Annals of the University of Craiova, Mathematics and Computer Science Series Volume 37(3), 2010, Pages 116–129 ISSN: 1223-6934

A note on *BL*-algebras with internal state

NICOLAE MIRCEA CONSTANTINESCU

ABSTRACT. The scope of this paper is to put in evidence some properties of the BL-algebras with internal state. I introduce the concepts of prime and maximal state-filters, I prove a Prime state-filter theorem 4.7 and I characterize the set $\operatorname{Rad}_{\sigma}(A)$, which represents the intersection of all maximal state-filters of a state BL-algebra (A,σ) . Also, I introduce the concepts of simple, semisimple and local state BL-algebras relative to its state-filter set.

2010 Mathematics Subject Classification. Primary 03B50; Secondary 03G25. Key words and phrases. BL-algebra, state BL-algebra, state-operator, filter, state-filter.

1. Introduction

The concept of state MV-algebras was firstly introduced by Flaminio and Montagna in [4] and [5] as a MV-algebra endowed with a unary operation σ (called a state-operator), which preserves the usual properties of states. Di Nola and Dvurečenskij presented in [6] a stronger version of states MV-algebras namely state-morphism MV-algebras. Afterwards Ciungu, Dvurečenskij and Hyčko extended in [2] the concept of state (morphism) MV-algebra and in the case of BL-algebras and they extended the properties of a state-operator. The present article is structured into five sections.

In Section 2, basic properties regarding the concepts of MV-algebra, BL-algebra are being presented, as well as some basic properties of the operations defined on these algebras, which are to be used afterwards. The concept of state (morphism) –operator on a BL-algebra also belongs to this section, as well some of its properties.

In Section 3 some examples of state BL-algebras are presented. In Section 4 the concept of state-filter on a state BL-algebra is introduced. There are presented some examples of filters and state-filters, as well as the concepts of maximal state-filter, prime state-filter, some of their characteristics and, if the state-operator σ is a morphism, the set $Rad_{\sigma}(A)$ is characterised, in which $Rad_{\sigma}(A)$ represents the intersection of all maximal state-filters of a state BL-algebra (A, σ) .

In Section 5, there are presented some classes of BL-algebras such as simple, semisimple and local as well as simple, semisimple and local state BL-algebras. There are introduced the concepts of simple, semisimple and local state BL-algebras relative to its state-filters set and there are establishished relations between these structures in certain conditions imposed to the state-operator σ .

2. Preliminaries

Definition 2.1. An algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ of the type (2, 2, 2, 2, 0, 0) is called a BL-algebra if satisfies the following axioms:

Received July 05, 2010. Revision received September 04, 2010.

(1) $(A, \land, \lor, \lor, 0, 1)$ is a bounded lattice; (2) $(A, \odot, 1)$ is a commutative monoid; (3) $x \odot y \le z$ iff $x \le y \to z$; (4) $x \land y = x \odot (x \to y)$; (5) $(x \to y) \lor (y \to x) = 1$; for every $x, y, z \in A$.

We will denote $x^* = x \to 0$, $x \in A$. If $x \in A$, we define $x^0 = 1$ and for $n \ge 1$ we define $x^n = x^{n-1} \odot x$.

Definition 2.2. Let A be a BL-algebra and $x \in A$. If there exists the least number $n \in \mathbb{N}^*$ such that $x^n = 0$, then we set ord(x) = n. If there is no such a number (that is, $x^n > 0$, for every $n \ge 0$), then we set $ord(x) = \infty$.

We recall some results relative to BL-algebras:

Proposition 2.1. Let A be a BL-algebra. Then:

(1) if $a \leq b$ and $c \leq d$ then $a \odot c \leq b \odot d$; (2) $a \odot (b \lor c) = (a \odot b) \lor (a \odot c)$; (3) $a \lor (b \odot c) \geq (a \lor b) \odot (a \lor c)$; (4) $a^m \lor b^n \geq (a \lor b)^{mn}, m, n \in \mathbb{N}$; (5) $(a \odot b)^* = a \to b^*$; (6) $a \odot (a \to (a \odot b)) = a \odot b$; for every $a, b, c \in A$.

Definition 2.3. An algebra $(A, \oplus, *, 0)$ of the type (2, 1, 0) is called a MV-algebra if satisfies the following axioms:

- (1) $(A, \oplus, 0)$ is a commutative monoid;
- (2) $x^{**} = x$, for every $x \in A$;
- (3) $x \oplus 0^* = 0^*$, for every $x \in A$;
- (4) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$, for every $x, y \in A$.

On a BL-algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ we define the operation \oplus on A by $x \oplus y = (x^* \odot y^*)^*, x, y \in A$. If $x^{**} = x$, for every $x \in A$, then $(A, \oplus, *, 0)$ it becomes a MV-algebra. We are now defining the concept of state-operator on a BL-algebra.

Definition 2.4. [2] Let A be a BL-algebra. An application $\sigma : A \to A$ which verifies the properties:

 $\begin{array}{l} (1)_{BL} \ \sigma (0) = 0; \\ (2)_{BL} \ \sigma (x \to y) = \sigma (x) \to \sigma (x \land y); \\ (3)_{BL} \ \sigma (x \odot y) = \sigma (x) \odot \sigma (x \to x \odot y); \\ (4)_{BL} \ \sigma (\sigma (x) \odot \sigma (y)) = \sigma (x) \odot \sigma (y); \\ (5)_{BL} \ \sigma (\sigma (x) \to \sigma (y)) = \sigma (x) \to \sigma (y); \\ \text{for every } x \ y \in A \ \text{is called state-operator on} \end{array}$

for every $x, y \in A$, is called state-operator on A, and the pair (A, σ) is called a state BL-algebra or, more precisely, a BL-algebra with internal state.

Some examples of state-operators will be presented in Section 3.

Proposition 2.2. [2] In a state BL-algebra (A, σ) the following hold:

(a) $\sigma(1) = 1;$

(b) $\sigma(x^*) = \sigma(x)^*$, for every $x \in A$;

(c) if $x, y \in A$ and $x \leq y$ then $\sigma(x) \leq \sigma(y)$;

- (d) $\sigma(x \odot y) \ge \sigma(x) \odot \sigma(y)$, for every $x, y \in A$;
- (e) $\sigma(x \to y) \leq \sigma(x) \to \sigma(y)$, for every $x, y \in A$;

(f) $\sigma(\sigma(x)) = \sigma(x)$, for every $x \in A$;

(g) $\sigma(A)$ is a BL-subalgebra of A and $\sigma(A) = \{x \in A \mid \sigma(x) = x\}$.

Definition 2.5. [2] A state-morphism operator on a BL-algebra A is an application $\sigma: A \to A$ which verifies $(1)_{BL}, (2)_{BL}, (4)_{BL}, (5)_{BL}$ and $(6)_{BL} \sigma(x \odot y) = \sigma(x) \odot \sigma(y)$, for every $x, y \in A$.

Remark 2.1. Any state-morphism operator σ on a *BL*-algebra *A* is a state-operator on *A*. Indeed, by using (6)_{*BL*} we have:

 $\sigma(x) \odot \sigma(x \to x \odot y) = \sigma(x \odot (x \to x \odot y)) = \sigma(x \odot y)$, according to Proposition 2.1.

If σ is a state-operator on A, we define ker $(\sigma) = \{x \in A \mid \sigma(x) = 1\}$.

Definition 2.6. A state-operator $\sigma : A \to A$ is called faithful iff ker $(\sigma) = 1$.

3. Examples of state-operators on *BL*-algebras

Example 3.1. If A is a BL-algebra, then $\sigma : A \to A$, defined by $\sigma(x) = x$, for every $x \in A$, is a state-operator on A, called the identity state-operator on A. Thus (A, id_A) is a state BL-algebra.

Example 3.2. [2] Let $A = \{0, a, b, 1\}$ be with 0 < a < b < 1.

Then $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ with the following operations:

)	0	a	b	1					\rightarrow	0	a	b	
	0	0	0	0					0	1	1	1	
ļ,	0	0	a	a					a	a	1	1	
,	0	a	b	b					b	0	a	1	
1	0	a	b	1					1	0	a	b	

it becomes a BL-algebra, but not a MV-algebra (since $b^{**} = 1 \neq b$).

The fact that $\sigma : A \to A$, given by $\sigma(0) = 0, \sigma(a) = a, \sigma(b) = \sigma(1) = 1$, is a state-operator on A, is verified. Moreover, $(6)_{BL}$ holds, so σ is a state-morphism operator on A.

Example 3.3. [3] Let $A = \{0, a, b, c, d, 1\}$, with the operations \odot and \rightarrow given by the following tables:

	···g ·													
\odot	0	a	b	c	d	1		\rightarrow	0	a	b	c	d	Γ
0	0	0	0	0	0	0		0	1	1	1	1	1	
a	0	a	0	a	0	a		a	d	1	d	1	d	
b	0	0	0	0	b	b		b	с	c	1	1	1	
c	0	a	0	a	b	С		c	b	c	d	1	d	
d	0	0	b	b	d	d		d	a	a	c	c	1	[]
1	0	a	b	с	d	1		1	0	a	b	c	d	
71	11	Т	DΤ	1	1	()	(1)	1 1						

Then the BL-algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a MV-algebra.

We will determine the state-operators on A. Let $\sigma : A \to A$ be a state-operator. From $(1)_{BL}$ we have $\sigma(c \to a) = \sigma(c) \to \sigma(c \land a)$, so

 $\sigma(c) = \sigma(c) \rightarrow \sigma(a)$. From the table of the operation \rightarrow we deduce that the equation $x = x \rightarrow y$ has only the solutions x = c, y = a and x = y = 1.

In the first case we have $\sigma(c) = c$ and $\sigma(a) = a$ and then

 $\sigma(d) = \sigma(a^*) = \sigma(a)^*$ (according to the Proposition 2.2, (b)) = $a^* = d$, and $\sigma(b) = \sigma(c^*) = \sigma(c)^* = b$, so $\sigma = id_A$. In the second case we have $\sigma(c) = \sigma(a) = 1$, and then $\sigma(d) = \sigma(a)^* = 0$, $\sigma(b) = \sigma(c)^* = 0$, thus

118

 $\sigma(0) = \sigma(b) = \sigma(d) = 0$ and $\sigma(c) = \sigma(a) = 1$, which verifies $(1)_{BL} - (6)_{BL}$, so this is also a state-morphism operator.

Example 3.4. [3] Let $A = \{0, a, b, c, d, 1\}$, with the following tables of operations:

	P	· · ·	-• [`	- I		-	ر∘, ∝	$, \circ, \circ$,∽,	÷,,	 0 0100	- J °	 eneg e	00000	° °J	°P'	
\odot	0	a	b	c	d	1							\rightarrow	0	a	b	c
0	0	0	0	0	0	0							0	1	1	1	1
a	0	0	a	0	0	a							a	d	1	1	d
b	0	a	b	0	a	b							b	c	d	1	c
c	0	0	0	c	c	c							c	b	b	b	1
d	0	0	a	c	c	d							d	a	b	b	d
1	0	a	b	c	d	1							1	0	a	b	c
mi						-						-	 	. .			

Then it becomes a BL-algebra, which is a MV-algebra. Let $\sigma : A \to A$ be a state-operator. As in the Example 3.3 we have

 $\sigma(d \to c) = \sigma(d) \to \sigma(d \land c) = \sigma(d) \to \sigma(c) = \sigma(d)$. Since the equation $x = x \to y$ has only the solutions x = d, y = c and x = y = 1 we obtain $\sigma(d) = d, \sigma(c) = c$ or $\sigma(d) = \sigma(c) = 1$. In the first case we have $\sigma = id_A$, and in the second case we have $\sigma(a) = \sigma(b) = \sigma(0) = 0$ and $\sigma(c) = \sigma(d) = \sigma(1) = 1$, both operators being state-morphism operators.

Example 3.5. [3] Let $A = \{0, c, a, b, 1\}$, in which 0 < c < a, b < 1 and a, b are incomparable, with the following tables of operations :

1							5			1								
\odot	0	c	a	b	1								\rightarrow	0	c	a	b	1
0	0	0	0	0	0								0	1	1	1	1	1
с	0	с	c	с	c								c	0	1	1	1	1
a	0	c	a	c	a								a	0	b	1	b	1
b	0	c	c	b	c								b	0	a	a	1	1
1	0	С	a	b	1								1	0	С	a	b	1
The	an	nlic	atio	$n \sigma$		$A \rightarrow$	Δ	ninon	hai	$\sigma(0)$	n) —	$\int a$	nd a	(r)	·	1 0	th on	minio

The application $\sigma : A \to A$, given by $\sigma(0) = 0$ and $\sigma(x) = 1$ otherwise, is a state-morphism operator.

We recall that a t-norm is a function $t : [0,1] \times [0,1] \rightarrow [0,1]$, which verifies the conditions:

(1) t(x, y) = t(y, x), for every $x, y \in [0, 1]$;

(2) t(t(x,y),z) = t(x,t(y,z)), for every $x, y, z \in [0,1]$;

(3) t(x, 1) = x, for every $x \in [0, 1]$;

(4) if $x \le y$ then $t(x, z) \le t(y, z), x, y, z \in [0, 1]$.

If t is continuous, we define $x \odot_t y = t(x, y)$ and

 $x \to_t y = \sup \{z \in [0,1] \mid t(z,x) \leq y\}$, for $x, y \in [0,1]$. In these conditions $\mathbf{I}_t = ([0,1], \min, \max, \odot_t, \to_t, 0, 1)$ is a *BL*-algebra. Moreover, according to [1], the variety of *BL*-algebras is generated by all the \mathbf{I}_t with a continuous norm t. There are three basic continuous t-norms on [0,1]:

(i) Lukasiewicz: $L(x, y) = \max \{x + y - 1, 0\}$, with

 $x \to_{\mathrm{L}} y = \min\{1 - x + y, 1\};$

(*ii*) Gödel: $G(x, y) = \min\{x, y\}$, with $x \to_G y = 1$ if $x \leq y$ and $x \to_G y = y$ otherwise;

(*iii*) product: P(x, y) = xy, with $x \to_P y = 1$ if $x \le y$ and $x \to_P y = \frac{y}{x}$ otherwise. Then we have:

Proposition 3.1. [2]

(1) If σ is a state-operator on \mathbf{I}_L , then $\sigma(x) = x$, for every $x \in [0, 1]$.

(2) Let $a \in [0,1]$ and we define $\sigma_a(x) = x$ if $x \leq a$ and $\sigma_a(x) = 1$ otherwise. For

 $a \in (0,1]$ we define the application $\sigma^{a}(x) = x$ if x < a and $\sigma_{a}(x) = 1$ otherwise.

 $\begin{array}{c|cccc} d & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline d & 1 \\ \hline 1 & 1 \\ \hline 1 & 1 \\ \hline d & 1 \\ \end{array}$

Then σ_a si σ^a are state-morphism operators on \mathbf{I}_G and, if σ is a state-operator on \mathbf{I}_G , then $\sigma = \sigma_a$ or $\sigma = \sigma^a$ for a certain $a \in [0, 1]$.

(3) If σ is a state-operator \mathbf{I}_P , then $\sigma(x) = x$, for every $x \in [0,1]$ or $\sigma(x) = 1$, for every x > 0.

Proposition 3.2. [2] Let A be a finite linear Gödel BL-algebra, that is, $x^2 = x$, for every $x \in A$. Then, with the notations from Proposition 3.1 σ^a and σ_a are state-morphism operators, and any state-operator on A is of the form σ^a or σ_a , for a certain $a \in [0, 1]$.

Actually we have the following more general result:

Proposition 3.3. Let A be a linear Gödel BL-algebra and $B \subset A$ such that $0 \in B, 1 \notin B$ and, if $x \in B, y \in A \setminus B$, then x < y. Then the application $\sigma_B : [0,1] \rightarrow [0,1]$, given by $\sigma_B(x) = x$ if $x \in B$ and $\sigma_B(x) = 1$ otherwise, is a state-morphism operator on A, and, conversely, any state-operator on A is of such a form.

Proof. Firstly we observe that, if $x, y \in A$ then

 $\begin{aligned} x \odot y &\geq x \odot (x \land y) = x \odot (x \odot (x \to y)) = x^2 \odot (x \to y) = x \odot (x \to y) \\ &= x \land y \geq x \odot y, \text{ so } x \odot y = x \land y = \min \{x, y\}, \text{ for every } x, y \in A. \\ \text{Then } x \to y = \sup \{z \in A \mid x \odot z \leq y\} = \sup \{z \in A \mid x \land z \leq y\}. \\ \text{If } x \leq y, \text{ then } x \to y = 1. \end{aligned}$

If x > y, then $\sup \{z \in A \mid x \land z \le y\} = \sup \{z \in A \mid \min \{x, z\} \le y\} = y$.

We will verify the $(1)_{BL} - (5)_{BL}$ axioms. Since $0 \in B$ we have that $\sigma_B(0) = 0$, so the $(1)_{BL}$ is proved.

If $x, y \in B$, then we have: $\sigma_B(x \to y) = 1 = \sigma_B(x) \to \sigma_B(x \land y)$, if $x \le y$, and, if x > y we have $\sigma_B(x \to y) = \sigma_B(y)$, and $\sigma_B(x) \to \sigma_B(x \land y) = x \to x \land y = x \to y = y = \sigma_B(y) = \sigma_B(x \to y)$.

If $x, y \in A \setminus B$, then, since $y \leq x \to y$, it follows that $x \to y \in A \setminus B$, so $\sigma_B(x \to y) = 1$, and $\sigma_B(x) \to \sigma_B(x \land y) = 1$ (since $x \land y \in A \setminus B$).

If $x \in B, y \in A \setminus B$, then $\sigma_B(x \to y) = \sigma_B(1) = 1 = \sigma_B(x) \to \sigma_B(x \land y)$.

If $y \in B, x \in A \setminus B$, then $\sigma_B(x \to y) = \sigma_B(y) = y$ and $\sigma_B(x) \to \sigma_B(x \land y) = 1 \to y = y$, so we have an equality again.

Thus $(2)_{BL}$ is proved.

We will now prove $(6)_{BL}$, which means that, according to the Remark 2.1

 $(3)_{BL}$ is proved. Indeed, if $x, y \in B$, then $x \odot y = \min\{x, y\} \in B$, so $\sigma_B(x \odot y) = x \odot y = \sigma_B(x) \odot \sigma_B(y)$. If $x, y \in A \setminus B$, then $x \odot y = \min\{x, y\} \in A \setminus B$, so $\sigma_B(x \odot y) = 1 = \sigma_B(x) \odot \sigma_B(y)$.

If $x \in B, y \in A \setminus B$, then $x \odot y = \min\{x, y\} = x$, so $\sigma_B(x \odot y) = \sigma_B(x) = x = \sigma_B(x) \odot 1 = \sigma_B(x) \odot \sigma_B(y)$. Thus (6)_{*BL*} is fulfilled.

If $x \in B$, then $\sigma_B(\sigma_B(x)) = \sigma_B(x)$, and if $x \in A \setminus B$, then we have $\sigma_B(\sigma_B(x)) = \sigma_B(1) = 1 = \sigma_B(x)$, so $\sigma_B(\sigma_B(x)) = \sigma_B(x)$, $\forall x \in A$.

Then $\sigma_B(\sigma_B(x) \odot \sigma_B(y)) = \sigma_B(\sigma_B(x \odot y))$ (according to $(6)_{BL}) = \sigma_B(x \odot y) = \sigma_B(x) \odot \sigma_B(y), \forall x, y \in A$, so $(4)_{BL}$ is verified.

In order to complete the first part of the proof, we still have to verify $(5)_{BL}$. Indeed, if $x, y \in B$, then $\sigma_B(\sigma_B(x) \to \sigma_B(y)) = \sigma_B(x \to y)$, and $\sigma_B(x) \to \sigma_B(y) = x \to y$. If $x \leq y$, then $x \to y = 1$, so $\sigma_B(x \to y) = x \to y$. If $x > y, x \to y = y$, and $\sigma_B(x \to y) = \sigma_B(y) = y$, so equality once more. Let's now suppose that $x, y \in A \setminus B$. Then $\sigma_B(\sigma_B(x) \to \sigma_B(y)) = \sigma_B(1) = 1 = \sigma_B(x) \to \sigma_B(y)$.

If $x \in B, y \in A \setminus B$, then $\sigma_B(\sigma_B(x) \to \sigma_B(y)) = \sigma_B(x \to 1) = 1 = \sigma_B(x) \to \sigma_B(y)$.

120

Finally, if $y \in B, x \in A \setminus B$, then $\sigma_B(\sigma_B(x) \to \sigma_B(y)) = \sigma_B(1 \to y) = \sigma_B(y) = \sigma_B(x) \to \sigma_B(y)$.

Conversely, let σ be a state-operator on A and let $a \in (0, 1)$.

We are going to prove $\sigma(a) = a$ or $\sigma(a) = 1$. Let's suppose that $\sigma(a) < a$.

Then, according to $(2)_{BL}$, $\sigma(a \to \sigma(a)) = \sigma(a) \to \sigma(a \land \sigma(a)) = \sigma(a) \to \sigma(\sigma(a)) = \sigma(a) \to \sigma(a) \to \sigma(a) = 1.$

But $a \to \sigma(a) = \sigma(a)$, so $\sigma(a \to \sigma(a)) = \sigma(a)$, so $\sigma(a) = 1$, a contradiction. If $a < \sigma(a)$, then, from $(2)_{BL}$ we have $\sigma(\sigma(a) \to a) = \sigma(\sigma(a)) \to \sigma(\sigma(a) \land a) = \sigma(a) \to \sigma(a) = 1$. Since $\sigma(a) \to a = a$, we obtain $\sigma(a) = 1$.

Let $B = \{a \in [0,1) \mid \sigma(a) = a\}$. Then $\sigma(x) = x$, if $x \in B$, and $\sigma(x) = 1$, if $x \in A \setminus B$. Obviously $0 \in B, 1 \notin B$. Let $x \in B, y \in A \setminus B$. If $y \leq x$, then $\sigma(y) \leq \sigma(x)$, that is $1 \leq x$, a contradiction. So x < y. Thus $\sigma = \sigma_B$, in which B fulfills the conditions from the enounciation.

Example 3.6. [2] Let A be a BL-algebra. Then $(A \times A, \land, \lor, \odot, \rightarrow, 0, 1)$ it becomes a BL-algebra, where $(a, b) \leq (c, d)$ iff $a \leq c$ and $b \leq d$, and the operations are defined on the components. Let $\sigma : A \times A \rightarrow A \times A$ be, defined by $\sigma (a, b) = (a, a)$, for every $(a, b) \in A \times A$. It is easily to prove that σ is a state-morphism operator on $A \times A$.

4. Filters and state-filters

Definition 4.1. Let A be a BL-algebra. A nonvoid subset $F \subseteq A$ is called filter if the following conditions are verified:

(1) $x, y \in F$ implies $x \odot y \in F$;

(2) $x \in F$ and $x \leq y$ implies $y \in F$.

A proper filter of A is called a maximal filter if it doesn't belong to any other proper filter of A. The intersection all the maximal filters of A is denoted by Rad(A).

Definition 4.2. [2] Let (A, σ) be a state(morphism) BL-algebra. A nonvoid subset $F \subseteq A$ is called a state(morphism)-filter of (A, σ) , if F is a filter of A with the property that if $x \in F$, then $\sigma(x) \in F$. A proper state-filter of (A, σ) is called a maximal state-filter if it doesn't belong to any other proper state-filter of (A, σ) . The intersection all the maximal state-filters of (A, σ) is denoted by $\operatorname{Rad}_{\sigma}(A)$.

Example 4.1. If we consider the Example 3.1 then the filters of A and the state-filters of (A, σ) are the same.

For A the BL-algebra from Example 3.2 the filters are $\{1\}, \{b, 1\}, A$, and the state-filters of (A, σ) are $\{1\}, \{b, 1\}, A$. The (state)filter $\{b, 1\}$ is a maximal (state)filter. In this case Rad $(A) = Rad_{\sigma}(A) = \{b, 1\}$.

Let's now consider A the BL-algebra from Example 3.3 and the state-operator $\sigma : A \to A$, defined by $\sigma(0) = \sigma(b) = \sigma(d) = 0, \sigma(a) = \sigma(c) = 1$. The filters of A are $\{1\}, \{d, 1\}, \{a, c, 1\}, A$, and the state-filters of (A, σ) are $\{1\}, \{a, c, 1\}, A$. The BL-algebra A has two maximal filters: $\{d, 1\}$ si $\{a, c, 1\}$. There exists only an maximal state-filter of (A, σ) , namely $\{a, c, 1\}$. In this case we have $Rad(A) = \{1\}$, and $Rad_{\sigma}(A) = \{a, c, 1\}$.

Let's now the BL-algebra from Example 3.4 and the state-operator $\sigma : A \to A$, defined by $\sigma(d) = \sigma(c) = \sigma(1) = 1, \sigma(a) = \sigma(b) = \sigma(0) = 0$. The filters of A are $\{1\}, \{b, 1\}, \{c, d, 1\}, A$, and the state-filters of (A, σ) are $\{1\}, \{c, d, 1\}, A$. There are two maximal filters, namely $\{b, 1\}$ and $\{c, d, 1\}$, so Rad $(A) = \{1\}$, and a single maximal state-filter, $\{c, d, 1\}$, so Rad $_{\sigma}(A) = \{c, d, 1\}$. For A the BL-algebra from Example 3.5 and the state-operator $\sigma : A \to A$, defined by $\sigma(0) = 0$ and $\sigma(x) = 1$ otherwise, the filters and the state-filters are the same: $\{1\}, \{a, 1\}, \{b, 1\}, \{c, a, b, 1\}, A$. We have $\operatorname{Rad}(A) = \operatorname{Rad}_{\sigma}(A) = \{c, a, b, 1\}$. For the algebra \mathbf{I}_L , since $\operatorname{ord}(x) < \infty$, for every $x \neq 1$, the only filters are $\{1\}$ and [0, 1]. Since the single state-operator on \mathbf{I}_L is $\operatorname{id}_{\mathbf{I}_L}$, these are also the only state-filters.

In the case of the algebra \mathbf{I}_G , the filters are the sets of the form [x, 1] or (x, 1], where $x \in [0, 1]$. \mathbf{I}_G has an only maximal filter, namely (0, 1]. According to Proposition 3.1(2) if σ is a state-operator on \mathbf{I}_G , then $\sigma = \sigma^a$ or $\sigma = \sigma_a$ (with thoses notations). For any of these state-operators, the state-filters and the filters of \mathbf{I}_G are the same. In the case of the algebra \mathbf{I}_P , since ord $(x) < \infty$, for every $x \neq 1$, the only filters are $\{1\}$ si [0, 1], which are therefore the only state-filters.

Proposition 4.1. Let A and B be two BL-algebras and let us consider $A \times B$ the BL-algebra product of A and B. If F_1, F_2 are filters of A, respectively B, then $F_1 \times F_2$ is a filter of $A \times B$ and, conversely, any filter of $A \times B$ is of the form $F_1 \times F_2$, where F_1, F_2 are filters of A, respectively B.

Proof. If F_1, F_2 are filters of A, respectively B, then it is imediate that $F_1 \times F_2$ is a filter of $A \times B$. Conversely, let F be a filter of $A \times B$. Since F is nonvoid, then the sets $F_1 := \{x \in A \mid \text{there exists } y \in B \text{ such that } (x, y) \in F\} \subseteq A \text{ and } F_2 := \{y \in B \mid \text{there exists } x \in A \text{ such that } (x, y) \in F\} \subseteq B \text{ will be too.}$

We are going to prove that F_1, F_2 are filters and $F = F_1 \times F_2$. Indeed, if $a, b \in F_1$, then there exists $c, d \in B$ such that $(a, c), (b, d) \in F$, so $(a \odot b, c \odot d) \in F$, so $a \odot b \in F_1$. If $a \in F_1$ and $a \leq c$, then, since there exists $b \in B$ such that $(a, b) \in F$ and since $(a, b) \leq (c, b)$, it follows that $(c, b) \in F$, therefore $c \in F_1$. Thus F_1 is a filter and analogously it shows that F_2 is a filter. Let $(a, b) \in F$. Then $a \in F_1, b \in F_2$, so $(a, b) \in F_1 \times F_2$, so $F \subseteq F_1 \times F_2$. Let's now $(a, b) \in F_1 \times F_2$. Since $a \in F_1, b \in F_2$, there exist $x \in A, y \in B$ such that $(a, y), (x, b) \in F$. Then $(a, 1), (1, b) \in F$ and so $(a \odot 1, 1 \odot b) \in F$, that is, $(a, b) \in F$, therefore $F_1 \times F_2 \subseteq F$. Thus $F = F_1 \times F_2$.

Let's now consider an BL-algebra A which contains proper filters and the stateoperator $\sigma : A \times A \to A \times A$, $\sigma(a, b) = (a, a)$, for every $(a, b) \in A \times A$, from the Example 3.6. According to Proposition 4.1 any filter of $A \times A$ is of the form $F_1 \times F_2$, with F_1, F_2 filters of A. If $F_1 \times F_2$ is a state-filter of $(A \times A, \sigma)$, then $F_1 \subseteq F_2$. Indeed, let $a \in F_1$. Then $(a, 1) \in F_1 \times F_2$, so $\sigma(a, 1) = (a, a) \in F_1 \times F_2$, that is, $a \in F_2$.

Conversely, if $F_1 \times F_2$ is a filter of $A \times A$ such that $F_1 \subseteq F_2$, and $(a, b) \in F_1 \times F_2$, then $\sigma(a, b) = (a, a) \in F_1 \times F_2$, so the state-filters of $(A \times A, \sigma)$ are the sets of the form $F_1 \times F_2$, in which F_1, F_2 are filters of A with $F_1 \subseteq F_2$.

Remark 4.1. [2] Let A be a BL-algebra and σ a state-operator on A. Then ker (σ) is a state-filter of (A, σ) .

Proposition 4.2. [2] Let A be a BL-algebra. A proper filter F of A is a maximal filter iff for any $a \notin F$, there exists $n \in \mathbb{N}^*$ such that $(a^n)^* \in F$.

Proposition 4.3. [7] Let A be a BL-algebra. Then Rad $(A) = \{x \in A \mid (x^n)^* \le x, \text{ for every } n \in \mathbb{N}\}.$

Proposition 4.4. [2] Let (A, σ) be a state BL-algebra and $X \subseteq A$. Then the statefilter $F_{\sigma}(X)$ generated by X is the set

 $\left\{x \in A \mid x \ge (x_1 \odot \sigma (x_1))^{n_1} \odot \dots \odot (x_k \odot \sigma (x_k))^{n_k}, x_i \in X, n_i \ge 1, k \ge 1\right\}.$

If F is a state-filter of (A, σ) and $a \notin F$, then the state-filter generated by F and a is the set $F_{\sigma}(F, a) = \{x \in A \mid x \geq i \odot (a \odot \sigma (a))^n, i \in F, n \geq 1\}$. A proper statefilter F is a maximal state-filter iff for any $a \notin F$ there exists $n \in \mathbb{N}^*$ such that $(\sigma (a)^n)^* \in F$.

In watt follow we will introduce the concept of a prime state-filter, we will establish some results related to this concept on the basis of which we are going to characterise the set $Rad_{\sigma}(A)$, in the case of a state-morphism BL-algebra (A, σ) .

Proposition 4.5. Let (A, σ) be a state BL-algebra and P a proper state-filter of (A, σ) . Then the following statements are equivalent:

(i) If P_1, P_2 are two state-filters of (A, σ) such that $P = P_1 \cap P_2$, then $P = P_1$ or $P = P_2$;

(*ii*) If $(a \odot \sigma(a)) \lor (b \odot \sigma(b)) \in P$, $a, b \in A$, then $a \in P$ or $b \in P$.

Proof. $(i) \Rightarrow (ii)$. Let $a, b \in A$ such that $(a \odot \sigma(a)) \lor (b \odot \sigma(b)) \in P$. We consider the sets $F_{\sigma}(P, a) = \{x \in A \mid x \ge i \odot (a \odot \sigma(a))^n, i \in P, n \ge 1\}$ and $F_{\sigma}(P, b) = \{x \in A \mid x \ge i \odot (b \odot \sigma(b))^n, i \in P, n \ge 1\}$, which represent state-filters generated by P and a, respectively P and b (according to Proposition 4.4).

Obviously, $P \subseteq F_{\sigma}(P, a) \cap F_{\sigma}(P, b)$. If $x \in F_{\sigma}(P, a) \cap F_{\sigma}(P, b)$, then there exist $i_1, i_2 \in P$ and $m, n \in \mathbb{N}^*$ such that $x \ge i_1 \odot (a \odot \sigma (a))^m$ and $x \ge i_2 \odot (b \odot \sigma (b))^n$, so $x \ge (i_1 \odot (a \odot \sigma (a))^m) \lor (i_2 \odot (b \odot \sigma (b))^n) \ge (i_1 \lor i_2) \odot (i_1 \lor (b \odot \sigma (b))^n) \odot (i_2 \lor (a \odot \sigma (a))^m) \odot ((a \odot \sigma (a))^m \lor (b \odot \sigma (b))^n)$ (according to Proposition 2.1, (3)) $\ge (i_1 \lor i_2) \odot (i_1 \lor (b \odot \sigma (b))^n) \odot (i_2 \lor (a \odot \sigma (a))^m) \odot ((a \odot \sigma (a)) \lor (b \odot \sigma (b))^m$

(according to Proposition 2.1, (4)).

But $i_1 \vee i_2, i_1 \vee (b \odot \sigma(b))^n, i_2 \vee (a \odot \sigma(a))^m$ and $((a \odot \sigma(a)) \vee (b \odot \sigma(b)))^{mn}$ belong to P, and then it follows that $x \in P$. Thus $P = F_{\sigma}(P, a) \cap F_{\sigma}(P, b)$, and, from the hypothesis, we obtain that $P = F_{\sigma}(P, a)$ or $P = F_{\sigma}(P, b)$, that is, $a \in P$ or $b \in P$.

 $(ii) \Rightarrow (i)$. Let P_1, P_2 be two state-filters of (A, σ) such that $P = P_1 \cap P_2$. Let's suppose that $P \neq P_1$ and $P \neq P_2$. Then there exist $a \in P_1 \setminus P$ and $b \in P_2 \setminus P$. Then $a \odot \sigma(a) \in P_1, b \odot \sigma(b) \in P_2$, so $(a \odot \sigma(a)) \lor (b \odot \sigma(b)) \in P_1 \cap P_2 = P$, hence $a \in P$ or $b \in P$, a contradiction. Therefore $P = P_1$ or $P = P_2$.

Definition 4.3. Let (A, σ) be a state BL-algebra. A proper state-filter P of (A, σ) is called a prime state-filter if it verify one of the equivalent conditions from the Proposition 4.5.

Proposition 4.6. Let (A, σ) be a state BL-algebra. Then any maximal state-filter of (A, σ) is a prime state-filter.

Proof. Let F be a maximal state-filter of (A, σ) and P_1, P_2 two state-filters such that $F = P_1 \cap P_2$. If $F \neq P_1$, then F is strictly contained in P_1 , and, since F is a maximal state-filter, it follows that $P_1 = A$. Then $F = A \cap P_2 = P_2$. Therefore F is a prime state-filter.

Definition 4.4. Let (A, σ) be a state BL-algebra. A nonovoid subset I of A is called state-ideal if the following conditions are verified:

- (1) $a, b \in I$ implies $a \oplus b \in I$;
- (2) $a \in I, b \leq a \text{ implies } b \in I;$
- (3) $a \in I$ implies $\sigma(a) \in I$.

Proposition 4.7. (*Prime state-filter theorem*) Let I be a state-ideal and F a state-filter on a state BL-algebra (A, σ) such that $F \cap I = \emptyset$. Then there is a prime state-filter P such that $F \subseteq P$ and $P \cap I = \emptyset$.

Proof. Consider the set

 $\mathbf{F}(F) = \{F' \mid F' \text{ is a state-filter such that } F \subseteq F' \text{ and } F' \cap I = \emptyset\}.$

Since $F \in \mathbf{F}(F)$, it follows that $\mathbf{F}(F)$ is nonvoid. It is easily to prove that the set $\mathbf{F}(F)$ is inductively ordered, so, by Zorn's Lemma in $\mathbf{F}(F)$ then is P a maximal element. I want to prove that P is a prime state-filter. Since $P \in \mathbf{F}(F)$, it follows that P is a proper state-filter and $P \cap I = \emptyset$.

Let $a, b \in A$ such that $(a \odot \sigma(a)) \lor (b \odot \sigma(b)) \in P$. Let's suppose that $a \notin P$ and $b \notin P$. Consider the sets $F_{\sigma}(P, a)$ şi $F_{\sigma}(P, b)$, which represent state-filters generated by P and a, respectively P and b. Then P is strictly contained in $F_{\sigma}(P, a)$ and $F_{\sigma}(P, b)$ and, by the maximality of P, we deduce that $F_{\sigma}(P, a) \notin \mathbf{F}(F)$ and $F_{\sigma}(P, b) \notin \mathbf{F}(F)$. Thus $F_{\sigma}(P, a) \cap I \neq \emptyset$ and $F_{\sigma}(P, b) \cap I \neq \emptyset$. Let $x \in F_{\sigma}(P, a) \cap I$ and $y \in F_{\sigma}(P, b) \cap I$. Then there exist $i_1, i_2 \in P$ and $m, n \in \mathbb{N}$ such that $x \ge i_1 \odot (a \odot \sigma(a))^m$ and $y \ge i_2 \odot (b \odot \sigma(b))^n$, so $x \lor y \ge (i_1 \odot (a \odot \sigma(a))^m) \lor (i_2 \odot (b \odot \sigma(b))^n) \ge (i_1 \lor i_2) \odot (i_1 \lor (b \odot \sigma(b))^n) \odot (i_2 \lor (a \odot \sigma(a))^m) \odot ((a \odot \sigma(a)) \lor (b \odot \sigma(b))^m \in P$, that is, $x \lor y \in P$. But $x, y \in I$, so $x \lor y \in I$, hence $P \cap I \neq \emptyset$, a contradiction.

Thus P is a prime state-filter.

Proposition 4.8. Let (A, σ) be a state BL-algebra and $a \in A, a < 1$. Then there exists a prime state-filter P of (A, σ) such that $a \notin P$.

Proof. Like in the Proposition 4.7 we consider the set

 $\mathbf{F}(a) = \{F \mid F \text{ is a state-filter and } a \notin F\}$. Since $\{1\} \in \mathbf{F}(a)$, it follows that $\mathbf{F}(a)$ is nonvoid.

We can easily prove that the set $\mathbf{F}(a)$ is inductively ordered, so by Zorn's Lemma then is P a maximal element of $\mathbf{F}(a)$. I want to prove that P is a prime state-filter. Let $x, y \in A$ such that $(x \odot \sigma(x)) \lor (y \odot \sigma(y)) \in P$. Let's suppose that $x \notin P$ and $y \notin P$. Considering the sets $F_{\sigma}(P, x)$ and $F_{\sigma}(P, y)$, which represent state-filters generated by P and x, respectively P and y, it follows that P is strictly contained in $F_{\sigma}(P, x)$ and $F_{\sigma}(P, y)$ and, by the maximality of P, we deduce that $a \in F_{\sigma}(P, x) \cap F_{\sigma}(P, y)$. Then there exist $i_1, i_2 \in P$ and $m, n \in \mathbb{N}$ such that $a \ge i_1 \odot (x \odot \sigma(x))^m$ and $a \ge i_2 \odot (y \odot \sigma(y))^n$, so $a \ge (i_1 \odot (x \odot \sigma(x))^m) \lor (i_2 \odot (y \odot \sigma(y))^n) \ge (i_1 \lor i_2) \odot$ $(i_1 \lor (y \odot \sigma(y))^n) \odot (i_2 \lor (x \odot \sigma(x))^m) \odot ((x \odot \sigma(x)) \lor (y \odot \sigma(y)))^{mn} \in P$, so $a \in P$, a contradiction. Thus P is a prime state-filter and $a \notin P$.

Corollary 4.1. Let (A, σ) be a state BL-algebra and P a proper state-filter of (A, σ) . Then there exists a maximal state-filter F_0 of (A, σ) such that $P \subseteq F_0$.

Proof. The Proposition 4.7 is applied for $I = \{0\}$ and F = P. Let F_0 be a maximal element of the set $\mathbf{F}(P) = \{F' \mid F' \text{ is a proper state-filter and } P \subseteq F'\}$. I want to prove that F_0 is a maximal state-filter of (A, σ) . Indeed, if F_1 is a state-filter of (A, σ) such that $F_0 \subseteq F_1$ then, the maximality of F_0 , it follows that $F_1 \notin \mathbf{F}(P)$, so F_1 is not a proper state-filter, so $F_1 = A$.

On the basis of the previous results, we will be able to characterize the set $Rad_{\sigma}(A)$, of the intersection of all maximal state-filters of a state-morphism BL-algebra (A, σ) . Firstly, we will establish the following result:

Proposition 4.9. Let (A, σ) be a state BL-algebra. Then

 $\left\{x \in A \mid (\sigma(x)^{n})^{*} \leq \sigma(x), \text{ for every } n \in \mathbb{N}\right\} \subseteq Rad_{\sigma}(A).$

Proof. Consider $B = \{x \in A \mid (\sigma(x)^n)^* \leq \sigma(x), \text{ for every } n \in \mathbb{N}\}$ and let $x \in B$. Let's suppose that $x \notin Rad_{\sigma}(A)$, therefore there exists a maximal state-filter F of (A, σ) such that $x \notin F$. According to Proposition 4.8, there exists $n \in \mathbb{N}$ such that $(\sigma(x)^n)^* \in F$. Since $(\sigma(x)^n)^* \leq \sigma(x)$, we deduce that $\sigma(x) \in F$. But then $\sigma(x)^n \in F$ and, since $(\sigma(x)^n)^* \in F$, we obtain that F = A, a contradiction. Therefore $B\subseteq Rad_{\sigma}\left(A\right).$

Proposition 4.10. Let (A, σ) be a state-morphism BL-algebra. Then $Rad_{\sigma}(A) \subseteq \left\{ x \in A \mid (\sigma(x)^{n})^{*} \leq \sigma(x), \text{ for every } n \in \mathbb{N} \right\}.$

Proof. Consider $B = \{x \in A \mid (\sigma(x)^n)^* \leq \sigma(x), \text{ for every } n \in \mathbb{N}\}$ and let $x \in Rad_{\sigma}(A)$. Let's suppose that $x \notin B$, so there exists $n \in \mathbb{N}$ such that $(\sigma(x)^n)^* \leq \sigma(x)$, that is, $(\sigma(x)^n)^* \to \sigma(x) < 1$. According to Proposition 4.8 there exists a prime state-filter P of (A, σ) such that $(\sigma(x)^n)^* \to \sigma(x) \notin P$. On the other hand $\sigma\left((\sigma(x)^n)^* \to \sigma(x)\right) = \sigma\left(\sigma\left((x^n)^*\right) \to \sigma(x)\right)$ (since σ is a morphism) = $\sigma\left((x^n)^*\right) \to \sigma(x)$ (from the $(4)_{BL}$) = $(\sigma(x)^n)^* \to \sigma(x)$ and, analogously, $\sigma\left(\sigma\left(x\right) \to \left(\sigma\left(x\right)^{n}\right)^{*}\right) = \sigma\left(x\right) \to \left(\sigma\left(x\right)^{n}\right)^{*}.$ Then $\left(\left(\left(\sigma\left(x\right)^{n}\right)^{*} \to \sigma\left(x\right)\right) \odot \sigma\left(\left(\sigma\left(x\right)^{n}\right)^{*} \to \sigma\left(x\right)\right)\right)$ $\bigvee \left(\left(\sigma \left(x \right) \to \left(\sigma \left(x \right)^n \right)^* \right) \odot \sigma \left(\sigma \left(x \right) \to \left(\sigma \left(x \right)^n \right)^* \right) \right)$ = $\left(\left(\sigma \left(x \right)^n \right)^* \to \sigma \left(x \right) \right)^2 \lor \left(\sigma \left(x \right) \to \left(\sigma \left(x \right)^n \right)^* \right)^2$ $\geq \left(\left(\left(\sigma \left(x \right)^n \right)^* \to \sigma \left(x \right) \right) \lor \left(\sigma \left(x \right) \to \left(\sigma \left(x \right)^n \right)^* \right) \right)^4$ (according to Proposition 2.1, (4)) = $1 \in P$, and, since P is prime and $(\sigma(x)^n)^* \to \sigma(x) \notin P$, we deduce that $\sigma(x) \to (\sigma(x)^n)^* \in P$. But $\sigma(x) \to (\sigma(x)^n)^* = (\sigma(x) \odot \sigma(x)^n)^*$ (from Proposition 2.1, (5)), thus $\left(\sigma\left(x\right)^{n+1}\right)^* \in P$. According to Corrollary 4.1, there exists a maximal statefilter F_0 of (A, σ) such that $P \subseteq F_0$, so $\left(\sigma(x)^{n+1}\right)^* \in F_0$, that is, $\sigma(x)^{n+1} \notin F_0$. Then $\sigma(x) \notin F_0$ and so $x \notin F_0$, namely $x \notin Rad_{\sigma}(A)$, a contradiction. Therefore

From Propositions 4.9 and 4.10 we obtain:

Theorem 4.1. Let (A, σ) be a state-morphism BL-algebra. Then $Rad_{\sigma}(A) = \left\{ x \in A \mid \left(\sigma(x)^{n} \right)^{*} \leq \sigma(x), \text{ for every } n \in \mathbb{N} \right\}.$ Moreover, $Rad(A) \subseteq Rad_{\sigma}(A)$.

Proof. The first part result from Propositions 4.9 and 4.10. For the second part, let $x \in Rad(A)$, so $(x^n)^* \leq x$, for every $n \in \mathbb{N}$.

Then $\sigma((x^n)^*) \leq \sigma(x)$, for every $n \in \mathbb{N}$, so $(\sigma(x)^n)^* \leq \sigma(x)$, for every $n \in \mathbb{N}$, that is, $x \in Rad_{\sigma}(A)$.

5. Classes of *BL*- algebras

 $Rad_{\sigma}(A) \subseteq B.$

Within this section, we are going to present some classes of BL-algebras, such as simple, semisimple and local BL-algebras, we will then define the concepts of simple,

semisimple and local state BL-algebras (A, σ) , next we will introduce the concepts of simple, semisimple and local state BL-algebras (A, σ) relative to its state-filters set, and we will finally establish relations between these concepts, which occur in some conditions imposed to the state-operator σ .

Definition 5.1. A BL-algebra A is called simple if its only filters are $\{1\}$ and A. A state BL-algebra (A, σ) is called simple if $\sigma(A)$ is simple.

We will now define a new concept:

Definition 5.2. A state BL-algebra (A, σ) is called simple relative to its state-filters set if it has only two state-filters: $\{1\}$ and A.

Example 5.1. Let's consider a state BL-algebra (A, σ) . If $\sigma = id_A$, then the three concepts from Definition 5.1 are the same. Let's consider the state BL-algebra (A, σ) from Example 3.2. We have $\sigma(A) = \{0, a, 1\}$.

If $I \subseteq \sigma(A)$ is a filter, $I \neq \{1\}$, and if $a \in I$, then $a \odot a = 0 \in I$, so $I = \sigma(A)$. Thus $\sigma(A)$ is simple, so (A, σ) is simple. By the contrary, according to Example 4.1 A is not simple and (A, σ) is not simple relative to its state-filters set. For each state BL-algebras (A, σ) from Examples 3.3, 3.4, 3.5 we have $\sigma(A) = \{0, 1\}$, so (A, σ) is simple, but A is notsimple and (A, σ) is not simple relative to its state-filters set.

Remark 5.1. According to [2], if (A, σ) is a state BL-algebra such that A is simple, then $\sigma(A)$ is simple, so (A, σ) is simple.

Theorem 5.1. [2] Let (A, σ) be a state-morphism BL-algebra. Then the following conditions are equivalent:

(1) (A, σ) is simple;

(2) ker (σ) is a maximal filter of A.

Proposition 5.1. Let (A, σ) be a state BL-algebra. If (A, σ) is simple relative to its state-filters set, then (A, σ) is simple.

Proof. Let J be a filter of $\sigma(A), J \neq \{1\}$. We will prove that $J = \sigma(A)$. Consider $\mathbf{F}_J = \{z \in A \mid z \geq j, \text{ for a certain } j \in J\}$. If $x, y \in \mathbf{F}_J$, then there exist $j_1, j_2 \in J$ such that $x \geq j_1, y \geq j_2$, so $x \odot y \geq j_1 \odot j_2 \in J$, hence $x \odot y \in \mathbf{F}_J$. If $x \in \mathbf{F}_J$ and $x \leq y$, then obviously $y \in \mathbf{F}_J$.

If $x \in \mathbf{F}_J$, then $x \ge j, j \in J$, so $\sigma(x) \ge \sigma(j) = j$ (since $j \in \sigma(A)$), hence $\sigma(x) \in \mathbf{F}_J$. Therefore \mathbf{F}_J is a state-filter of (A, σ) . Since (A, σ) is simple relative to its state-filters set, and $\mathbf{F}_J \neq \{1\}$ (since $J \subseteq \mathbf{F}_J$), it follows that $\mathbf{F}_J = A$, so $0 \in \mathbf{F}_J$, hence $0 \in J$, that is, $J = \sigma(A)$.

Remark 5.2. If (A, σ) is a simple state BL-algebra relative to its state-filters set, then, since ker (σ) is a state filter and ker $(\sigma) \neq A$, it follows that ker $(\sigma) = \{1\}$, thus σ is a faithful operator.

Remark 5.3. If (A, σ) is a simple state BL-algebra, then it doesn't necessarly follow that σ is faithful. For instance, for the simple state BL-algebra (A, σ) from the Example 3.2 we have ker $(\sigma) = \{b, 1\} \neq \{1\}$.

Theorem 5.2. Let (A, σ) be a state BL- algebra. Then the following conditions are equivalent:

- (i) (A, σ) is simple relative to its state-filters set;
- (ii) (A, σ) is simple and σ is faithful.

Proof. $(i) \Rightarrow (ii)$ Results from the Proposition 5.1 and the Remark 5.2.

 $(ii) \Rightarrow (i)$ Let I be a state-filter of (A, σ) . Then $I \cap \sigma(A)$ is a filter of $\sigma(A)$, and so $I \cap \sigma(A) = \{1\}$ or $I \cap \sigma(A) = \sigma(A)$. If $I \cap \sigma(A) = \sigma(A)$, then $\sigma(A) \subseteq I$ and, since $0 \in \sigma(A)$, we deduce that I = A. If $I \cap \sigma(A) = \{1\}$, let $x \in I$. Then $\sigma(x) \in I \cap \sigma(A)$, so $\sigma(x) = 1$, that is, x = 1 (since σ is faithful), so $I = \{1\}$. Therefore the only state-filters of (A, σ) are $\{1\}$ and A.

Theorem 5.3. Let (A, σ) be a state-morphism BL-algebra. Then the following conditions are equivalent:

(i) (A, σ) is simple relative to its state-filters set;

(*ii*) A is simple.

Proof. $(i) \Rightarrow (ii)$ According to Theorem 5.2 it follows that (A, σ) is simple and σ is faithful. According to Theorem 5.1 ker (σ) is a maximal state-filter of A. Let now F be a filter of $A, F \neq \{1\}$. Since ker $(\sigma) = \{1\} \subseteq F$ and ker (σ) is maximal, we deduce that F = A, so A is simple.

 $(ii) \Rightarrow (i)$ Clearly.

From of the Theorems 5.3 and 5.3 it follows:

Theorem 5.4. Let (A, σ) be a state-morphism BL-algebra and σ is faithful. Then the following conditions are equivalent:

(i) A is simple;

(ii) (A, σ) is simple.

Proof. $(i) \Rightarrow (ii)$ Results from the Remark 5.1.

 $(ii) \Rightarrow (i)$ If (A, σ) is simple, since σ is faithful, then from the Theorem 5.2 it follows that (A, σ) is simple relative to its state-filters set and then, from the Theorem 5.3 we deduce that A is simple.

Definition 5.3. A BL-algebra A is called local if it has only a maximal filter. A state BL-algebra (A, σ) is called local if $\sigma(A)$ is local.

Next we define a new concept:

Definition 5.4. A state BL-algebra (A, σ) is local relative to its state-filters set if it has only a maximal state-filter.

Example 5.2. Let's consider the BL-algebra A and the state-operator

 $\sigma: A \to A$ from Example 3.2. Then A is local, (A, σ) is local and (A, σ) is local relative to its state-filters set. In Example 3.3 the BL-algebra A is not local, but (A, σ) is local relative to its state-filters set.

Theorem 5.5. Let (A, σ) be a state BL-algebra. Then the following conditions are equivalent:

(i) (A, σ) is local relative to its state-filters set;

(*ii*) (A, σ) is local.

Proof. $(i) \Rightarrow (ii)$ Let F be the only maximal state-filter of (A, σ) . Then $F \cap \sigma(A)$ is a filter of $\sigma(A)$. We will prove that $F \cap \sigma(A)$ is the only maximal filter of $\sigma(A)$. If $F \cap \sigma(A) = \sigma(A)$, then $\sigma(A) \subseteq F$, so $0 \in F$, a contradiction. Let I be an arbitrary proper filter of $\sigma(A)$. We consider the set $F_{\sigma}(I) = \{z \in A \mid z \ge i, i \in I\}$, which represents the state-filter generated by I in (A, σ) . If $F_{\sigma}(I) = A$, then $0 \in F_{\sigma}(I)$, so $0 \in I$, false. Then $F_{\sigma}(I)$ is a proper state-filter, so $F_{\sigma}(I) \subseteq F$, that is,

 $I = I \cap \sigma(A) \subseteq F_{\sigma}(I) \cap \sigma(A) \subseteq F \cap \sigma(A).$

Then $F \cap \sigma(A)$ is a proper filter which contains any proper filter I of $\sigma(A)$, thus it is the only maximal filter of $\sigma(A)$, so (A, σ) is local.

 $(ii) \Rightarrow (i)$ Let I be the only maximal filter of $\sigma(A)$ and the set

 $F_{\sigma}(I) = \{z \in A \mid z \ge i, i \in I\}$, which represents the state-filter generated by I in (A, σ) . Let $\mathbf{F}(I) = \{F \mid F \text{ is a proper state-filter of } (A, \sigma) \text{ and } I \subseteq F\}$.

If $F_{\sigma}(I)$ is not proper, then $0 \in F_{\sigma}(I)$, so $0 \in I$, false. Thus $F_{\sigma}(I) \in \mathbf{F}(I)$, so $\mathbf{F}(I)$ is nonvoid. It is easily to verify that $\mathbf{F}(I)$ is inductively ordered, so by Zorn's Lemma then is F a maximal element of $\mathbf{F}(I)$. We will prove that F is the only maximal state-filter of (A, σ) . Indeed, let F_1 be an arbitrary proper state-filter of (A, σ) . Let's suppose that there exists an element $x \in F_1 \setminus F$. Then $\sigma(x) \in F_1 \cap \sigma(A)$. If $F_1 \cap \sigma(A) = \sigma(A)$ it follows that $\sigma(A) \subseteq F_1$, so $0 \in F_1$, a contradiction. Thus $F_1 \cap \sigma(A) \neq \sigma(A), F_1 \cap \sigma(A)$ is a filter of $\sigma(A)$ and, since I is a maximal filter of $\sigma(A)$, it follows that $F_1 \cap \sigma(A) \subseteq I$, so $\sigma(x) \in I$.

Then $\sigma(x) \in F_{\sigma}(I)$, so $\sigma(x) \in F$. Since $x \notin F$ and F is a maximal state-filter, then, according to Proposition 4.8, it follows that there exists $n \in \mathbb{N}^*$ such that $(\sigma(x)^n)^* \in F$.

But $\sigma(x)^n \in F$, a contradiction. Thus $F_1 \subseteq F$, so F is the only maximal state-filter of (A, σ) , so (A, σ) is local relative to its state-filters set. \Box

Definition 5.5. A BL-algebra A is called semisimple if $Rad(A) = \{1\}$. Let (A, σ) be a state BL-algebra. (A, σ) is called semisimple if $Rad(\sigma(A)) = \{1\}$.

Concerning all this, we are now going to define a new concept:

Definition 5.6. A state BL-algebra (A, σ) is called semisimple relative to its statefilters set if $Rad_{\sigma}(A) = \{1\}$.

Example 5.3. Let's consider the state BL-algebra (A, σ) from Example 3.2. The A algebra is not semisimple, but (A, σ) is semisimple because $Rad(\sigma(A)) = \{1\}$. It is not semisimple relative to its state-filters set.

The A algebras from Examples 3.3, 3.4 are semisimple, (A, σ) is not semisimple, but they are semisimple relative to its state-filters set.

The A algebra from Example 3.5 is not semisimple, (A, σ) is not semisimple relative to its state-filters set, but (A, σ) is semisimple.

The \mathbf{I}_L algebra from Proposition 3.1 is semisimple, and, since $\sigma = id_L$, (\mathbf{I}_L, σ) is semisimple and semisimple relative to its state-filters set.

Proposition 5.2. ([2]) Let (A, σ) be a state BL-algebra. Then σ (Rad (A)) \supseteq Rad (σ (A)) = σ (Rad $_{\sigma}$ (A)).

Theorem 5.6. Let (A, σ) be a state BL-algebra. Then the following conditions are equivalent:

(i) (A, σ) is semisimple and σ is faithful;

(ii) (A, σ) is semisimple relative to its state-filters set.

Proof. (*i*) \Rightarrow (*ii*) According to Proposition 5.2 we have $\sigma(Rad_{\sigma}(A)) = Rad(\sigma(A)) = \{1\}$, so $Rad_{\sigma}(A) \subseteq \ker(\sigma) = \{1\}$, that is, $Rad_{\sigma}(A) = \{1\}$.

 $(ii) \Rightarrow (i) \operatorname{Rad}(\sigma(A)) = \sigma(\operatorname{Rad}_{\sigma}(A)) = \sigma(\{1\}) = \{1\}, \text{ so } (A, \sigma) \text{ is semisimple.}$ We will prove that σ is faithful. Let $x \in \ker(\sigma)$, that is, $\sigma(x) = 1$. Let's suppose that $x \notin \operatorname{Rad}_{\sigma}(A)$. Then there exists a maximal state-filter F such that $x \notin F$. According to Proposition 4.4 there exists $n \in \mathbb{N}^*$ such that $(\sigma(x)^n)^* \in F$, so $0 \in F$, a contradiction. Thus $x \in \operatorname{Rad}_{\sigma}(A) = \{1\}$, so σ is faithful.

128

References

- R. Cignoli, F. Esteva, L. Godo, and A. Torrens, Basic fuzzy logic is the logic of continuos t-norms and their residua, Soft Computing 4 (2000), 106–112.
- [2] L.C. Ciungu, A. Dvurečenskij, and M. Hyčko, State BL-algebras, Soft Computing DOI:10.1007/s00500-010-0571-5.
- [3] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
- [4] T. Flaminio, and F. Montagna, An algebraic approach to states of MV-algebras, In: V. Nováck(ed), Fuzzy Logic 2 (2007), Proc. of the 5th EUSFLAT Conf., Sept. 11–14, 2007, Ostrava, Vol II, 201–206.
- [5] T. Flaminio, and F. Montagna, MV-algebras with internal states and probabilistic fuzzy logic, Inter. J. Approx. Reasoning 50 (2009), 138–152.
- [6] A. Di Nola, and A. Dvurečenskij, State-morphism MV- algebras, Ann. Pure Appl. Logic 161 (2009), 161–173. DOI:10.1016/ j.apal.2009.05.003.
- [7] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo- BL-algebras: Part II, Multiple Val Logic 8 (2002), 717–750.

(Nicolae Mircea Constantinescu) FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CRAIOVA, AL.I. CUZA STREET, NO. 13, CRAIOVA RO-200585, ROMANIA *E-mail address*: mnconst69@yahoo.com