A note on *BL*-algebras with internal state

NICOLAIE MIRCEA CONSTANTINESCU

Abstract. The scope of this paper is to put in evidence some properties of the *BL*-algebras with internal state. I introduce the concepts of prime and maximal state-filters, I prove a Prime state-filter theorem 4.7 and I characterize the set $\text{Rad}_\sigma(A)$, which represents the intersection of all maximal state-filters of a state *BL*-algebra (A,σ). Also, I introduce the concepts of simple, semisimple and local state *BL*-algebras relative to its state-filter set.

2010 Mathematics Subject Classification. Primary 03B50; Secondary 03G25.

Key words and phrases. *BL*-algebra, state *BL*-algebra, state-operator, filter, state-filter.

1. Introduction

The concept of state *MV*-algebras was firstly introduced by Flaminio and Montagna in [4] and [5] as a *MV*-algebra endowed with a unary operation σ (called a state-operator), which preserves the usual properties of states. Di Nola and Dvurečenskij presented in [6] a stronger version of states *MV*-algebras namely state-morphism *MV*-algebras. Afterwards Ciungu, Dvurečenskij and Hyčko extended in [2] the concept of state (morphism) *MV*-algebra and in the case of *BL*-algebras and they extended the properties of a state-operator. The present article is structured into five sections.

In Section 2, basic properties regarding the concepts of *MV*-algebra, *BL*-algebra are being presented, as well as some basic properties of the operations defined on these algebras, which are to be used afterwards. The concept of state (morphism) --operator on a *BL*-algebra also belongs to this section, as well some of its properties.

In Section 3 some examples of state *BL*-algebras are presented. In Section 4 the concept of state-filter on a state *BL*-algebra is introduced. There are presented some examples of filters and state-filters, as well as the concepts of maximal state-filter, prime state-filter, some of their characteristics and, if the state-operator σ is a morphism, the set $\text{Rad}_\sigma(A)$ is characterised, in which $\text{Rad}_\sigma(A)$ represents the intersection of all maximal state-filters of a state *BL*-algebra (A,σ).

In Section 5, there are presented some classes of *BL*-algebras such as simple, semisimple and local as well as simple, semisimple and local state *BL*-algebras. There are introduced the concepts of simple, semisimple and local state *BL*-algebras relative to its state-filters set and there are established relations between these structures in certain conditions imposed to the state-operator σ.

2. Preliminaries

Definition 2.1. An algebra $(A,\land,\lor,\circ,\rightarrow,0,1)$ of the type $(2,2,2,2,0,0)$ is called a *BL*-algebra if satisfies the following axioms:
(1) \((A, \wedge, \lor, 0, 1)\) is a bounded lattice;
(2) \((A, \circ, 1)\) is a commutative monoid;
(3) \(x \circ y \leq z\) if and only if \(x \leq y \rightarrow z\);
(4) \(x \wedge y = x \circ (x \rightarrow y)\);
(5) \((x \rightarrow y) \lor (y \rightarrow x) = 1\);
for every \(x, y, z \in A\).

We will denote \(x^* = x \rightarrow 0\), \(x, y \in A\). If \(x \in A\), we define \(x^0 = 1\) and for \(n \geq 1\) we define \(x^n = x^{n-1} \circ x\).

Definition 2.2. Let \(A\) be a BL–algebra and \(x \in A\). If there exists the least number \(n \in \mathbb{N}^*\) such that \(x^n = 0\), then we set \(\text{ord}(x) = n\). If there is no such a number (that is, \(x^n > 0\) for every \(n \geq 0\)), then we set \(\text{ord}(x) = \infty\).

We recall some results relative to BL–algebras:

Proposition 2.1. Let \(A\) be a BL–algebra. Then:
(1) if \(a \leq b\) and \(c \leq d\) then \(a \circ c \leq b \circ d\);
(2) \(a \circ (b \lor c) = (a \circ b) \lor (a \circ c)\);
(3) \(a \lor (b \circ c) \geq (a \lor b) \circ (a \lor c)\);
(4) \(a^m \lor b^n \geq (a \lor b)^{mn}, m, n \in \mathbb{N}\);
(5) \((a \circ b)^* = a \rightarrow b^*\);
(6) \(a \circ (a \rightarrow (a \circ b)) = a \circ b\); for every \(a, b, c \in A\).

Definition 2.3. An algebra \((A, \oplus, 0)\) of the type \((2, 1, 0)\) is called a MV–algebra if satisfies the following axioms:
(1) \((A, \oplus, 0)\) is a commutative monoid;
(2) \(x^{**} = x\), for every \(x \in A\);
(3) \(x \oplus 0^* = 0^*, for every x \in A\);
(4) \((x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x\), for every \(x, y \in A\).

On a BL–algebra \((A, \land, \lor, \circ, \rightarrow, 0, 1)\) we define the operation \(\oplus\) on \(A\) by \(x \oplus y = (x^* \land y^*)^*, x, y \in A\). If \(x^{**} = x\), for every \(x \in A\), then \((A, \oplus, 0)\) becomes a MV–algebra. We are now defining the concept of state-operator on a BL–algebra.

Definition 2.4. [2] Let \(A\) be a BL–algebra. An application \(\sigma : A \rightarrow A\) which verifies the properties:
(1) \(_{BL} \sigma(0) = 0\);
(2) \(_{BL} \sigma(x \rightarrow y) = \sigma(x) \rightarrow \sigma(x \land y)\);
(3) \(_{BL} \sigma(x \circ y) = \sigma(x) \circ \sigma(x \rightarrow x \circ y)\);
(4) \(_{BL} \sigma(\sigma(x) \circ \sigma(y)) = \sigma(x) \circ \sigma(y)\);
(5) \(_{BL} \sigma(\sigma(x) \rightarrow \sigma(y)) = \sigma(x) \rightarrow \sigma(y)\);
for every \(x, y \in A\), is called state-operator on \(A\), and the pair \((A, \sigma)\) is called a state BL–algebra or, more precisely, a BL–algebra with internal state.

Some examples of state-operators will be presented in Section 3.

Proposition 2.2. [2] In a state BL–algebra \((A, \sigma)\) the following hold:
(a) \(\sigma(1) = 1\);
(b) \(\sigma(x^*) = \sigma(x)^*\), for every \(x \in A\);
(c) if \(x, y \in A\) and \(x \leq y\) then \(\sigma(x) \leq \sigma(y)\);
(d) \(\sigma(x \circ y) \geq \sigma(x) \circ \sigma(y)\), for every \(x, y \in A\);
(e) \(\sigma(x \rightarrow y) \leq \sigma(x) \rightarrow \sigma(y)\), for every \(x, y \in A\);
(f) $\sigma (\sigma (x)) = \sigma (x)$, for every $x \in A$;

(g) $\sigma (A)$ is a BL-subalgebra of A and $\sigma (A) = \{ x \in A \mid \sigma (x) = x \}$.

Definition 2.5. [2] A state-morphism operator on a BL-algebra A is an application $\sigma : A \to A$ which verifies $(1)_{BL}$, $(2)_{BL}$, $(4)_{BL}$, $(5)_{BL}$ and $(6)_{BL}$ $\sigma (x \circ y) = \sigma (x) \circ \sigma (y)$, for every $x, y \in A$.

Remark 2.1. Any state-morphism operator σ on a BL-algebra A is a state-operator on A. Indeed, by using $(6)_{BL}$ we have:

$\sigma (x) \circ \sigma (x \circ y) = \sigma (x \circ (x \circ y)) = \sigma (x \circ y)$, according to Proposition 2.1.

If σ is a state-operator on A, we define $\ker (\sigma) = \{ x \in A \mid \sigma (x) = 1 \}$.

Definition 2.6. A state-operator $\sigma : A \to A$ is called faithful iff $\ker (\sigma) = 1$.

3. Examples of state-operators on BL-algebras

Example 3.1. If A is a BL-algebra, then $\sigma : A \to A$, defined by $\sigma (x) = x$, for every $x \in A$, is a state-operator on A, called the identity state-operator on A. Thus (A, id_A) is a state BL-algebra.

Example 3.2. [2] Let $A = \{0, a, b, 1\}$ be with $0 < a < b < 1$.

Then $(A, \wedge, \vee, \circ, \to, 0, 1)$ with the following operations:

\[
\begin{array}{c|cccc}
\circ & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a \\
b & 0 & 0 & b & b \\
c & 0 & a & 0 & a \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\to & 0 & a & b & 1 \\
\hline
0 & 1 & 1 & 1 & 1 \\
a & a & 1 & 1 & 1 \\
b & b & 0 & a & 1 \\
c & 1 & 0 & a & 1 \\
\end{array}
\]

it becomes a BL-algebra, but not a MV-algebra (since $b^{**} = 1 \neq b$).

The fact that $\sigma : A \to A$, given by $\sigma (0) = 0, \sigma (a) = a, \sigma (b) = \sigma (1) = 1$, is a state-operator on A, is verified. Moreover, $(6)_{BL}$ holds, so σ is a state-morphism operator on A.

Example 3.3. [3] Let $A = \{0, a, b, c, d, 1\}$, with the operations \circ and \to given by the following tables:

\[
\begin{array}{c|cccc}
\circ & 0 & a & b & c & d & 1 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a & 0 & a \\
b & 0 & 0 & 0 & b & b & b \\
c & 0 & a & 0 & a & b & c \\
d & 0 & b & b & d & d & d \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\to & 0 & a & b & c & d & 1 \\
\hline
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & 0 & a & c & c & c & 1 \\
b & 0 & a & c & c & c & 1 \\
c & 0 & a & c & c & c & 1 \\
d & 0 & a & c & c & c & 1 \\
\end{array}
\]

Then the BL-algebra $(A, \wedge, \vee, \circ, \to, 0, 1)$ is a MV-algebra.

We will determine the state-operators on A. Let $\sigma : A \to A$ be a state-operator.

From $(1)_{BL}$ we have $\sigma (c \to a) = \sigma (c) \to \sigma (a)$, so

$\sigma (c) = \sigma (c) \to \sigma (a)$. From the table of the operation \to we deduce that the equation $x = x \to y$ has only the solutions $x = c, y = a$ and $x = y = 1$.

In the first case we have $\sigma (c) = c$ and $\sigma (a) = a$ and then

$\sigma (d) = \sigma (a^*) = \sigma (a)^* (\text{according to the Proposition 2.2, (b)}) = a^* = d$, and $\sigma (b) = \sigma (c^*) = \sigma (c)^* = b$, so $\sigma = id_A$. In the second case we have $\sigma (c) = \sigma (a) = 1$, and then $\sigma (d) = \sigma (a)^* = 0, \sigma (b) = \sigma (c)^* = 0$, thus
\(\sigma(0) = \sigma(b) = \sigma(d) = 0\) and \(\sigma(c) = \sigma(a) = 1\), which verifies \((1)_{BL} - (6)_{BL}\), so this is also a state-morphism operator.

Example 3.4. [3] Let \(A = \{0, a, b, c, d, 1\}\), with the following tables of operations:

<table>
<thead>
<tr>
<th>(\odot)</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

Then it becomes a BL-algebra, which is a MV-algebra. Let \(\sigma : A \rightarrow A\) be a state-operator. As in the Example 3.3 we have

\(\sigma(d \rightarrow c) = \sigma(d) \rightarrow \sigma(d \land c) = \sigma(d) \rightarrow \sigma(c) = \sigma(c)\). Since the equation \(x = x \rightarrow y\) has only the solutions \(x = d\), \(y = c\) and \(x = y = 1\) we obtain \(\sigma(d) = d, \sigma(c) = c\) or \(\sigma(d) = \sigma(c) = 1\). In the first case we have \(\sigma = \text{id}_A\), and in the second case we have \(\sigma(a) = \sigma(b) = \sigma(0) = 0\) and \(\sigma(c) = \sigma(d) = \sigma(1) = 1\), both operators being state-morphism operators.

Example 3.5. [3] Let \(A = \{0, c, a, b, 1\}\), in which \(0 < c < a, b < 1\) and \(a, b\) are incomparable, with the following tables of operations:

<table>
<thead>
<tr>
<th>(\odot)</th>
<th>0</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

The application \(\sigma : A \rightarrow A\), given by \(\sigma(0) = 0\) and \(\sigma(x) = 1\) otherwise, is a state-morphism operator.

We recall that a \(t\)-norm is a function \(t : [0,1] \times [0,1] \rightarrow [0,1]\), which verifies the conditions:

1. \(t(x, y) = t(y, x)\), for every \(x, y \in [0,1]\);
2. \(t(t(x, y), z) = t(x, t(y, z))\), for every \(x, y, z \in [0,1]\);
3. \(t(x, 1) = x\), for every \(x \in [0,1]\);
4. \(t(x, y) \leq \min\{x, y\}, x \in [0,1]\).

If \(t\) is continuous, we define \(x \odot_t y = t(x, y)\) and \(x \rightarrow_t y = \sup\{z \in [0,1] \mid t(x, z) \leq y\}\), for \(x, y \in [0,1]\). In these conditions \(I_t = ([0,1], \min, \max, \odot_t, \rightarrow_t, 0, 1)\) is a BL-algebra. Moreover, according to [1], the variety of BL-algebras is generated by all the \(I_t\), with a continuous norm \(t\). There are three basic continuous \(t\)-norms on \([0,1]\):

1. \(\text{Łukasiewicz}: L(x, y) = \max\{x + y - 1, 0\}\), with \(x \rightarrow_L y = \min\{1 - x + y, 1\}\);
2. \(\text{Gödel}: G(x, y) = \min\{x, y\}\), with \(x \rightarrow_G y = 1\) if \(x \leq y\) and \(x \rightarrow_G y = y\) otherwise;
3. \(\text{product}: P(x, y) = xy\), with \(x \rightarrow_P y = 1\) if \(x \leq y\) and \(x \rightarrow_P y = \frac{y}{x}\) otherwise.

Then we have:

Proposition 3.1. [2]

1. If \(\sigma\) is a state-operator on \(I_t\), then \(\sigma(x) = x\), for every \(x \in [0,1]\).
2. Let \(a \in [0,1]\) and we define \(\sigma_a(x) = x\) if \(x \leq a\) and \(\sigma_a(x) = 1\) otherwise. For \(a \in [0,1]\) we define the application \(\sigma_a(x) = x\) if \(x < a\) and \(\sigma_a(x) = 1\) otherwise.
Let σ_a be state-morphism operators on I_G and, if σ is a state-operator on I_G, then $\sigma = \sigma_a$ or $\sigma = \sigma^a$ for a certain $a \in [0, 1]$.

(3) If σ is a state-operator 1_P, then $\sigma(x) = x$, for every $x \in [0, 1]$ or $\sigma(x) = 1$, for every $x > 0$.

Proposition 3.2. [2] Let A be a finite linear Gödel BL-algebra, that is, $x^2 = x$, for every $x \in A$. Then, with the notations from Proposition 3.1 σ^a and σ_0 are state-morphism operators, and any state-operator on A is of the form σ^a or σ_0, for a certain $a \in [0, 1]$.

Actually we have the following more general result:

Proposition 3.3. Let A be a linear Gödel BL-algebra and $B \subseteq A$ such that $0 \in B, 1 \notin B$ and, if $x \in B$, $y \in A \setminus B$, then $x < y$. Then the application $\sigma_B : [0, 1] \rightarrow [0, 1]$, given by $\sigma_B(x) = x$ if $x \in B$ and $\sigma_B(x) = 1$ otherwise, is a state-morphism operator on A, and, conversely, any state-operator on A is of such a form.

Proof. Firstly we observe that, if $x, y \in A$ then

\[x \circ y \geq x \circ (x \land y) = x \circ (x \land (x \lor y)) = x \circ (x \lor y) = x \circ (x \land y) = x \circ (x \land y) \]

\[x \lor y \geq x \land y, \text{ so } x \land y = x \land y = \min \{x, y\}, \text{ for every } x, y \in A. \]

Then $x \lor y = \sup \{z \in A \mid x \land z \leq y\} = \sup \{z \in A \mid x \land z \leq y\}.$

If $x < y$, then $x \lor y = 1.$

If $x > y$, then $\sup \{z \in A \mid x \land z \leq y\} = \sup \{z \in A \mid x \land z \leq y\} = y.$

We will verify the $(1)_{BL} - (5)_{BL}$ axioms. Since $0 \in B$ we have that $\sigma_B(0) = 0$, so the $(1)_{BL}$ is proved.

If $x, y \in B$, then we have: $\sigma_B(x \lor y) = 1 = \sigma_B(x) \lor \sigma_B(y),$ if $x < y$, and, if $x > y$ we have $\sigma_B(x \lor y) = \sigma_B(y),$ and $\sigma_B(x) \lor \sigma_B(y) = x \lor y = x \land y = x \lor y.$

If $x, y \in A \setminus B$, then, since $y \leq x \lor y$, it follows that $x \lor y \in A \setminus B,$ so $\sigma_B(x \lor y) = 1$, and $\sigma_B(x) \lor \sigma_B(y) = 1$ (since $x \land y \in A \setminus B$).

If $x \in B, y \in A \setminus B$, then $\sigma_B(x \lor y) = \sigma_B(1) = 1 = \sigma_B(x) \lor \sigma_B(y).$

If $y \in B, x \in A \setminus B$, then $\sigma_B(x \lor y) = \sigma_B(y) = y$ and $\sigma_B(x) \lor \sigma_B(y) = 1 \lor y = y,$ so we have an equality again.

Thus $(2)_{BL}$ is proved.

We will now prove $(6)_{BL},$ which means that, according to the Remark 2.1

$(3)_{BL}$ is proved. Indeed, if $x, y \in B$, then $x \lor y = \min \{x, y\} \in B,$ so $\sigma_B(x \lor y) = x \lor y = \sigma_B(x) \lor \sigma_B(y).$ If $x, y \in A \setminus B$, then $x \lor y = \min \{x, y\} \in A \setminus B$, so $\sigma_B(x \lor y) = 1 = \sigma_B(x) \lor \sigma_B(y).$ Thus $(6)_{BL}$ is fulfilled.

If $x \in B$, then $\sigma_B(\sigma_B(x)) = \sigma_B(x),$ and if $x \in A \setminus B$, then we have $\sigma_B(\sigma_B(x)) = \sigma_B(1) = 1 = \sigma_B(x) \lor \sigma_B(\sigma_B(x)) = \sigma_B(x),$ for all $x \in A.

Then $\sigma_B(\sigma_B(x) \lor \sigma_B(y)) = \sigma_B(\sigma_B(x \lor y))$ (according to $(6)_{BL}) = \sigma_B(x \lor y) = \sigma_B(x) \lor \sigma_B(y),$ for all $x, y \in A,$ so $(4)_{BL}$ is verified.

In order to complete the first part of the proof, we still have to verify $(5)_{BL},$ Indeed, if $x, y \in B$, then $\sigma_B(\sigma_B(x) \lor \sigma_B(y)) = \sigma_B(x \lor y),$ and $\sigma_B(x \lor \sigma_B(y)) = x \lor y.$

If $x \leq y$, then $x \lor y = 1,$ so $\sigma_B(x \lor y) = x \lor y.$ If $x > y$, $x \lor y = y,$ and $\sigma_B(x \lor y) = \sigma_B(y) = y$, so equality once more. Let’s now suppose that $x, y \in A \setminus B.$ Then $\sigma_B(\sigma_B(x) \lor \sigma_B(y)) = \sigma_B(1) = 1 \lor \sigma_B(x) \lor \sigma_B(y).$

If $x \in B, y \in A \setminus B$, then $\sigma_B(\sigma_B(x) \lor \sigma_B(y)) = \sigma_B(x) \lor 1 = \sigma_B(x) \lor \sigma_B(y).$
Finally, if \(y \in B, x \in A \setminus B \), then \(\sigma_B (\sigma_B (x) \rightarrow \sigma_B (y)) = \sigma_B (1 \rightarrow y) = \sigma_B (y) = \sigma_B (x) \rightarrow \sigma_B (y) \).

Conversely, let \(\sigma \) be a state-operator on \(A \) and let \(a \in (0,1) \).

We are going to prove \(\sigma (a) = a \) or \(\sigma (a) = 1 \). Let’s suppose that \(\sigma (a) < a \).

Then, according to (2)\(_{BL} \), \(\sigma (a \rightarrow \sigma (a)) = \sigma (a) \rightarrow (\sigma (a) \land \sigma (a)) = \sigma (a) \rightarrow \sigma (a) = a \).

But \(a \rightarrow \sigma (a) = \sigma (a) \), so \(\sigma (a \rightarrow \sigma (a)) = \sigma (a) \), so \(\sigma (a) = 1 \), a contradiction. If \(a < \sigma (a) \), then, from (2)\(_{BL} \), we have \(\sigma (\sigma (a) \rightarrow a) = (\sigma (\sigma (a)) \rightarrow \sigma (\sigma (a) \land a)) = \sigma (a) \rightarrow \sigma (a) = a \).

Let \(B = \{a \in [0,1) \mid \sigma (a) = a\} \). Then \(\sigma (x) = x \), if \(x \in B \), and \(\sigma (x) = 1 \), if \(x \in A \setminus B \). Obviously \(0 \in B, 1 \notin B \). Let \(x \in B, y \in A \setminus B \). If \(y \preceq x \), then \(\sigma (y) \preceq \sigma (x) \), that is \(1 \preceq x \), a contradiction. So \(x < y \). Thus \(\sigma = \sigma_B \), in which \(B \) fulfills the conditions from the enunciation. \(\square \)

Example 3.6. [2] Let \(A \) be a \(BL \)-algebra. Then \((A \times A, \land, \lor, \& , \rightarrow, 0, 1)\) becomes a \(BL \)-algebra, where \((a, b) \leq (c, d)\) if \(a \leq c \) and \(b \leq d \), and the operations are defined on the components. Let \(\sigma : A \times A \rightarrow A \times A \) be, defined by \(\sigma (a, b) = (a, a) \), for every \((a, b) \in A \times A \). It is easily to prove that \(\sigma \) is a state-morphism operator on \(A \times A \).

4. Filters and state-filters

Definition 4.1. Let \(A \) be a \(BL \)-algebra. A nonvoid subset \(F \subseteq A \) is called a filter if the following conditions are verified:

1. \(x, y \in F \) implies \(x \circ y \in F \);
2. \(x \in F \) and \(x \preceq y \) implies \(y \in F \).

A proper filter of \(A \) is called a maximal filter if it doesn’t belong to any other proper filter of \(A \). The intersection all the maximal filters of \(A \) is denoted by \(\text{Rad} (A) \).

Definition 4.2. [2] Let \((A, \sigma)\) be a state (morphism) \(BL \)-algebra. A nonvoid subset \(F \subseteq A \) is called a state (morphism) – filter of \((A, \sigma)\), if \(F \) is a filter of \(A \) with the property that if \(x \in F \), then \(\sigma (x) \in F \). A proper state-filter of \((A, \sigma)\) is called a maximal state-filter if it doesn’t belong to any other proper state-filter of \((A, \sigma)\). The intersection all the maximal state-filters of \((A, \sigma)\) is denoted by \(\text{Rad}_\sigma (A) \).

Example 4.1. If we consider the Example 3.1 then the filters of \(A \) and the state-filters of \((A, \sigma)\) are the same.

For \(A \) the \(BL \)-algebra from Example 3.2 the filters are \(\{1\}, \{b, 1\}, A \), and the state-filters of \((A, \sigma)\) are \(\{1\}, \{b, 1\}, A \). The (state)filter \(\{b, 1\} \) is a maximal (state)filter.

In this case \(\text{Rad} (A) = \text{Rad}_\sigma (A) = \{b, 1\} \).

Let’s now consider \(A \) the \(BL \)-algebra from Example 3.3 and the state-operator \(\sigma : A \rightarrow A \), defined by \(\sigma (0) = \sigma (b) = \sigma (d) = 0, \sigma (a) = \sigma (c) = 1 \). The filters of \(A \) are \(\{1\}, \{d, 1\}, \{a, c, 1\}, A \), and the state-filters of \((A, \sigma)\) are \(\{1\}, \{a, c, 1\}, A \). The \(BL \)-algebra \(A \) has two maximal filters: \(\{d, 1\} \) and \(\{a, c, 1\} \). There exists only an maximal state-filter of \((A, \sigma)\), namely \(\{a, c, 1\} \). In this case we have \(\text{Rad} (A) = \{1\}, \) and \(\text{Rad}_\sigma (A) = \{a, c, 1\} \).

Let’s now the \(BL \)-algebra from Example 3.4 and the state-operator \(\sigma : A \rightarrow A \), defined by \(\sigma (d) = \sigma (c) = \sigma (1) = 1, \sigma (a) = \sigma (b) = \sigma (0) = 0 \). The filters of \(A \) are \(\{1\}, \{b, 1\}, \{c, d, 1\}, A \), and the state-filters of \((A, \sigma)\) are \(\{1\}, \{c, d, 1\}, A \). There are two maximal filters, namely \(\{b, 1\} \) and \(\{c, d, 1\} \), so \(\text{Rad} (A) = \{1\}, \) and a single maximal state-filter, \(\{c, d, 1\} \), so \(\text{Rad}_\sigma (A) = \{c, d, 1\} \).
For a the BL-algebra from Example 3.5 and the state-operator $\sigma : A \to A$, defined
by $\sigma (0) = 0$ and $\sigma (x) = 1$ otherwise, the filters and the state-filters are the same:
$\{1\}, \{a, 1\}, \{b, 1\}, \{c, a, b, 1\}, A$. We have $Rad (A) = Rad \sigma (A) = \{c, a, b, 1\}$. For the
algebra I_L, since $ord (x) < \infty$, for every $x \neq 1$, the only filters are $\{1\}$ and $\{0, 1\}$. Since
the single state-operator on I_L is id_L, these are also the only state-filters.

In the case of the algebra I_G, the filters are the sets of the form $\{x, 1\}$ or $\{x, 1\}$, where
$x \in \{0, 1\}, I_G$ has an only maximal filter, namely $\{0, 1\}$. According to Proposition
3.1(2) if σ is a state-operator on I_G, then $\sigma = \sigma^a$ or $\sigma = \sigma_a$ (with those notations).
For any of these state-operators, the state-filters and the filters of I_G are the same.

In the case of the algebra I_P, since $ord (x) < \infty$, for every $x \neq 1$, the only filters are
$\{1\}$ and $\{0, 1\}$, which are therefore the only state-filters.

Proposition 4.1. Let A and B be two BL-algebras and let us consider $A \times B$ the
BL-algebra product of A and B. If F_1, F_2 are filters of A, respectively B, then $F_1 \times F_2$
is a filter of $A \times B$ and, conversely, any filter of $A \times B$ is of the form $F_1 \times F_2$, where
F_1, F_2 are filters of A, respectively B.

Proof. If F_1, F_2 are filters of A, respectively B, then it is immediate that $F_1 \times F_2$
is a filter of $A \times B$. Conversely, let F be a filter of $A \times B$. Since F is nonvoid,
then the sets $F_1 := \{x \in A \mid \text{there exists } y \in B \text{ such that } (x, y) \in F\} \subseteq A$ and $F_2 :=
\{y \in B \mid \text{there exists } x \in A \text{ such that } (x, y) \in F\} \subseteq B$ will be too.

We are going to prove that F_1, F_2 are filters and $F = F_1 \times F_2$. Indeed, if $a, b \in F_1$,
then there exists $c, d \in B$ such that $(a, c), (b, d) \in F$, so $(a \circ b, c \circ d) \in F$, so
$a \circ b \in F_1$. If $a \in F_1$ and $a \leq c$, then, since there exists $b \in B$ such that $(a, b) \in F$
and since $(a, b) \leq (c, b)$, it follows that $(c, b) \in F$, therefore $c \in F_1$. Thus F_1 is a filter
and analogously it shows that F_2 is a filter. Let $(a, b) \in F$. Then $a \in F_1, b \in F_2$, so
$(a, b) \in F_1 \times F_2$, so $F \subseteq F_1 \times F_2$. Let's now $(a, b) \in F_1 \times F_2$. Since $a \in F_1, b \in F_2$,
there exist $x \in A, y \in B$ such that $(a, y), (x, b) \in F$. Then $(a, 1), (1, b) \in F$ and so
$(a \circ 1, 1 \circ b) \in F$, that is, $(a, b) \in F$, therefore $F_1 \times F_2 \subseteq F$. Thus $F = F_1 \times F_2$.

Let's now consider an BL-algebra A which contains proper filters and the state-operator $\sigma : A \times A \to A \times A, \sigma (a, b) = (a, a)$, for every $(a, b) \in A \times A$, from the
Example 3.6. According to Proposition 4.1 any filter of $A \times A$ is of the form $F_1 \times F_2$, with
F_1, F_2 filters of A. If $F_1 \times F_2$ is a state-filter of $(A \times A, \sigma)$, then $F_1 \subseteq F_2$. Indeed,
let $a \in F_1$. Then $(a, 1) \in F_1 \times F_2$, so $\sigma (a, 1) = (a, a) \in F_1 \times F_2$ that is, $a \in F_2$.

Conversely, if $F_1 \times F_2$ is a filter of $A \times A$ such that $F_1 \subseteq F_2$, and $(a, b) \in F_1 \times F_2$,
then $\sigma (a, b) = (a, a) \in F_1 \times F_2$, so the state-filters of $(A \times A, \sigma)$ are the sets of the form
$F_1 \times F_2$, in which F_1, F_2 are filters of A with $F_1 \subseteq F_2$.

Remark 4.1. [2] Let A be a BL-algebra and σ a state-operator on A. Then $\ker (\sigma)$
is a state-filter of (A, σ).

Proposition 4.2. [2] Let A be a BL-algebra. A proper filter F of A is a maximal
filter iff for any $a \notin F$, there exists $n \in \mathbb{N}^*$ such that $(a^n)^* \in F$.

Proposition 4.3. [7] Let A be a BL-algebra. Then $Rad (A) = \{x \in A \mid (x^n)^* \leq x, \text{ for every } n \in \mathbb{N}\}$.

Proposition 4.4. [2] Let (A, σ) be a state BL-algebra and $X \subseteq A$. Then the state-
filter $F_\sigma (X)$ generated by X is the set
$\{x \in A \mid x \geq (x_1 \circ \sigma (x_1))^{n_1} \circ ... \circ (x_k \circ \sigma (x_k))^{n_k}, x_i \in X, n_i \geq 1, k \geq 1\}$.
If F is a state-filter of (A, σ) and $a \notin F$, then the state-filter generated by F and a is the set $F_a(F, a) = \{x \in A \mid x \geq i \circ (a \circ \sigma(a))^n, i \in F, n \geq 1\}$. A proper state-filter F is a maximal state-filter iff for any $a \notin F$ there exists $n \in \mathbb{N}^\ast$ such that $(\sigma(a))^n \in F$.

In what follows we will introduce the concept of a prime state-filter, we will establish some results related to this concept on the basis of which we are going to characterise the set $Rad_\sigma(A)$, in the case of a state-morphism BL–algebra (A, σ).

Proposition 4.5. Let (A, σ) be a state BL–algebra and P a proper state-filter of (A, σ). Then the following statements are equivalent:

(i) If P_1, P_2 are two state-filters of (A, σ) such that $P = P_1 \cap P_2$, then $P = P_1$ or $P = P_2$;

(ii) If $(a \circ \sigma(a)) \lor (b \circ \sigma(b)) \in P$, $a, b \in A$, then $a \in P$ or $b \in P$.

Proof. (i) \Rightarrow (ii). Let $a, b \in A$ such that $(a \circ \sigma(a)) \lor (b \circ \sigma(b)) \in P$. We consider the sets $F_n(P, a) = \{x \in A \mid x \geq i \circ (a \circ \sigma(a))^n, i \in F, n \geq 1\}$ and $F_n(P, b) = \{x \in A \mid x \geq i \circ (b \circ \sigma(b))^n, i \in F, n \geq 1\}$, which represent state-filters generated by P and a, respectively P and b (according to Proposition 4.4).

Obviously, $P \subseteq F_n(P, a) \cap F_n(P, b)$. If $x \in F_n(P, a) \cap F_n(P, b)$, then there exist $i_1, i_2 \in P$ and $m, n \in \mathbb{N}^\ast$ such that $x \geq i_1 \circ (a \circ \sigma(a))^m$ and $x \geq i_2 \circ (b \circ \sigma(b))^n$, so $x \geq (i_1 \circ (a \circ \sigma(a))^m) \lor (i_2 \circ (b \circ \sigma(b))^n) \geq (i_1 \lor i_2) \circ ((a \circ \sigma(a))^m \lor (b \circ \sigma(b))^n)$ (according to Proposition 2.1, (3))

$\geq (i_1 \lor i_2) \circ (i_1 \lor i_2) \circ ((a \circ \sigma(a))^m \lor (b \circ \sigma(b))^n)$ (according to Proposition 2.1, (4)).

But $i_1 \lor i_2, i_1 \lor (b \circ \sigma(b))^n, i_2 \lor (a \circ \sigma(a))^m$ and $(a \circ \sigma(a))^m \lor (b \circ \sigma(b))^n$ belong to P, and then it follows that $x \in P$. Thus $P = F_n(P, a) \cap F_n(P, b)$, and, from the hypothesis, we obtain that $P = F_n(P, a)$ or $P = F_n(P, b)$, that is, $a \in P$ or $b \in P$.

(ii) \Rightarrow (i). Let P_1, P_2 be two state-filters of (A, σ) such that $P = P_1 \cap P_2$. Let’s suppose that $P \neq P_1$ and $P \neq P_2$. Then there exist $a \in P \setminus P_1$ and $b \in P \setminus P_2$. Then $a \circ \sigma(a) \in P_1, b \circ \sigma(b) \in P_2$, so $(a \circ \sigma(a)) \lor (b \circ \sigma(b)) \in P_1 \cap P_2 = P$, hence $a \in P$ or $b \in P$, a contradiction. Therefore $P = P_1$ or $P = P_2$.

Definition 4.3. Let (A, σ) be a state BL–algebra. A proper state-filter P of (A, σ) is called a prime state-filter if it verify one of the equivalent conditions from the Proposition 4.5.

Proposition 4.6. Let (A, σ) be a state BL–algebra. Then any maximal state-filter of (A, σ) is a prime state-filter.

Proof. Let F be a maximal state-filter of (A, σ) and P_1, P_2 two state-filters such that $F = P_1 \cap P_2$. If $F \neq P_1$, then F is strictly contained in P_1, and, since F is a maximal state-filter, it follows that $P_1 = A$. Then $F = A \cap P_2 = P_2$. Therefore F is a prime state-filter.

Definition 4.4. Let (A, σ) be a state BL–algebra. A nonvoid subset I of A is called state-ideal if the following conditions are verified:

(1) $a, b \in I$ implies $a \circ b \in I$;

(2) $a \in I, b \leq a$ implies $b \in I$;

(3) $a \in I$ implies $\sigma(a) \in I$.
Proposition 4.7. (Prime state-filter theorem) Let I be a state-ideal and F a state-filter on a state BL-algebra (A, σ) such that $F \cap I = \varnothing$. Then there is a prime state-filter P such that $F \subseteq P$ and $P \cap I = \varnothing$.

Proof. Consider the set

$$F(F) = \{ F' \mid F' \text{ is a state-filter such that } F \subseteq F' \text{ and } F' \cap I = \varnothing \}.$$

Since $F \in F(F)$, it follows that $F(F)$ is nonvoid. It is easily to prove that the set $F(F)$ is inductively ordered, so, by Zorn's Lemma in $F(F)$ then is P a maximal element. I want to prove that P is a prime state-filter. Since $P \in F(F)$, it follows that P is a proper state-filter and $P \cap I = \varnothing$.

Let $a, b \in A$ such that $(a \circ \sigma(a)) \cup (b \circ \sigma(b)) \in P$. Let's suppose that $a \notin P$ and $b \notin P$. Consider the sets $F_{\sigma}(P, a) \cup F_{\sigma}(P, b)$, which represent state-filters generated by P and a, respectively P and b. Then P is strictly contained in $F_{\sigma}(P, a)$ and $F_{\sigma}(P, b)$ and, by the maximality of P, we deduce that $F_{\sigma}(P, a) \notin F(F)$ and $F_{\sigma}(P, b) \notin F(F)$. Thus $F_{\sigma}(P, a \cup b) \cap I \notin \varnothing$ and $F_{\sigma}(P, b \cup a) \cap I \notin \varnothing$. Let $x \in F_{\sigma}(P, a) \cap I$ and $y \in F_{\sigma}(P, b) \cap I$. Then there exist $i_1, i_2 \in P$ and $m, n \in \mathbb{N}$ such that $x \geq i_1 \circ (a \circ \sigma(a))^m$ and $y \geq i_2 \circ (b \circ \sigma(b))^n$, so $x \lor y \geq (i_1 \circ (a \circ \sigma(a))^m) \lor (i_2 \circ (b \circ \sigma(b))^n) \geq (i_1 \land i_2) \circ (i_1 \lor (b \circ \sigma(b))^n) \lor (i_2 \lor (a \circ \sigma(a))^m) \lor (x \circ \sigma(a)) \lor (b \circ \sigma(b))^n \in P$, that is, $x \lor y \in P$. But $x, y \notin I$, so $x \lor y \notin I$, hence $P \cap I \notin \varnothing$, a contradiction.

Thus P is a prime state-filter.

□

Proposition 4.8. Let (A, σ) be a state BL-algebra and $a \in A, a < 1$. Then there exists a prime state-filter P of (A, σ) such that $a \notin P$.

Proof. Like in the Proposition 4.7 we consider the set

$$F(a) = \{ F \mid F \text{ is a state-filter and } a \notin F \}.$$

Since $\{ 1 \} \notin F(a)$, it follows that $F(a)$ is nonvoid.

We can easily prove that the set $F(a)$ is inductively ordered, so by Zorn's Lemma then is P a maximal element of $F(a)$. I want to prove that P is a prime state-filter. Let $x, y \in A$ such that $(x \circ \sigma(x)) \cup (y \circ \sigma(y)) \in P$. Let's suppose that $x \notin P$ and $y \notin P$. Considering the sets $F_{\sigma}(P, x)$ and $F_{\sigma}(P, y)$, which represent state-filters generated by P and x, respectively P and y, it follows that P is strictly contained in $F_{\sigma}(P, x)$ and $F_{\sigma}(P, y)$ and, by the maximality of P, we deduce that $a \in F_{\sigma}(P, x) \cap F_{\sigma}(P, y)$. Then there exist $i_1, i_2 \in P$ and $m, n \in \mathbb{N}$ such that $a \geq i_1 \circ (x \circ \sigma(x))^m$ and $a \geq i_2 \circ (y \circ \sigma(y))^n$, so $a \geq (i_1 \circ (x \circ \sigma(x))^m) \lor (i_2 \circ (y \circ \sigma(y))^n) \geq (i_1 \land i_2) \circ (i_1 \lor (x \circ \sigma(x))^m) \lor (i_2 \lor (y \circ \sigma(y))^n) \in P$, that is, $a \notin P$, a contradiction. Thus P is a prime state-filter and $a \notin P$.

□

Corollary 4.1. Let (A, σ) be a state BL-algebra and P a proper state-filter of (A, σ). Then there exists a maximal state-filter F_0 of (A, σ) such that $P \subseteq F_0$.

Proof. The Proposition 4.7 is applied for $I = \{ 0 \}$ and $F = P$. Let F_0 be a maximal element of the set $F(P) = \{ F' \mid F' \text{ is a proper state-filter and } P \subseteq F' \}$. I want to prove that F_0 is a maximal state-filter of (A, σ). Indeed, if F_1 is a state-filter of (A, σ) such that $F_0 \subseteq F_1$, then, the maximality of F_0, it follows that $F_1 \notin F(P)$, so F_1 is not a proper state-filter, so $F_1 = A$.

□

On the basis of the previous results, we will be able to characterize the set $Rad_{\sigma}(A)$, of the intersection of all maximal state-filters of a state-morphism BL-algebra (A, σ). Firstly, we will establish the following result:
Proposition 4.9. Let \((A, \sigma)\) be a state BL-algebra. Then
\[
\{ x \in A \mid (\sigma (x^n))^* \leq \sigma (x), \text{ for every } n \in \mathbb{N} \} \subseteq \text{Rad}_\sigma (A).
\]

Proof. Consider \(B = \{ x \in A \mid (\sigma (x^n))^* \leq \sigma (x), \text{ for every } n \in \mathbb{N} \}\) and let \(x \in B\).
Let’s suppose that \(x \notin \text{Rad}_\sigma (A)\), therefore there exists a maximal state-filter \(F\) of \((A, \sigma)\) such that \(x \notin F\). According to Proposition 4.8, there exists \(n \in \mathbb{N}\) such that \((\sigma (x^n))^* \in F\). Since \((\sigma (x^n))^* \leq \sigma (x)\), we deduce that \(\sigma (x) \in F\). But then \(\sigma (x^n) \in F\) and, since \((\sigma (x^n))^* \in F\), we obtain that \(F = A\), a contradiction. Therefore \(B \subseteq \text{Rad}_\sigma (A)\).

PROOF

Proposition 4.10. Let \((A, \sigma)\) be a state-morphism BL-algebra. Then
\[
\text{Rad}_\sigma (A) \subseteq \{ x \in A \mid (\sigma (x^n))^* \leq \sigma (x), \text{ for every } n \in \mathbb{N} \}.
\]

Proof. Consider \(B = \{ x \in A \mid (\sigma (x^n))^* \leq \sigma (x), \text{ for every } n \in \mathbb{N} \}\) and let \(x \in \text{Rad}_\sigma (A)\). Let’s suppose that \(x \notin B\), so there exists \(n \in \mathbb{N}\) such that \((\sigma (x^n))^* \notin (\sigma (x))\), that is, \((\sigma (x^n))^* \rightarrow \sigma (x) < 1\). According to Proposition 4.8 there exists a prime state-filter \(P\) of \((A, \sigma)\) such that \(\sigma (x^n) \rightarrow \sigma (x) \notin P\). On the other hand \(\sigma ((\sigma (x^n))^* \rightarrow \sigma (x)) = \sigma (\sigma (x^n))^* \rightarrow \sigma (x)\) (since \(\sigma\) is a morphism) = \((\sigma (x^n))^* \rightarrow (\sigma (x))\) (from Proposition 2.1, (4)) = \((\sigma (x^n))^* \rightarrow \sigma (x)\) and, analogously,
\[
\sigma (\sigma (x) \rightarrow (\sigma (x^n))^*) = \sigma (x) \rightarrow (\sigma (x^n))^*.
\]

Then
\[
((\sigma (x^n))^* \rightarrow (\sigma (x)) \circ (\sigma (x^n))^* \rightarrow (\sigma (x))) \vee ((\sigma (x) \rightarrow (\sigma (x^n))^*) \circ (\sigma (x) \rightarrow (\sigma (x^n))^*))
\]
\[
= (\sigma (x^n))^* \rightarrow \sigma (x))^2 \vee (\sigma (x) \rightarrow (\sigma (x^n))^*)^2
\]
\[
\geq ((\sigma (x^n))^* \rightarrow \sigma (x)) \vee (\sigma (x) \rightarrow (\sigma (x^n))^*)^4
\]

(according to Proposition 2.1, (4)) = 1 \in P, and, since \(P\) is prime and \((\sigma (x^n))^* \rightarrow (\sigma (x)) \notin P\), we deduce that \(\sigma (x) \rightarrow (\sigma (x^n))^* \in P\). But \(\sigma (x) \rightarrow (\sigma (x^n))^* = (\sigma (x) \circ (\sigma (x^n))^*)^4\) (from Proposition 2.1, (5)),

thus \((\sigma (x^n))^* \in P\). According to Corollary 4.1, there exists a maximal state-filter \(F_0\) of \((A, \sigma)\) such that \(P \subseteq F_0\), so \((\sigma (x^n+1))^* \in F_0\), that is, \((\sigma (x^n))^* \notin F_0\). Then \(\sigma (x) \notin F_0\) and so \(x \notin F_0\), namely \(x \notin \text{Rad}_\sigma (A)\), a contradiction. Therefore \(\text{Rad}_\sigma (A) \subseteq B\).

PROOF

From Propositions 4.9 and 4.10 we obtain:

Theorem 4.1. Let \((A, \sigma)\) be a state-morphism BL-algebra. Then
\[
\text{Rad}_\sigma (A) = \{ x \in A \mid (\sigma (x^n))^* \leq \sigma (x), \text{ for every } n \in \mathbb{N} \}.
\]
Moreover, \(\text{Rad} (A) \subseteq \text{Rad}_\sigma (A)\).

Proof. The first part result from Propositions 4.9 and 4.10. For the second part, let \(x \in \text{Rad} (A)\), so \((x^n)^* \leq x\), for every \(n \in \mathbb{N}\).

Then \(\sigma ((x^n)^*) \leq \sigma (x)\), for every \(n \in \mathbb{N}\), so \((\sigma (x^n))^* \leq \sigma (x)\), for every \(n \in \mathbb{N}\), that is, \(x \in \text{Rad}_\sigma (A)\).

PROOF

5. Classes of BL-algebras

Within this section, we are going to present some classes of BL-algebras, such as simple, semisimple and local BL-algebras, we will then define the concepts of simple,
semisimple and local state $BL-$algebras (A, σ), next we will introduce the concepts of simple, semisimple and local state $BL-$algebras (A, σ) relative to its state-filters set, and we will finally establish relations between these concepts, which occur in some conditions imposed to the state-operator σ.

Definition 5.1. A $BL-$algebra A is called simple if its only filters are $\{1\}$ and A. A state $BL-$algebra (A, σ) is called simple if $\sigma(A)$ is simple.

We will now define a new concept:

Definition 5.2. A state $BL-$algebra (A, σ) is called simple relative to its state-filters set if it has only two state-filters: $\{1\}$ and A.

Example 5.1. Let’s consider a state $BL-$algebra (A, σ). If $\sigma = id_A$, then the three concepts from Definition 5.1 are the same. Let’s consider the state $BL-$algebra (A, σ) from Example 3.2. We have $\sigma(A) = \{0, a, 1\}$.

If $I \subseteq \sigma(A)$ is a filter, $I \neq \{1\}$, and if $a \in I$, then $a \otimes a = 0 \in I$, so $I = \sigma(A)$. Thus $\sigma(A)$ is simple, so (A, σ) is simple. By the contrary, according to Example 4.1 A is not simple and (A, σ) is not simple relative to its state-filters set. For each state $BL-$algebras (A, σ) from Examples 3.3, 3.4, 3.5 we have $\sigma(A) = \{0, 1\}$, so (A, σ) is simple, but A is not simple and (A, σ) is not simple relative to its state-filters set.

Remark 5.1. According to [2], if (A, σ) is a state $BL-$algebra such that A is simple, then $\sigma(A)$ is simple, so (A, σ) is simple.

Theorem 5.1. [2] Let (A, σ) be a state-morphism $BL-$algebra. Then the following conditions are equivalent:

1. (A, σ) is simple;
2. $\ker(\sigma)$ is a maximal filter of A.

Proposition 5.1. Let (A, σ) be a state $BL-$algebra. If (A, σ) is simple relative to its state-filters set, then (A, σ) is simple.

Proof. Let J be a filter of $\sigma(A), J \neq \{1\}$. We will prove that $J = \sigma(A)$. Consider $F_J = \{z \in A \mid z \geq j, \text{ for a certain } j \in J\}$. If $x, y \in F_J$, then there exist $j_1, j_2 \in J$ such that $x \geq j_1, y \geq j_2$, so $x \otimes y \geq j_1 \otimes j_2 \in J$, hence $x \otimes y \in F_J$. If $x \in F_J$ and $x \leq y$, then obviously $y \in F_J$.

If $x \in F_J$, then $x \geq j, j \in J$, so $\sigma(x) \geq \sigma(j) = j$ (since $j \in \sigma(A)$), hence $\sigma(x) \in F_J$. Therefore F_J is a state-filter of (A, σ). Since (A, σ) is simple relative to its state-filters set, and $F_J \neq \{1\}$ (since $J \subseteq F_J$), it follows that $F_J = A$, so $0 \in F_J$, hence $0 \in J$, that is, $J = \sigma(A)$. \(\square\)

Remark 5.2. If (A, σ) is a simple state $BL-$algebra relative to its state-filters set, then, since $\ker(\sigma)$ is a state filter and $\ker(\sigma) \neq A$, it follows that $\ker(\sigma) = \{1\}$, thus σ is a faithful operator.

Remark 5.3. If (A, σ) is a simple state $BL-$algebra, then it doesn’t necessarily follow that σ is faithful. For instance, for the simple state BL-algebra (A, σ) from the Example 3.2 we have $\ker(\sigma) = \{b, 1\} \neq \{1\}$.

Theorem 5.2. Let (A, σ) be a state $BL-$algebra. Then the following conditions are equivalent:

1. (A, σ) is simple relative to its state-filters set;
2. (A, σ) is simple and σ is faithful.
Let’s consider the A state-

\[F \text{ false. Then conditions are equivalent:} \]

$A \subseteq F \text{ and, since } 0 \in \sigma (A), \text{ we deduce that } I = A. \text{ If } I \cap \sigma (A) = \{ 1 \}, \text{ let } x \in I. \text{ Then } \sigma (x) \in I \cap \sigma (A), \text{ so } \sigma (x) = 1, \text{ that is, } x = 1 (\text{since } \sigma \text{ is faithful}), \text{ so } I = \{ 1 \}. \text{ Therefore the only state-filters of } (A, \sigma) \text{ are } \{ 1 \} \text{ and } A.

\[\square \]

Theorem 5.3. Let (A, σ) be a state-morphism $BL-$ algebra. Then the following conditions are equivalent:

(i) (A, σ) is simple relative to its state-filters set;

(ii) A is simple.

Proof. (i) ⇒ (ii) Results from the Proposition 5.1 and the Remark 5.2.

(ii) ⇒ (i) Let I be a state-filter of (A, σ). Then $I \cap \sigma (A)$ is a filter of $\sigma (A)$, and so $I \cap \sigma (A) = \{ 1 \}$ or $I \cap \sigma (A) = \sigma (A)$. If $I \cap \sigma (A) = \sigma (A)$, then $\sigma (A) \subseteq I$ and, since $0 \in \sigma (A)$, we deduce that $I = A$. If $I \cap \sigma (A) = \{ 1 \}$, let $x \in I$. Then $\sigma (x) \in I \cap \sigma (A), \text{ so } \sigma (x) = 1, \text{ that is, } x = 1 (\text{since } \sigma \text{ is faithful}), \text{ so } I = \{ 1 \}$. Therefore the only state-filters of (A, σ) are $\{ 1 \}$ and A.

From of the Theorems 5.3 and 5.3 it follows:

Theorem 5.4. Let (A, σ) be a state-morphism $BL-$ algebra and σ is faithful. Then the following conditions are equivalent:

(i) A is simple;

(ii) (A, σ) is simple.

Proof. (i) ⇒ (ii) Results from the Remark 5.1.

(ii) ⇒ (i) If (A, σ) is simple, since σ is faithful, then from the Theorem 5.2 it follows that (A, σ) is simple relative to its state-filters set and then, from Theorem 5.3 we deduce that A is simple.

\[\square \]

Definition 5.3. A $BL-$ algebra A is called local if it has only a maximal filter. A state $BL-$ algebra (A, σ) is called local if $\sigma (A)$ is local.

Next we define a new concept:

Definition 5.4. A state $BL-$ algebra (A, σ) is local relative to its state-filters set if it has only a maximal state-filter.

Example 5.2. Let’s consider the $BL-$ algebra A and the state-operator

$\sigma : A \rightarrow A$ from Example 3.2. Then A is local, (A, σ) is local and (A, σ) is local relative to its state-filters set. In Example 3.3 the $BL-$ algebra A is not local, but (A, σ) is local relative to its state-filters set.

Theorem 5.5. Let (A, σ) be a state $BL-$ algebra. Then the following conditions are equivalent:

(i) (A, σ) is local relative to its state-filters set;

(ii) (A, σ) is local.

Proof. (i) ⇒ (ii) Let F be the only maximal state-filter of (A, σ). Then $F \cap \sigma (A)$ is a filter of $\sigma (A)$. We will prove that $F \cap \sigma (A)$ is the only maximal filter of $\sigma (A)$. If $F \cap \sigma (A) = \sigma (A)$, then $\sigma (A) \subseteq F$, so $0 \in F$, a contradiction. Let I be an arbitrary proper filter of $\sigma (A)$. We consider the set $F_{\sigma} (I) = \{ z \in A \mid z \geq i, i \in I \}$, which represents the state–filter generated by I in (A, σ). If $F_{\sigma} (I) = A$, then $0 \in F_{\sigma} (I)$, so $0 \in I$, false. Then $F_{\sigma} (I)$ is a proper state-filter, so $F_{\sigma} (I) \subseteq F$, that is,
\[I = I \cap \sigma(A) \subseteq F_{\sigma}(I) \cap \sigma(A) \subseteq F \cap \sigma(A). \]

Then \(F \cap \sigma(A) \) is a proper filter which contains any proper filter \(I \) of \(\sigma(A) \), thus it is the only maximal filter of \(\sigma(A) \), so \((A, \sigma) \) is local.

\((ii) \Rightarrow (i)\) Let \(I \) be the only maximal filter of \(\sigma(A) \) and the set \(F_{\sigma}(I) = \{ z \in A \mid z \geq i, i \in I \} \), which represents the state-filter generated by \(I \) in
\((A, \sigma)\). Let \(F(I) = \{ F \mid F \text{ is a proper state-filter of } (A, \sigma) \text{ and } I \subseteq F \} \).

If \(F_{\sigma}(I) \) is not proper, then \(0 \in F_{\sigma}(I) \), so \(0 \in I \), false. Thus \(F_{\sigma}(I) \in F(I) \), so \(F(I) \) is nonvoid. It is easily to verify that \(F(I) \) is inductively ordered, so by Zorn’s Lemma then is \(F \) a maximal element of \(F(I) \). We will prove that \(F \) is the only maximal state-filter of \((A, \sigma)\). Indeed, let \(F_1 \) be an arbitrary proper state-filter of
\((A, \sigma)\). Let’s suppose that there exists an element \(x \in F_1 \setminus F \). Then \(\sigma (x) \in F_1 \cap \sigma(A) \).

If \(F_1 \cap \sigma(A) = \sigma(A) \) it follows that \(\sigma(A) \subseteq F_1 \), so \(0 \in F_1 \), a contradiction. Thus \(F_1 \cap \sigma(A) \neq \sigma(A) \), \(F_1 \cap \sigma(A) \) is a filter of \(\sigma(A) \) and, since \(I \) is a maximal filter of
\(\sigma(A) \), it follows that \(F_1 \cap \sigma(A) \subseteq I \), so \(\sigma(x) \in I \).

Then \(\sigma(x) \in F_\sigma(I) \), so \(\sigma(x) \in F \). Since \(x \notin F \) and \(F \) is a maximal state-filter, then, according to Proposition 4.8, it follows that there exists \(n \in \mathbb{N}^* \) such that
\((\sigma(x)^n)^* \in F \).

But \((x)^n \notin F \), a contradiction. Thus \(F_1 \subseteq F \), so \(F \) is the only maximal state-filter of
\((A, \sigma)\), so \((A, \sigma) \) is local relative to its state-filters set.

\[\square \]

Definition 5.5. A BL-algebra \(A \) is called semisimple if \(\text{Rad}(A) = \{1\} \). Let \((A, \sigma) \) be a state BL-algebra. \((A, \sigma)\) is called semisimple if \(\text{Rad}(\sigma(A)) = \{1\} \).

Concerning all this, we are now going to define a new concept:

Definition 5.6. A state BL-algebra \((A, \sigma)\) is called semisimple relative to its state-filters set if \(\text{Rad}_\sigma(A) = \{1\} \).

Example 5.3. Let’s consider the state BL-algebra \((A, \sigma)\) from Example 3.2. The \(A \) algebra is not semisimple, but \((A, \sigma)\) is semisimple because \(\text{Rad}(\sigma(A)) = \{1\} \). It is not semisimple relative to its state-filters set.

The \(A \) algebras from Examples 3.3, 3.4 are semisimple, \((A, \sigma)\) is not semisimple, but they are semisimple relative to its state-filters set.

The \(A \) algebra from Example 3.5 is not semisimple, \((A, \sigma)\) is not semisimple relative to its state-filters set, but \((A, \sigma)\) is semisimple.

The \(\text{IL}_\sigma \) algebra from Proposition 3.1 is semisimple, and, since \(\sigma = \text{id}_{\text{IL}}, (\text{IL}_\sigma, \sigma) \) is semisimple and semisimple relative to its state-filters set.

Proposition 5.2. ([2]) Let \((A, \sigma)\) be a state BL-algebra. Then
\[\sigma(\text{Rad}(A)) \supseteq \text{Rad}(\sigma(A)) = \sigma(\text{Rad}_\sigma(A)). \]

Theorem 5.6. Let \((A, \sigma)\) be a state BL-algebra. Then the following conditions are equivalent:

(i) \((A, \sigma)\) is semisimple and \(\sigma \) is faithful;

(ii) \((A, \sigma)\) is semisimple relative to its state-filters set.

Proof. (i) \(\Rightarrow \) (ii) According to Proposition 5.2 we have \(\sigma(\text{Rad}_\sigma(A)) = \text{Rad}(\sigma(A)) = \{1\} \), so \(\text{Rad}_\sigma(A) \subseteq \ker(\sigma) = \{1\} \), that is, \(\text{Rad}_\sigma(A) = \{1\} \).

(ii) \(\Rightarrow \) (i) \(\text{Rad}(\sigma(A)) = \sigma(\text{Rad}_\sigma(A)) = \sigma(\{1\}) = \{1\} \), so \((A, \sigma)\) is semisimple.

We will prove that \(\sigma \) is faithful. Let \(x \in \ker(\sigma) \), that is, \(\sigma(x) = 1 \). Let’s suppose that \(x \notin \text{Rad}_\sigma(A) \). Then there exists a maximal state-filter \(F \) such that \(x \notin F \). According to Proposition 4.4 there exists \(n \in \mathbb{N}^* \) such that
\((\sigma(x)^n)^* \in F \), so \(0 \in F \), a contradiction. Thus \(x \notin \text{Rad}_\sigma(A) = \{1\} \), so \(\sigma \) is faithful.

\[\square \]
References

(Nicolae Mircea Constantinescu) Faculty of Mathematics and Computer Science, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania

E-mail address: mnconst69@yahoo.com