a, 1} , {b, 1} , {c, a, b, 1} , A. We have Rad (A) = Radσ (A) = {c, a, b, 1} . For the
algebra IÃL, since ord (x) < ∞, for every x 6= 1, the only filters are {1} and [0, 1] .
Since the single state-operator on IÃL is idIÃL

, these are also the only state-filters.
In the case of the algebra IG, the filters are the sets of the form [x, 1] or (x, 1] , where

x ∈ [0, 1] . IG has an only maximal filter, namely (0, 1] . According to Proposition
3.1(2) if σ is a state-operator on IG, then σ = σa or σ = σa (with thoses notations) .
For any of these state-operators, the state-filters and the filters of IG are the same.
In the case of the algebra IP , since ord (x) < ∞, for every x 6= 1, the only filters are
{1} şi [0, 1] , which are therefore the only state-filters.

Proposition 4.1. Let A and B be two BL−algebras and let us consider A × B the
BL−algebra product of A and B. If F1, F2 are filters of A, respectively B, then F1×F2

is a filter of A×B and, conversely, any filter of A×B is of the form F1 ×F2, where
F1, F2 are filters of A, respectively B.

Proof. If F1, F2 are filters of A, respectively B, then it is imediate that F1 × F2

is a filter of A × B. Conversely, let F be a filter of A × B. Since F is nonvoid,
then the sets F1 := {x ∈ A | there exists y ∈ B such that (x, y) ∈ F} ⊆ A and F2 :=
{y ∈ B | there exists x ∈ A such that (x, y) ∈ F} ⊆ B will be too.

We are going to prove that F1, F2 are filters and F = F1 × F2. Indeed, if a, b ∈
F1, then there exists c, d ∈ B such that (a, c) , (b, d) ∈ F, so (a¯ b, c¯ d) ∈ F, so
a ¯ b ∈ F1. If a ∈ F1 and a ≤ c, then, since there exists b ∈ B such that (a, b) ∈ F
and since (a, b) ≤ (c, b) , it follows that (c, b) ∈ F, therefore c ∈ F1. Thus F1 is a filter
and analogously it shows that F2 is a filter. Let (a, b) ∈ F. Then a ∈ F1, b ∈ F2, so
(a, b) ∈ F1 × F2, so F ⊆ F1 × F2. Let’s now (a, b) ∈ F1 × F2. Since a ∈ F1, b ∈ F2,
there exist x ∈ A, y ∈ B such that (a, y) , (x, b) ∈ F . Then (a, 1) , (1, b) ∈ F and so
(a¯ 1, 1¯ b) ∈ F, that is, (a, b) ∈ F, therefore F1 × F2 ⊆ F. Thus F = F1 × F2. ¤

Let’s now consider an BL−algebra A which contains proper filters and the state-
operator σ : A × A → A × A, σ (a, b) = (a, a) , for every (a, b) ∈ A × A, from the
Example 3.6. According to Proposition 4.1 any filter of A×A is of the form F1×F2,
with F1, F2 filters of A. If F1×F2 is a state-filter of (A×A, σ) , then F1 ⊆ F2. Indeed,
let a ∈ F1. Then (a, 1) ∈ F1 × F2, so σ (a, 1) = (a, a) ∈ F1 × F2, that is, a ∈ F2.

Conversely, if F1 × F2 is a filter of A×A such that F1 ⊆ F2, and (a, b) ∈ F1 × F2,
then σ (a, b) = (a, a) ∈ F1 × F2, so the state-filters of (A×A, σ) are the sets of the
form F1 × F2, in which F1, F2 are filters of A with F1 ⊆ F2.

Remark 4.1. [2] Let A be a BL−algebra and σ a state-operator on A. Then ker (σ)
is a state-filter of (A, σ) .

Proposition 4.2. [2] Let A be a BL−algebra. A proper filter F of A is a maximal
filter iff for any a /∈ F, there exists n ∈ N∗ such that (an)∗ ∈ F.

Proposition 4.3. [7] Let A be a BL−algebra.
Then Rad (A) =

{
x ∈ A | (xn)∗ ≤ x, for every n ∈ N}

.

Proposition 4.4. [2] Let (A, σ) be a state BL−algebra and X ⊆ A. Then the state-
filter Fσ (X) generated by X is the set
{x ∈ A | x ≥ (x1 ¯ σ (x1))

n1 ¯ ...¯ (xk ¯ σ (xk))nk , xi ∈ X,ni ≥ 1, k ≥ 1} .
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If F is a state-filter of (A, σ) and a /∈ F, then the state-filter generated by F and
a is the set Fσ (F, a) = {x ∈ A | x ≥ i¯ (a¯ σ (a))n

, i ∈ F, n ≥ 1} . A proper state-
filter F is a maximal state-filter iff for any a /∈ F there exists n ∈ N∗ such that
(σ (a)n)∗ ∈ F.

In watt follow we will introduce the concept of a prime state-filter, we will establish
some results related to this concept on the basis of which we are going to characterise
the set Radσ (A), in the case of a state-morphism BL−algebra (A, σ) .

Proposition 4.5. Let (A, σ) be a state BL−algebra and P a proper state-filter of
(A, σ) . Then the following statements are equivalent:

(i) If P1, P2 are two state-filters of (A, σ) such that P = P1 ∩ P2, then P = P1 or
P = P2;

(ii) If (a¯ σ (a)) ∨ (b¯ σ (b)) ∈ P, a, b ∈ A, then a ∈ P or b ∈ P.

Proof. (i) ⇒ (ii) . Let a, b ∈ A such that (a¯ σ (a)) ∨ (b¯ σ (b)) ∈ P. We consider
the sets Fσ (P, a) = {x ∈ A | x ≥ i¯ (a¯ σ (a))n

, i ∈ P, n ≥ 1} and Fσ (P, b) =
{x ∈ A | x ≥ i¯ (b¯ σ (b))n

, i ∈ P, n ≥ 1} , which represent state-filters generated by
P and a, respectively P and b (according to Proposition 4.4) .

Obviously, P ⊆ Fσ (P, a) ∩ Fσ (P, b) . If x ∈ Fσ (P, a) ∩ Fσ (P, b) , then there exist
i1, i2 ∈ P and m,n ∈ N∗ such that x ≥ i1 ¯ (a¯ σ (a))m and x ≥ i2 ¯ (b¯ σ (b))n

,
so x ≥ (i1 ¯ (a¯ σ (a))m) ∨ (i2 ¯ (b¯ σ (b))n) ≥ (i1 ∨ i2) ¯ (i1 ∨ (b¯ σ (b))n) ¯
(i2 ∨ (a¯ σ (a))m)¯ ((a¯ σ (a))m ∨ (b¯ σ (b))n) (according to Proposition 2.1, (3))
≥ (i1 ∨ i2)¯ (i1 ∨ (b¯ σ (b))n)¯ (i2 ∨ (a¯ σ (a))m)¯ ((a¯ σ (a)) ∨ (b¯ σ (b)))mn

(according to Proposition 2.1, (4)) .
But i1∨i2, i1∨(b¯ σ (b))n

, i2∨(a¯ σ (a))m and ((a¯ σ (a)) ∨ (b¯ σ (b)))mn belong
to P, and then it follows that x ∈ P. Thus P = Fσ (P, a) ∩ Fσ (P, b) , and, from the
hypothesis, we obtain that P = Fσ (P, a) or P = Fσ (P, b), that is, a ∈ P or b ∈ P.

(ii) ⇒ (i) . Let P1, P2 be two state-filters of (A, σ) such that P = P1 ∩ P2. Let’s
suppose that P 6= P1 and P 6= P2. Then there exist a ∈ P1�P and b ∈ P2�P. Then
a¯ σ (a) ∈ P1, b¯ σ (b) ∈ P2, so (a¯ σ (a)) ∨ (b¯ σ (b)) ∈ P1 ∩ P2 = P, hence a ∈ P
or b ∈ P, a contradiction. Therefore P = P1 or P = P2.

¤

Definition 4.3. Let (A, σ) be a state BL−algebra. A proper state-filter P of (A, σ)
is called a prime state-filter if it verify one of the equivalent conditions from the
Proposition 4.5.

Proposition 4.6. Let (A, σ) be a state BL−algebra. Then any maximal state-filter
of (A, σ) is a prime state-filter.

Proof. Let F be a maximal state-filter of (A, σ) and P1, P2 two state-filters such that
F = P1 ∩P2. If F 6= P1, then F is strictly contained in P1, and, since F is a maximal
state-filter, it follows that P1 = A. Then F = A ∩ P2 = P2. Therefore F is a prime
state-filter.

¤

Definition 4.4. Let (A, σ) be a state BL−algebra. A nonovoid subset I of A is called
state-ideal if the following conditions are verified:

(1) a, b ∈ I implies a⊕ b ∈ I;
(2) a ∈ I, b ≤ a implies b ∈ I;
(3) a ∈ I implies σ (a) ∈ I.
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Proposition 4.7. (Prime state-filter theorem) Let I be a state-ideal and F a
state-filter on a state BL−algebra (A, σ) such that F ∩ I = ∅. Then there is a prime
state-filter P such that F ⊆ P and P ∩ I = ∅.

Proof. Consider the set
F (F ) = {F ′ | F ′ is a state-filter such that F ⊆ F ′ and F ′ ∩ I = ∅} .
Since F ∈ F (F ) , it follows that F (F ) is nonvoid. It is easily to prove that the

set F (F ) is inductively ordered, so, by Zorn’s Lemma in F (F ) then is P a maximal
element. I want to prove that P is a prime state-filter. Since P ∈ F (F ) , it follows
that P is a proper state-filter and P ∩ I = ∅.

Let a, b ∈ A such that (a¯ σ (a)) ∨ (b¯ σ (b)) ∈ P. Let’s suppose that a /∈ P and
b /∈ P. Consider the sets Fσ (P, a) şi Fσ (P, b), which represent state-filters generated
by P and a, respectively P and b. Then P is strictly contained in Fσ (P, a) and Fσ (P, b)
and, by the maximality of P , we deduce that Fσ (P, a) /∈ F (F ) and Fσ (P, b) /∈ F (F ) .
Thus Fσ (P, a)∩I 6= ∅ and Fσ (P, b)∩I 6= ∅. Let x ∈ Fσ (P, a)∩I and y ∈ Fσ (P, b)∩I.
Then there exist i1, i2 ∈ P and m,n ∈ N such that x ≥ i1 ¯ (a¯ σ (a))m and
y ≥ i2 ¯ (b¯ σ (b))n

, so x∨ y ≥ (i1 ¯ (a¯ σ (a))m)∨ (i2 ¯ (b¯ σ (b))n) ≥ (i1 ∨ i2)¯
(i1 ∨ (b¯ σ (b))n) ¯ (i2 ∨ (a¯ σ (a))m) ¯ ((a¯ σ (a)) ∨ (b¯ σ (b)))mn ∈ P, that is,
x ∨ y ∈ P. But x, y ∈ I, so x ∨ y ∈ I, hence P ∩ I 6= ∅, a contradiction.

Thus P is a prime state-filter.
¤

Proposition 4.8. Let (A, σ) be a state BL−algebra and a ∈ A, a < 1. Then there
exists a prime state-filter P of (A, σ) such that a /∈ P.

Proof. Like in the Proposition 4.7 we consider the set
F (a) = {F | F is a state-filter and a /∈ F} . Since {1} ∈ F (a) , it follows that F (a)

is nonvoid.
We can easily prove that the set F (a) is inductively ordered, so by Zorn’s Lemma

then is P a maximal element of F (a) . I want to prove that P is a prime state-filter. Let
x, y ∈ A such that (x¯ σ (x)) ∨ (y ¯ σ (y)) ∈ P. Let’s suppose that x /∈ P and y /∈ P.
Considering the sets Fσ (P, x) and Fσ (P, y), which represent state-filters generated
by P and x, respectively P and y, it follows that P is strictly contained in Fσ (P, x)
and Fσ (P, y) and, by the maximality of P, we deduce that a ∈ Fσ (P, x) ∩ Fσ (P, y) .
Then there exist i1, i2 ∈ P and m,n ∈ N such that a ≥ i1 ¯ (x¯ σ (x))m and
a ≥ i2 ¯ (y ¯ σ (y))n

, so a ≥ (i1 ¯ (x¯ σ (x))m) ∨ (i2 ¯ (y ¯ σ (y))n) ≥ (i1 ∨ i2) ¯
(i1 ∨ (y ¯ σ (y))n)¯ (i2 ∨ (x¯ σ (x))m)¯ ((x¯ σ (x)) ∨ (y ¯ σ (y)))mn ∈ P, so a ∈ P,
a contradiction. Thus P is a prime state-filter and a /∈ P.

¤
Corollary 4.1. Let (A, σ) be a state BL−algebra and P a proper state-filter of (A, σ) .
Then there exists a maximal state-filter F0 of (A, σ) such that P ⊆ F0.

Proof. The Proposition 4.7 is applied for I = {0} and F = P. Let F0 be a maximal
element of the set F (P ) = {F ′ | F ′ is a proper state-filter and P ⊆ F ′} . I want to
prove that F0 is a maximal state-filter of (A, σ) . Indeed, if F1 is a state-filter of (A, σ)
such that F0 ⊆ F1 then, the maximality of F0, it follows that F1 /∈ F (P ) , so F1 is
not a proper state-filter, so F1 = A.

¤
On the basis of the previous results, we will be able to characterize the set Radσ (A) ,

of the intersection of all maximal state-filters of a state-morphism BL−algebra (A, σ).
Firstly, we will establish the following result:
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Proposition 4.9. Let (A, σ) be a state BL−algebra. Then{
x ∈ A | (σ (x)n)∗ ≤ σ (x) , for every n ∈ N} ⊆ Radσ (A) .

Proof. Consider B =
{
x ∈ A | (σ (x)n)∗ ≤ σ (x) , for every n ∈ N}

and let x ∈ B.
Let’s suppose that x /∈ Radσ (A) , therefore there exists a maximal state-filter F
of (A, σ) such that x /∈ F. According to Proposition 4.8, there exists n ∈ N such
that (σ (x)n)∗ ∈ F. Since (σ (x)n)∗ ≤ σ (x) , we deduce that σ (x) ∈ F. But then
σ (x)n ∈ F and, since (σ (x)n)∗ ∈ F, we obtain that F = A, a contradiction. Therefore
B ⊆ Radσ (A) .

¤

Proposition 4.10. Let (A, σ) be a state-morphism BL−algebra. Then
Radσ (A) ⊆ {

x ∈ A | (σ (x)n)∗ ≤ σ (x) , for every n ∈ N}
.

Proof. Consider B =
{
x ∈ A | (σ (x)n)∗ ≤ σ (x) , for every n ∈ N}

and let
x ∈ Radσ (A) . Let’s suppose that x /∈ B, so there exists n ∈ N such that

(σ (x)n)∗ 
 σ (x) , that is, (σ (x)n)∗ → σ (x) < 1. According to Proposition 4.8
there exists a prime state-filter P of (A, σ) such that (σ (x)n)∗ → σ (x) /∈ P. On the
other hand σ

(
(σ (x)n)∗ → σ (x)

)
= σ

(
σ

(
(xn)∗

) → σ (x)
)
(since σ is a morphism) =

σ
(
(xn)∗

) → σ (x) (from the (4)BL) = (σ (x)n)∗ → σ (x) and, analogously,
σ

(
σ (x) → (σ (x)n)∗

)
= σ (x) → (σ (x)n)∗ .

Then
((

(σ (x)n)∗ → σ (x)
)¯ σ

(
(σ (x)n)∗ → σ (x)

))

∨ ((
σ (x) → (σ (x)n)∗

)¯ σ
(
σ (x) → (σ (x)n)∗

))

=
(
(σ (x)n)∗ → σ (x)

)2 ∨ (
σ (x) → (σ (x)n)∗

)2

≥ ((
(σ (x)n)∗ → σ (x)

) ∨ (
σ (x) → (σ (x)n)∗

))4

( according to Proposition 2.1, (4)) = 1 ∈ P, and, since P is prime and
(σ (x)n)∗ → σ (x) /∈ P, we deduce that σ (x) → (σ (x)n)∗ ∈ P.
But σ (x) → (σ (x)n)∗ = (σ (x)¯ σ (x)n)∗ (from Proposition 2.1, (5)) ,

thus
(
σ (x)n+1

)∗
∈ P. According to Corrollary 4.1, there exists a maximal state-

filter F0 of (A, σ) such that P ⊆ F0, so
(
σ (x)n+1

)∗
∈ F0, that is, σ (x)n+1

/∈ F0.

Then σ (x) /∈ F0 and so x /∈ F0, namely x /∈ Radσ (A) , a contradiction. Therefore
Radσ (A) ⊆ B.

¤

From Propositions 4.9 and 4.10 we obtain:

Theorem 4.1. Let (A, σ) be a state-morphism BL−algebra. Then
Radσ (A) =

{
x ∈ A | (σ (x)n)∗ ≤ σ (x) , for every n ∈ N}

.
Moreover, Rad (A) ⊆ Radσ (A) .

Proof. The first part result from Propositions 4.9 and 4.10. For the second part, let
x ∈ Rad (A) , so (xn)∗ ≤ x, for every n ∈ N.

Then σ
(
(xn)∗

) ≤ σ (x) , for every n ∈ N, so (σ (x)n)∗ ≤ σ (x) , for every n ∈ N,
that is, x ∈ Radσ (A) .

¤

5. Classes of BL− algebras

Within this section, we are going to present some classes of BL−algebras, such as
simple, semisimple and local BL−algebras, we will then define the concepts of simple,
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semisimple and local state BL−algebras (A, σ), next we will introduce the concepts of
simple, semisimple and local state BL−algebras (A, σ) relative to its state-filters set,
and we will finally establish relations between these concepts, which occur in some
conditions imposed to the state-operator σ.

Definition 5.1. A BL−algebra A is called simple if its only filters are {1} and A.
A state BL−algebra (A, σ) is called simple if σ (A) is simple.

We will now define a new concept:

Definition 5.2. A state BL−algebra (A, σ) is called simple relative to its state-filters
set if it has only two state-filters: {1} and A.

Example 5.1. Let’s consider a state BL−algebra (A, σ). If σ = idA, then the three
concepts from Definition 5.1 are the same. Let’s consider the state BL−algebra (A, σ)
from Example 3.2. We have σ (A) = {0, a, 1} .

If I ⊆ σ (A) is a filter, I 6= {1} , and if a ∈ I, then a ¯ a = 0 ∈ I, so I = σ (A) .
Thus σ (A) is simple, so (A, σ) is simple. By the contrary, according to Example 4.1
A is not simple and (A, σ) is not simple relative to its state-filters set. For each state
BL−algebras (A, σ) from Examples 3.3, 3.4, 3.5 we have σ (A) = {0, 1} , so (A, σ) is
simple, but A is notsimple and (A, σ) is not simple relative to its state-filters set.

Remark 5.1. According to [2], if (A, σ) is a state BL−algebra such that A is simple,
then σ (A) is simple, so (A, σ) is simple.

Theorem 5.1. [2] Let (A, σ) be a state-morphism BL−algebra. Then the following
conditions are equivalent:

(1) (A, σ) is simple;
(2) ker (σ) is a maximal filter of A.

Proposition 5.1. Let (A, σ) be a state BL−algebra. If (A, σ) is simple relative to
its state-filters set, then (A, σ) is simple.

Proof. Let J be a filter of σ (A) , J 6= {1} . We will prove that J = σ (A) . Consider
FJ = {z ∈ A | z ≥ j, for a certain j ∈ J} . If x, y ∈ FJ , then there exist j1, j2 ∈ J
such that x ≥ j1, y ≥ j2, so x ¯ y ≥ j1 ¯ j2 ∈ J, hence x ¯ y ∈ FJ . If x ∈ FJ and
x ≤ y, then obviously y ∈ FJ .

If x ∈ FJ , then x ≥ j, j ∈ J, so σ (x) ≥ σ (j) = j (since j ∈ σ (A)) , hence σ (x) ∈
FJ . Therefore FJ is a state-filter of (A, σ) . Since (A, σ) is simple relative to its state-
filters set, and FJ 6= {1} (since J ⊆ FJ) , it follows that FJ = A, so 0 ∈ FJ , hence
0 ∈ J, that is, J = σ (A) .

¤

Remark 5.2. If (A, σ) is a simple state BL−algebra relative to its state-filters set,
then, since ker (σ) is a state filter and ker (σ) 6= A, it follows that ker (σ) = {1} , thus
σ is a faithful operator.

Remark 5.3. If (A, σ) is a simple state BL−algebra, then it doesn’t necessarly fol-
low that σ is faithful. For instance, for the simple state BL-algebra (A, σ) from the
Example 3.2 we have ker (σ) = {b, 1} 6= {1}.
Theorem 5.2. Let (A, σ) be a state BL− algebra. Then the following conditions are
equivalent:

(i) (A, σ) is simple relative to its state-filters set;
(ii) (A, σ) is simple and σ is faithful.
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Proof. (i) ⇒ (ii) Results from the Proposition 5.1 and the Remark 5.2.
(ii) ⇒ (i) Let I be a state-filter of (A, σ) . Then I ∩ σ (A) is a filter of σ (A) ,

and so I ∩ σ (A) = {1} or I ∩ σ (A) = σ (A) . If I ∩ σ (A) = σ (A), then σ (A) ⊆ I
and, since 0 ∈ σ (A) , we deduce that I = A. If I ∩ σ (A) = {1} , let x ∈ I. Then
σ (x) ∈ I ∩ σ (A) , so σ (x) = 1, that is, x = 1 (since σ is faithful) , so I = {1} .
Therefore the only state-filters of (A, σ) are {1} and A.

¤

Theorem 5.3. Let (A, σ) be a state-morphism BL−algebra. Then the following
conditions are equivalent:

(i) (A, σ) is simple relative to its state-filters set;
(ii) A is simple.

Proof. (i) ⇒ (ii) According to Theorem 5.2 it follows that (A, σ) is simple and σ is
faithful. According to Theorem 5.1 ker (σ) is a maximal state-filter of A. Let now F
be a filter of A, F 6= {1} . Since ker (σ) = {1} ⊆ F and ker (σ) is maximal, we deduce
that F = A, so A is simple.

(ii) ⇒ (i) Clearly. ¤

From of the Theorems 5.3 and 5.3 it follows:

Theorem 5.4. Let (A, σ) be a state-morphism BL−algebra and σ is faithful. Then
the following conditions are equivalent:

(i) A is simple;
(ii) (A, σ) is simple.

Proof. (i) ⇒ (ii) Results from the Remark 5.1.
(ii) ⇒ (i) If (A, σ) is simple, since σ is faithful, then from the Theorem 5.2 it follows

that (A, σ) is simple relative to its state-filters set and then, from the Theorem 5.3
we deduce that A is simple. ¤

Definition 5.3. A BL−algebra A is called local if it has only a maximal filter. A
state BL−algebra (A, σ) is called local if σ (A) is local.

Next we define a new concept:

Definition 5.4. A state BL−algebra (A, σ) is local relative to its state-filters set if
it has only a maximal state-filter.

Example 5.2. Let’s consider the BL−algebra A and the state-operator
σ : A → A from Example 3.2. Then A is local, (A, σ) is local and (A, σ) is local

relative to its state-filters set. In Example 3.3 the BL−algebra A is not local, but
(A, σ) is local relative to its state-filters set.

Theorem 5.5. Let (A, σ) be a state BL−algebra. Then the following conditions are
equivalent:

(i) (A, σ) is local relative to its state-filters set;
(ii) (A, σ) is local.

Proof. (i) ⇒ (ii) Let F be the only maximal state-filter of (A, σ) . Then F ∩σ (A) is a
filter of σ (A) . We will prove that F ∩σ (A) is the only maximal filter of σ (A) . If F ∩
σ (A) = σ (A) , then σ (A) ⊆ F, so 0 ∈ F, a contradiction. Let I be an arbitrary proper
filter of σ (A) . We consider the set Fσ (I) = {z ∈ A | z ≥ i, i ∈ I} ,which represents
the state–filter generated by I in (A, σ) . If Fσ (I) = A, then 0 ∈ Fσ (I) , so 0 ∈ I,
false. Then Fσ (I) is a proper state-filter, so Fσ (I) ⊆ F, that is,
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I = I ∩ σ (A) ⊆ Fσ (I) ∩ σ (A) ⊆ F ∩ σ (A) .
Then F ∩ σ (A) is a proper filter which contains any proper filter I of σ (A) , thus

it is the only maximal filter of σ (A) , so (A, σ) is local.
(ii) ⇒ (i) Let I be the only maximal filter of σ (A) and the set
Fσ (I) = {z ∈ A | z ≥ i, i ∈ I} , which represents the state–filter generated by I in

(A, σ) . Let F (I) = {F | F is a proper state-filter of (A, σ) and I ⊆ F} .
If Fσ (I) is not proper, then 0 ∈ Fσ (I) , so 0 ∈ I, false. Thus Fσ (I) ∈ F (I) ,

so F (I) is nonvoid. It is easily to verify that F (I) is inductively ordered, so by
Zorn’s Lemma then is F a maximal element of F (I) . We will prove that F is the
only maximal state-filter of (A, σ) . Indeed, let F1 be an arbitrary proper state-filter of
(A, σ) . Let’s suppose that there exists an element x ∈ F1�F. Then σ (x) ∈ F1∩σ (A) .
If F1 ∩ σ (A) = σ (A) it follows that σ (A) ⊆ F1, so 0 ∈ F1, a contradiction. Thus
F1 ∩ σ (A) 6= σ (A) , F1 ∩ σ (A) is a filter of σ (A) and, since I is a maximal filter of
σ (A) , it follows that F1 ∩ σ (A) ⊆ I, so σ (x) ∈ I.

Then σ (x) ∈ Fσ (I) , so σ (x) ∈ F. Since x /∈ F and F is a maximal state-filter,
then, according to Proposition 4.8, it follows that there exists n ∈ N∗ such that
(σ (x)n)∗ ∈ F.

But σ (x)n ∈ F, a contradiction. Thus F1 ⊆ F, so F is the only maximal state-filter
of (A, σ) , so (A, σ) is local relative to its state-filters set. ¤
Definition 5.5. A BL−algebra A is called semisimple if Rad (A) = {1} . Let (A, σ)
be a state BL−algebra. (A, σ) is called semisimple if Rad (σ (A)) = {1} .

Concerning all this, we are now going to define a new concept:

Definition 5.6. A state BL−algebra (A, σ) is called semisimple relative to its state-
filters set if Radσ (A) = {1} .

Example 5.3. Let’s consider the state BL−algebra (A, σ) from Example 3.2. The A
algebra is not semisimple, but (A, σ) is semisimple because Rad (σ (A)) = {1} . It is
not semisimple relative to its state-filters set.

The A algebras from Examples 3.3, 3.4 are semisimple, (A, σ) is not semisimple,
but they are semisimple relative to its state-filters set.

The A algebra from Example 3.5 is not semisimple, (A, σ) is not semisimple relative
to its state-filters set, but (A, σ) is semisimple.

The IÃL algebra from Proposition 3.1 is semisimple, and, since σ = idÃL, (IÃL , σ) is
semisimple and semisimple relative to its state-filters set.

Proposition 5.2. ([2]) Let (A, σ) be a state BL−algebra. Then
σ (Rad (A)) ⊇ Rad (σ (A)) = σ (Radσ (A)) .

Theorem 5.6. Let (A, σ) be a state BL−algebra. Then the following conditions are
equivalent:

(i) (A, σ) is semisimple and σ is faithful;
(ii) (A, σ) is semisimple relative to its state-filters set.

Proof. (i) ⇒ (ii) According to Proposition 5.2 we have σ (Radσ (A)) = Rad (σ (A)) =
{1} , so Radσ (A) ⊆ ker (σ) = {1} , that is, Radσ (A) = {1} .

(ii) ⇒ (i) Rad (σ (A)) = σ (Radσ (A)) = σ ({1}) = {1} , so (A, σ) is semisimple.
We will prove that σ is faithful. Let x ∈ ker (σ) , that is, σ (x) = 1. Let’s suppose
that x /∈ Radσ (A) .Then there exists a maximal state-filter F such that x /∈ F.
According to Proposition 4.4 there exists n ∈ N∗ such that (σ (x)n)∗ ∈ F, so 0 ∈ F, a
contradiction. Thus x ∈ Radσ (A) = {1} , so σ is faithful.

¤
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