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A note on BL-algebras with internal state

NICOLAE MIRCEA CONSTANTINESCU

ABSTRACT. The scope of this paper is to put in evidence some properties of the BL-algebras
with internal state. I introduce the concepts of prime and maximal state-filters, I prove
a Prime state-filter theorem 4.7 and I characterize the set Rads (A), which represents the
intersection of all maximal state-filters of a state BL-algebra (A4,0). Also, I introduce the
concepts of simple, semisimple and local state BL-algebras relative to its state-filter set.
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1. Introduction

The concept of state MV —algebras was firstly introduced by Flaminio and Mon-
tagna in [4] and [5] as a MV —algebra endowed with a unary operation o (called a
state-operator), which preserves the usual properties of states. Di Nola and Dvurecen-
skij presented in [6] a stronger version of states MV —algebras namely state-morphism
MYV —algebras. Afterwards Ciungu, Dvurecenskij and Hy¢ko extended in [2] the con-
cept of state (morphism) MV —algebra and in the case of BL—algebras and they
extended the properties of a state-operator. The present article is structured into five
sections.

In Section 2, basic properties regarding the concepts of MV —algebra, BL—algebra
are being presented, as well as some basic properties of the operations defined on these
algebras, which are to be used afterwards. The concept of state (morphism) —operator
on a BL—algebra also belongs to this section, as well some of its properties.

In Section 3 some examples of state BL—algebras are presented. In Section 4
the concept of state-filter on a state BL—algebra is introduced. There are presented
some examples of filters and state-filters, as well as the concepts of maximal state-
filter, prime state-filter, some of their characteristics and, if the state-operator o is
a morphism, the set Rad, (A) is characterised, in which Rad, (A) represents the
intersection of all maximal state-filters of a state BL—algebra (A, 0).

In Section 5, there are presented some classes of BL—algebras such as simple,
semisimple and local as well as simple, semisimple and local state BL—algebras.
There are introduced the concepts of simple, semisimple and local state BL—algebras
relative to its state-filters set and there are establishished relations between these
structures in certain conditions imposed to the state-operator o.

2. Preliminaries

Definition 2.1. An algebra (A, A,V,®,—,0,1) of the type (2,2,2,2,0,0) is called a
BL—algebra if satisfies the following axioms:
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(1) (A,A,V,0,1) is a bounded lattice;
(2) (A,®,1) is a commutative monoid;
B)roy<ziffv<y— 2z

@ rrny=z0 (@ —y);

(B) =y Vy—a) =1

for every x,y, z € A.

We will denote 2* =2 — 0, z € A. If € A, we define 2% = 1 and for n > 1 we
define z" = z" ' O z.

Definition 2.2. Let A be a BL—algebra and x € A. If there exists the least number
n € N* such that ™ = 0, then we set ord(x) = n. If there is no such a number
(that is, ™ > 0, for every n > 0), then we set ord (z) = oco.

We recall some results relative to BL—algebras:

Proposition 2.1. Let A be a BL—algebra. Then:
(1) ifa<bandc<dthena®c<bod;
(2) @ (bVe)= (@O b)V(@a®0);
B)aVv(doc) > (a\/b) (aVe);
(4) a™ \/b”>(a\/b) ,m,n € N;
(5) (a®b)" =a— b*
(6) a©(a—(a©b)) =aOb;

for every a,b,c € A.

Definition 2.3. An algebra (A, ®,*,0) of the type (2,1,0) is called a MV —algebra
if satisfies the following azioms:

(1) (4,®,0) is a commutative monoid;

(2) ™ =z, for every x € A;

(3) x @ 0* = 0*, for every x € A;

4) (z*Dy) ®y=(y* ®x)" Oz, for every v,y € A.

On a BL—algebra (A, A,V,®,—,0,1) we define the operation & on A by z @y =
(x* Oy*) 2,y € A. If 2** = z, for every & € A, then (A,®,x,0) it becomes a
MYV —algebra. We are now defining the concept of state-operator on a BL—algebra.

Definition 2.4. [2] Let A be a BL—algebra. An application o : A — A which verifies
the properties:

(1)g., o (0) =0;

(2)pro@—y) =o(@) —o(@Ay);

Bpro(oy)=0(x)0o(—z0y);

(4)p o(0(x) 0o (y) =0(@)©o(y);

(B)pr o(o(@) = o(y) =c(x) —0o(y);

for every x,y € A, is called state-operator on A, and the pair (A,o) is called a
state BL—algebra or, more precisely, a BL-algebra with internal state.

Some examples of state-operators will be presented in Section 3.

Proposition 2.2. [2] In a state BL—algebra (A, o) the following hold:
(a) o (1) =1

) o(z*) =0 (z)", for every x € A;

¢) ife,y € A and x <y then o(x) <o (y);

(001) > 0 (z) @0 (y), for every 2,y € 4

(¢ — 4) < 0(@) — 0 (3), for every 7,y € 4
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(f) o(o(z)) =0 (x), for every x € A;
(9) o (A) is a BL—subalgebra of A and o (A)={zx € A| o (z)=1z}.

Definition 2.5. [2] A state-morphism operator on a BL—algebra A is an application
o: A— A which verifies (1) g ,(2) g, 4) gL > (5) g and
6)g, o(xOy)=0(x)®0(y), for every z,y € A.

Remark 2.1. Any state-morphism operator o on a BL—algebra A is a state-operator
on A. Indeed, by using (6) 5, we have:

oc@)Oo(r—z0y)=0c(z0(z—20y)) =0c(x®y), according to Proposition
2.1.

If o is a state-operator on A, we define ker (6) ={x € A | o (x) =1}.

Definition 2.6. A state-operator o : A — A is called faithful iff ker (o) = 1.

3. Examples of state-operators on BL—algebras

Example 3.1. If A is a BL—algebra, then o : A — A, defined by o (x) = x, for every
x € A, is a state-operator on A, called the identity state-operator on A. Thus (A,ida)
is a state BL—algebra.

Example 3.2. [2] Let A= {0,a,b,1} be with0 <a <b< 1.

Then (A, A\, V,®,—,0,1) with the following operations:
©|0]a|b|1l —10]a|b]|1
0/0[0]0|O 0 |[1]1]1]1
a|0(0]ala a |a|l|1]|1
b 10|al|b]|b b |0fa|l]|1l
1 (0]a|b]|1 1 |[0Ofjal|b|1

it becomes a BL—algebra, but not a MV —algebra (since b** =1 # b).

The fact that o : A — A, given by o (0) = 0,0 (a) = a,0 (b) = o (1) =1, is a state-
operator on A, is verified. Moreover, (6) 5, holds, so o is a state-morphism operator
on A.

Example 3.3. [3] Let A={0,a,b,c,d, 1} ,with the operations ® and — given by the
following tables:

®©|0]alblc|d]|l —[0]a|b|lc|d|1
0[0[0]0]|0O]|0O]O O [1(1|1]|1]1]1
a |0la|0]la|0]|a a |d|1|d|1|d]|1
b 1|0[0[0]|0O|b|D b |eclell|1]1]1
c |0lal0|lal|b]|ec c |blel|ld|1]d]|1l
d|0|0]|b|b|d|d d |la|la|lclel|l]1
1 (0|a|blc|d 1 |[O]jal|blc|d]|1l

—~| =

Then the BL—algebra (A, \,V,®,—,0,1) is a MV —algebra.

We will determine the state-operators on A. Let 0 : A — A be a state-operator.
From (1), we have o (c —a)=0(c) = o(cAa), so

o (c) = o (¢) — o (a). From the table of the operation — we deduce that the equation
xr =1z — y has only the solutions x = c,y =a and x =y = 1.

In the first case we have o (¢) = ¢ and o (a) = a and then

o (d) = o (a*) = o (a)" (accordind to the Proposition 2.2, (b)) = a* =d
o(c) =0(c)" =0b, s0 0 =idy. In the second case we have o (c) = o (
then o (d) = o (a)" = 0,0 (b) = o (¢)" =0, thus
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0(0)=0() =0(d) =0 and o (c) = o (a) = 1, which verifies (1)5; — (6) 5}, 50
this is also a state-morphism operator.

Example 3.4. [3] Let A ={0,qa,b,c,d, 1}, with the following tables of operations:

©|0jalb|c|d]|l —|0|la|b|lc|d]|l
0|0|0j0O]0O|0O]O 0O [1]1 1|1 1|1
a|0]0]a|0]0]a a |dj1|1]|d|1]|1
b |0|lalb|0|alb b |ecld|l|c|d]|1l
c |0[0|0|c|c]|ec c |[b|lb|b|1]1]1
d|0|0lalc|c|d d |lalb|b|d]1]|1
1 |0fla|blc|d]|l 1 [0|la|b|c|d]|1l
Then it becomes a BL—algebra, which is a MV —algebra. Let o : A — A be a

state-operator. As in the Example 3.3 we have

oc(d—c)=0(d)—o(dNc)=0(d) — o(c)=0(d). Since the equation x = x —
y has only the solutions v = d,y = ¢ and x = y = 1 we obtain o (d) = d,o(c) = ¢
or o(d) = o(c) = 1. In the first case we have o = ida, and in the second case we
have o (a) = o (b) = 0 (0) =0 and o (c) = o (d) = o (1) = 1, both operators being
state-morphism operators.

Example 3.5. [3] Let A = {0,¢,a,b,1}, in which 0 < ¢ < a,b < 1 and a,b are
incomparable, with the following tables of operations :

©l0|lclal|b|1l —10]lc|lal|lb]|1
0|0(0|0]|O]O O [1]1]1]1]|1
c |O0]lc|c|c|ec c |01 |1]1/1
a |0|lclalc|a a |[0]b|1|b|1
b |0|lc|cl|blec b |[0la|al|l]|1l
1 |0fjclal|b]|1l 1 |Oflclal|b]|1

The application o : A — A, given by o(0) = 0 and o (x) = 1 otherwise, is a

state-morphism operator.

We recall that a t—norm is a function ¢ : [0,1] x [0,1] — [0,1], which verifies the
conditions:

(1) t(z,y) =t (y,x), for every z,y € [0,1];

(2) t(t(z,y),2) =t(z,t(y,2)), for every z,y,z € [0,1];

(3) t(x,1) = =z, for every x € [0,1];

(4) if x <y then t (z,2) <t (y,2),x,y,2 € [0,1].

If ¢ is continuous, we define z ®; y = t (z,y) and

x —y =sup{z €[0,1] | t(z,2) <y}, for z,y € [0,1]. In these conditions I; =
([0,1] , min, max, ®¢, —¢, 0, 1) is a BL—algebra. Moreover, according to [1], the variety
of BL—algebras is generated by all the I; with a continuous norm ¢. There are three
basic continuous t—norms on [0, 1] :

(¢) Lukasiewicz: L(z,y) = max {x + y — 1,0}, with

x—py=min{l —x+y,1};

(i7) Godel: G (z,y) = min{x,y}, withx mgy=1ifz <yandz gy =1y
otherwise;

(iii) product: P (x,y) = xy, withz —py=1if x <yand x —p y = £ otherwise.

Then we have:

Proposition 3.1. [2]

(1)If o is a state-operator on Iy, then o (z) = x, for every x € [0,1].

(2) Let a € [0,1] and we define o, (x) =z if v < a and o, (x) = 1 otherwise. For
a € (0,1] we define the application o® () = z if x < a and g, (x) = 1 otherwise.
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Then o, si 0® are state-morphism operators on Ig and, if o is a state-operator on
I, then 0 = o4 or 0 = 0® for a certain a € [0,1].

(3) If o is a state-operator Ip, then o (x) = x, for every x € [0,1] or o (z) =1, for
every x > 0.

Proposition 3.2. [2] Let A be a finite linear Gédel BL—algebra, that is, v° = z,
for every x € A. Then, with the notations from Proposition 3.1 ¢ and o, are state-
morphism operators, and any state-operator on A is of the form o® or o, for a certain
a € [0,1].

Actually we have the following more general result:

Proposition 3.3. Let A be a linear Gédel BL—algebra and B C A such that 0 €
B,1 ¢ B and, if x € B,y € A\DB, then © < y. Then the application op : [0,1] —
[0,1], given by op (x) = x if € B and o (x) = 1 otherwise, is a state-morphism
operator on A, and, conversely, any state-operator on A is of such a form.

Proof. Firstly we observe that, if =,y € A then

rOYy>z0 (@AY =20@0@@—y)=2"0(r—y) =20 (@@ —y)

=xAy>zr0y,s0x@y=cAy=min{z,y}, for every z,y € A.

Thenx - y=sup{z€A|z0z<y}=sup{z€A|xAz<y}.

Ifz <y, thenx —y=1.

If x>y, thensup{z € A |zAz<y}=sup{z € A| min{z,z} <y} =y.

We will verify the (1), — (5) 5, axioms. Since 0 € B we have that o (0) =0, so
the (1), is proved.

If x,y € B, then we have: op(z —y) =1=o0p(z) - op(zAy), if x <y, and,
ifx>ywehave op(x —y) =0p(y),and o (x) 2 op(zAy) =z >z Ay=x —
y=y=op(y)=op(x—y).

If z,y € A\DB, then, since y < =z — y, it follows that x — y € A\DB, so
op(x—y)=1and op(x) —» op(x Ay) =1 (since z Ay € A\DB).

IfxeBye ANB,thenog(x —y)=0p(l)=1=0p(x) = op(zAvy).

Ifye Byx € AN\ B,thenog(x —y)=0p(y) =yand op (z) > op(x Ay)=1—
y =y, so we have an equality again.

Thus (2) 5, is proved.

We will now prove (6) 5, which means that, according to the Remark 2.1

(3) g, is proved. Indeed, if z,y € B, then  © y = min{z,y} € B,so o (x ® y) =
xOy = op(x)©op(y). If z,y € ANDB, then x © y = min{x,y} € A\DB, so
op(z©y)=1=0p(z)©op(y).

If x € Bjye ANB, then z @y = min{z,y} = xz,s0 op (zOy) =op(z) =z =
o () ©1 =0 (z) ©®op (y). Thus (6) 5, is fulfilled.

If x € B, then op (0p (z)) = op (z), and if z € A\ B, then we have o (05 (x)) =
op(l)=1=o0p(z)s00p(op(x)) =0p(z),Vx € A.

Then op (0 () ®op (y)) = op (0B (x ®y)) (according to (6)z,) =0op(rOy) =
o (z) ©op (y),Vz,y € A, so (4) g, is verified.

In order to complete the first part of the proof, we still have to verify (5) 5, . Indeed,
if 2,y € B, then op (05 (z) — o (y)) =0 (z —y), and 0p (v) = op(y) =z — y.
Ifx <y, thenax - y=1s00p(z—y) =2 —y Ifz >y z—y=y, and
op(r —y) =op (y) =y, so equality once more. Let’s now suppose that z,y € A\ B.
Then o (op () o (y) = (1)=1=0p(x) = o (y).

If x € B,y € A\B, then op(op(x) > 0op(y)) =op(x—1) =1=o0p(z) —
B (y)
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Finally, if y € B,z € A\ B, then op (0 (z) o (y)) =op (1 —»y) =05 (y) =
o5 (x) — 0B (y).

Conversely, let o be a state-operator on A and let a € (0,1).

We are going to prove o (a) = a or o (a) = 1. Let’s suppose that o (a) < a.

Then, according to (2)z, , 0(a —o0(a)) = o(a) — o(aNo(a)) = o(a) —
o(o(a))=0(a) = o(a)=1.

But @ — o(a) = o (a), so o(a — o (a)) = o(a), so o(a) = 1, a contradiction.
If a < 0 (a), then , from (2);, we have 0 (0 (a) = a) =0 (0(a)) = o(o(a)Na) =
o (a) — o (a) = 1. Since o (a) — a = a, we obtain o (a) = 1.

Let B = {a€[0,1) |o(a)=a}. Then o(x) = z, if z € B, and o (z) = 1, if
x € ANDB. Obviously0 € B,1¢ B.Letz € B,y € ANB.Ilf y <z, theno (y) < o (x),
that is 1 < z, a contradiction. So x < y. Thus ¢ = op, in which B fulfills the
conditions from the enounciation. (]

Example 3.6. [2] Let A be a BL—algebra. Then (A x A,A,V,®,—,0,1) it becomes
a BL—algebra, where (a,b) < (¢,d) iff a < ¢ and b < d, and the operations are defined
on the components. Let o0 : A X A — A x A be, defined by o (a,b) = (a,a), for every
(a,b) € Ax A. It is easily to prove that o is a state-morphism operator on A x A.

4. Filters and state-filters

Definition 4.1. Let A be a BL—algebra. A nonvoid subset F' C A is called filter if
the following conditions are verified:

(1) x,y € F impliesx Oy € F;

(2) x € F and x <y implies y € F.

A proper filter of A is called a mazimal filter if it doesn’t belong to any other proper
filter of A. The intersection all the mazimal filters of A is denoted by Rad (A) .

Definition 4.2. [2] Let (A,0) be a state(morphism) BL—algebra. A nonvoid subset
F C A is called a state( morphism) —filter of (A,0), if F is a filter of A with the
property that if x € F, then o(x) € F. A proper state-filter of (A,0) is called a
mazimal state-filter if it doesn’t belong to any other proper state-filter of (A,o). The
intersection all the mazimal state-filters of (A, o) is denoted by Rad, (A).

Example 4.1. If we consider the Example 3.1 then the filters of A and the state-filters
of (A, o) are the same.

For A the BL—algebra from Exzample 3.2 the filters are {1} ,{b,1}, A, and the state-
filters of (A o) are {1},{b,1},A. The (state)filter {b,1} is a mazimal (state)filter.
In this case Rad (A) = Rad, (A) = {b,1}.

Let’s now consider A the BL-algebra from Ezxample 3.8 and the state-operator
oc: A — A, defined by 0 (0) = o(b) = o(d) = 0,0(a) = o(c) = 1. The filters
of A are {1},{d,1},{a,c,1}, A, and the state-filters of (A,o) are {1},{a,c, 1}, A.
The BL-algebra A has two mazimal filters: {d,1} si {a,c,1}. There exists only an
mazimal state-filter of (A, o), namely {a,c,1}. In this case we have Rad (A) = {1},
and Rad, (A) = {a,c,1}.

Let’s now the BL—algebra from FExample 3.4 and the state-operator o : A — A,
defined by o(d) = o(c) = o(1) = 1,0(a) = o(b) = o(0) = 0. The filters of A
are {1} ,{b,1},{c,d, 1}, A, and the state-filters of (A,o) are {1},{c,d, 1}, A. There
are two mazimal filters, namely {b,1} and {c,d, 1}, so Rad (A) = {1}, and a single
mazimal state-filter, {c,d, 1}, so Rad, (A) = {c,d,1}.
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For A the BL—algebra from Example 3.5 and the state-operator o : A — A, defined
by 0(0) = 0 and o (z) = 1 otherwise, the filters and the state-filters are the same:
{1},{a,1},{b,1} ,{c,a,b,1} , A. We have Rad (A) = Rad, (A) = {c,a,b,1}. For the
algebra 1y, since ord (x) < oo, for every x # 1, the only filters are {1} and [0,1].
Since the single state-operator on Iy, is idy,, these are also the only state-filters.

In the case of the algebra 1, the filters are the sets of the form [z, 1] or (x, 1], where
x € [0,1]. I has an only mazimal filter, namely (0,1]. According to Proposition
3.1(2) if o is a state-operator on Ig, then o = o or o = o, (with thoses notations) .
For any of these state-operators, the state-filters and the filters of 1o are the same.
In the case of the algebra Ip, since ord (x) < 0o, for every x # 1, the only filters are
{1} i [0,1], which are therefore the only state-filters.

Proposition 4.1. Let A and B be two BL—algebras and let us consider A x B the
BL—algebra product of A and B. If Fy, Fy are filters of A, respectively B, then Fy X Fy
is a filter of A x B and, conversely, any filter of A X B is of the form Fy x Fy, where
Fy, Fy are filters of A, respectively B.

Proof. If Fy, Fy are filters of A, respectively B, then it is imediate that F; x Fj
is a filter of A x B. Conversely, let F' be a filter of A x B. Since F is nonvoid,
then the sets Fy := {x € A | there exists y € B such that (z,y) € F'} C A and F, :=
{y € B | there exists € A such that (z,y) € F'} C B will be too.

We are going to prove that Fi, Fy are filters and F = F; x F5. Indeed, if a,b €
F1, then there exists ¢,d € B such that (a,c), (b,d) € F, so (a®b,c®d) € F, so
a®be F.If a € Fy and a < ¢, then, since there exists b € B such that (a,b) € F
and since (a,b) < (¢, b), it follows that (¢, b) € F, therefore ¢ € Fy. Thus F} is a filter
and analogously it shows that Fy is a filter. Let (a,b) € F. Then a € Fy,b € Fs, so
(a, b) € F1 X Fy,s0 F C Fy X Fs. Let’s now (a,b) € Fy; x Fy. Since a € Fl,b € Fy,
there exist x € A,y € B such that (a,y),(z,b) € F. Then (a,1),(1,b) € F and so
(a®1,1®b) € F, that is, (a,b) € F, therefore F} x Fy C F. Thus F'=F; x Fy,. O

Let’s now consider an BL—algebra A which contains proper filters and the state-
operator o : AXx A — A X A, o(a,b) = (a,a), for every (a,b) € A x A, from the
Example 3.6. According to Proposition 4.1 any filter of A x A is of the form Fy x F,
with Fy, F5 filters of A. If Fy x F is a state-filter of (A x A, o), then F; C F». Indeed,
let @ € Fy. Then (a,1) € Fy X Fy, s0 0 (a,1) = (a,a) € F1 X Fy, that is, a € F5.

Conversely, if Fy x Fy is a filter of A x A such that F} C F5, and (a,b) € F} X Fa,
then o (a,b) = (a,a) € Fy x Fy, so the state-filters of (A x A, o) are the sets of the
form F} x Fy, in which FY, F5 are filters of A with Fy C Fy.

Remark 4.1. [2] Let A be a BL—algebra and o a state-operator on A. Then ker (o)
is a state-filter of (A, o).

Proposition 4.2. [2] Let A be a BL—algebra. A proper filter F' of A is a mazimal
filter iff for any a ¢ F, there exists n € N* such that (a™)" € F.

Proposition 4.3. [7] Let A be a BL—algebra.
Then Rad (A) = {z € A | ()" <a, for everyn € N}.

Proposition 4.4. [2] Let (A,0) be a state BL—algebra and X C A. Then the state-
filter F, (X) generated by X is the set
{reAlz> (1 00(21)" ©..0 (@O0 (zg)™" 2, € X,n; > 1,k > 1}.
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If F is a state-filter of (A,0) and a ¢ F, then the state-filter generated by F and
a is the set F, (F,a) ={x € Az >i®(a®o(a)",i€ F,n>1}. A proper state-
filter F is a maximal state-filter iff for any a ¢ F there exists n € N* such that
(o0 (a)")" € F.

In watt follow we will introduce the concept of a prime state-filter, we will establish
some results related to this concept on the basis of which we are going to characterise
the set Rad, (A), in the case of a state-morphism BL—algebra (A, o).

Proposition 4.5. Let (A,0) be a state BL—algebra and P a proper state-filter of
(A,0). Then the following statements are equivalent:

(¢) If P1, Py are two state-filters of (A, o) such that P = Py N Py, then P = Py or
P =Py

(5) If (a®o(a))V(b®o(b) € P,a,be A, thenae€ P orbe P.

Proof. (i) = (ii). Let a,b € A such that (a® o (a)) V (b® o (b)) € P. We consider
the sets F,(Pa) = {zx€A|z>i®(a®o(a)",i€ Pn>1} and F, (P,b) =
{xeA|lz>i®(boo((b)",i € Pyn> 1}, which represent state-filters generated by
P and a, respectively P and b (according to Proposition 4.4) .

Obviously, P C F, (P,a)N F, (P,b). If x € F, (P,a) N F, (P,b), then there exist
i1,i2 € P and m,n € N* such that x > i; ® (a® o (a))™ and z > i © (b® o (b))",
02 > (110 (@®a(@)™) V(0 Bos®)") > (i1 Vi) o (i V(boo®)") o
(i2V(a®ao(a)™)©((a®a(a)™V(bea(b)") (according to Proposition 2.1, (3))

> (i1 Vig) © (11 V(0@ o)) (i2V(e®o(a)")o(a@o(a))V(b® o (b))
(according to Proposition 2.1, (4)).

But i1 Via, i1 V(b ® o (b)",i2V(a ® o (a))™ and ((a ® o (a)) V (b® o (b)))™" belong
to P, and then it follows that z € P. Thus P = F, (P,a) N F, (P,b), and, from the
hypothesis, we obtain that P = F,, (P,a) or P = F, (P,b), that is, a € P or b € P.

(74) = (i). Let Py, P» be two state-filters of (A, o) such that P = P; N P,. Let’s
suppose that P # P, and P # P,. Then there exist a € P{\ P and b € P,\ P. Then
a®ao(a) e P,boOo(b) € Pyyso(a®@o(a))V(b®o (b)) € PyNPy,=P, hence a € P
or b € P, a contradiction. Therefore P = P, or P = Ps.

(]

Definition 4.3. Let (A, o) be a state BL—algebra. A proper state-filter P of (A, o)
is called a prime state-filter if it verify one of the equivalent conditions from the
Proposition 4.5.

Proposition 4.6. Let (A,0) be a state BL—algebra. Then any mazimal state-filter
of (A, o) is a prime state-filter.

Proof. Let F be a maximal state-filter of (A, 0) and Py, P» two state-filters such that
F =P NP, If F# Py, then F is strictly contained in Pj, and, since F' is a maximal
state-filter, it follows that P, = A. Then F' = AN P, = P,. Therefore F' is a prime
state-filter.

|

Definition 4.4. Let (A, 0) be a state BL—algebra. A nonovoid subset I of A is called
state-ideal if the following conditions are verified:

(1) a,b € I implies a® b € I,

(2) a € I,b<a impliesb € I;

(3) a € I implies o (a) € I.
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Proposition 4.7. (Prime state-filter theorem) Let I be a state-ideal and F a
state-filter on a state BL—algebra (A, o) such that F NI = &. Then there is a prime
state-filter P such that F C P and PNI = @.

Proof. Consider the set

F (F) ={F' | F' is a state-filter such that FF C F’ and F' NI = @}.

Since F' € F (F), it follows that F (F) is nonvoid. It is easily to prove that the
set F (F) is inductively ordered, so, by Zorn’s Lemma in F (F') then is P a maximal
element. I want to prove that P is a prime state-filter. Since P € F (F), it follows
that P is a proper state-filter and PN I = @.

Let a,b € A such that (a ® o (a)) V (b© o (b)) € P. Let’s suppose that a ¢ P and
b ¢ P. Consider the sets F, (P, a) si F, (P,b), which represent state-filters generated
by P and a, respectively P and b. Then P is strictly contained in F,, (P, a) and F, (P, b)
and, by the maximality of P, we deduce that F,, (P,a) ¢ F (F) and F, (P,b) ¢ F (F).
Thus Fy, (P,a)NI # @ and F, (P,b)N] # @. Let z € F, (P,a)NI and y € F,, (P,b)NI.
Then there exist i1,i2 € P and m,n € N such that * > i; ® (a® o (a))"™ and
y>ir 0 (oo ()", soxVy>(i1©(a0o(a)”)V (20 (b0 (®)") > (i1Vi)©
(i1V(bea®)") o (i2V(e®a(a)™) © ((a@o(a)V(beo(b))™ € P, that is,
xVyeP. But x,y € I,soxzVye€l, hence PN I # &, a contradiction.

Thus P is a prime state-filter.

O

Proposition 4.8. Let (A,o) be a state BL—algebra and a € A,a < 1. Then there
exists a prime state-filter P of (A,0) such that a ¢ P.

Proof. Like in the Proposition 4.7 we consider the set

F(a) ={F | F is a state-filter and a ¢ F'}. Since {1} € F (a), it follows that F (a)
is nonvoid.

We can easily prove that the set F (a) is inductively ordered, so by Zorn’s Lemma
then is P a maximal element of F (a) . I want to prove that P is a prime state-filter. Let
x,y € A such that (x © o (z)) V(y © o (y)) € P. Let’s suppose that © ¢ P and y ¢ P.
Considering the sets F, (P, z) and F, (P,y), which represent state-filters generated
by P and z, respectively P and y, it follows that P is strictly contained in F, (P, z)
and F, (P,y) and, by the maximality of P, we deduce that a € F, (P,z) N F, (P,y).
Then there exist i1,io € P and m,n € N such that a > i1 ® (z ® o (x))" and
000 (Yoo (), soa> (i1®@oo@)™) V(6 Yoo m)) = (i Vi)
(i V (y© o (1)) G (2 V (200 (@)™ 0 (@ @0 @)V (y©o(y)™" € Psoac P,
a contradiction. Thus P is a prime state-filter and a ¢ P.

O

Corollary 4.1. Let (A, 0) be a state BL—algebra and P a proper state-filter of (A, o).
Then there exists a mazimal state-filter Fy of (A, o) such that P C Fy.

Proof. The Proposition 4.7 is applied for I = {0} and F = P. Let F; be a maximal
element of the set F (P) = {F’ | F’ is a proper state-filter and P C F’}. I want to
prove that Fp is a maximal state-filter of (A, o) . Indeed, if F} is a state-filter of (A, o)
such that Fy C Fj then, the maximality of Fy, it follows that Fy ¢ F(P), so Fy is
not a proper state-filter, so F; = A.

([

On the basis of the previous results, we will be able to characterize the set Rad, (A),
of the intersection of all maximal state-filters of a state-morphism BL—algebra (A, o).
Firstly, we will establish the following result:
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Proposition 4.9. Let (A, o) be a state BL—algebra. Then
{zeAl (c(x)") <o(x), for everyn € N} C Rad, (A).

Proof. Consider B = {z € A| (0(z)")" <o (z), for every n € N} and let = € B.
Let’s suppose that ¢ Rad, (A), therefore there exists a maximal state-filter F'
of (A,0) such that @ ¢ F. According to Proposition 4.8, there exists n € N such
that (o (x)")" € F. Since (o (z)")" < o (x), we deduce that o (x) € F. But then
o (z)" € F and, since (o (z)")" € F, we obtain that F = A, a contradiction. Therefore
B C Rad, (A).

(]

Proposition 4.10. Let (A, o) be a state-morphism BL—algebra. Then
Rad, (A) C{z € A| (oc(2)")" <o(x), for everyn € N}.

Proof. Consider B={z € A| (o (z)")" <o (z), for every n € N} and let
x € Rady, (A). Let’s suppose that © ¢ B, so there exists n € N such that
(o (x)")" & o(z), that is, (o (2)")" — o(x) < 1. According to Proposition 4.8
there exists a prime state-filter P of (A, o) such that (o (2)")" — o (z) ¢ P. On the
other hand o ((o (z)")" — o (z)) = o (0 ((z™)") — o (z)) (since o is a morphism) =
o((z)*) —o(x )(from the (4)5,) = (0 (#)")" — o (z) and, analogously,
7 (0 ()= (0()")) =0 (2) — (0 (2)")" -
Then (((o(2)") — 0 @) © 0 (0 (@)")"
V(o @) = (0 @)")) 0o (o) -
= (o @) =0 @)V (o (@)
> (((0(@)")" = o) V(o) —
( according to Proposition 2.1,(4)) =1 € P, and, since P is prime and
(o ()")" — o (2) ¢ P, we deduce that o (z) — (0’ (x)")" € P.
But o (z) — (o (*x)n)* = (o () ® o (z)")" (from Proposition 2.1, (5)),

thus (0 (x)"“) € P. According to Corrollary 4.1, there exists a maximal state-

filter Fy of (A, o) such that P C Fp, so (0( )n+1) € Fy, that is, o ()" ¢ F,.
Then o () ¢ Fy and so = ¢ Fy, namely = ¢ Rad, (A), a contradiction. Therefore
Rad, (A) C B.

(]

From Propositions 4.9 and 4.10 we obtain:

Theorem 4.1. Let (A,0) be a state-morphism BL—algebra. Then
Rady (A) ={z € A| (o(2)") <o(x), for every n € N}.
Moreover, Rad (A) C Rad, (A).

Proof. The first part result from Propositions 4.9 and 4.10. For the second part, let
z € Rad (A), so (z™)" < z, for every n € N.
Then o ((z")*) < o (), for every n € N, so (o (z)")" < o (z), for every n € N,
that is, © € Rad, (A).
|

5. Classes of BL— algebras

Within this section, we are going to present some classes of BL—algebras, such as
simple, semisimple and local BL—algebras, we will then define the concepts of simple,
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semisimple and local state BL—algebras (A, o), next we will introduce the concepts of
simple, semisimple and local state BL—algebras (A, o) relative to its state-filters set,
and we will finally establish relations between these concepts, which occur in some
conditions imposed to the state-operator o.

Definition 5.1. A BL—algebra A is called simple if its only filters are {1} and A.
A state BL—algebra (A, o) is called simple if o (A) is simple.

We will now define a new concept:

Definition 5.2. A state BL—algebra (A, o) is called simple relative to its state-filters
set if it has only two state-filters: {1} and A.

Example 5.1. Let’s consider a state BL—algebra (A, o). If 0 = ida, then the three
concepts from Definition 5.1 are the same. Let’s consider the state BL—algebra (A, o)
from Exzample 3.2. We have o (A) = {0,a,1}.

If I Co(A) is a filter, I # {1}, and ifa € I, thena©a=0¢€ I, so I = o (A).
Thus o (A) is simple, so (A, o) is simple. By the contrary, according to Example 4.1
A is not simple and (A, o) is not simple relative to its state-filters set. For each state
BL—algebras (A, o) from Examples 8.8, 3.4, 3.5 we have o (A) = {0,1}, so (A,0) is
simple, but A is notsimple and (A, o) is not simple relative to its state-filters set.

Remark 5.1. According to [2], if (A, o) is a state BL—algebra such that A is simple,
then o (A) is simple, so (A,0) is simple.

Theorem 5.1. [2] Let (A, o) be a state-morphism BL—algebra. Then the following
conditions are equivalent:

(1) (A4, 0) is simple;

(2) ker (o) is a mazimal filter of A.

Proposition 5.1. Let (A,0) be a state BL—algebra. If (A o) is simple relative to
its state-filters set, then (A, o) is simple.

Proof. Let J be a filter of o (4),J # {1}. We will prove that J = o (A). Consider
F;={z2€A|z>j, foracertain j € J}.If z,y € F;, then there exist ji,jo € J
such that * > j1,y > jeo,s0 2 ©y > j1 ® j2 € J, hence x ©y € F ;. If x € F; and
x <y, then obviously y € F ;.
Ifx € Fy,thenx > j,j € J, s0o o (x) > o (j) = j(since j € 0 (A)), hence o (x) €
F ;. Therefore F; is a state-filter of (A4, o). Since (4, o) is simple relative to its state-
filters set, and F; # {1} (since J C Fj), it follows that F; = A, so 0 € F, hence
0 € J, that is, J =0 (4).
(]

Remark 5.2. If (A,0) is a simple state BL—algebra relative to its state-filters set,
then, since ker (o) is a state filter and ker (o) # A, it follows that ker (o) = {1}, thus
o 18 a faithful operator.

Remark 5.3. If (A4,0) is a simple state BL—algebra, then it doesn’t necessarly fol-
low that o is faithful. For instance, for the simple state BL-algebra (A,o) from the
Ezample 3.2 we have ker (o) = {b,1} # {1}.

Theorem 5.2. Let (A,0) be a state BL— algebra. Then the following conditions are
equivalent:

(1) (A, o) is simple relative to its state-filters set;

(1) (A, o) is simple and o is faithful.
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Proof. (i) = (ii) Results from the Proposition 5.1 and the Remark 5.2.

(#4) = (i) Let I be a state-filter of (A,0). Then I No (A) is a filter of o (A),
and so INo(A) ={l}or INo(A) =0c(4A). If INo(A) =0 (A), then 0 (A) C I
and, since 0 € o (A), we deduce that I = A. If INo(A) = {1}, let € I. Then
o(x) € INo(A), so o(x) = 1, that is, x = 1(since o is faithful), so I = {1}.
Therefore the only state-filters of (A, o) are {1} and A.

(]

Theorem 5.3. Let (A,0) be a state-morphism BL—algebra. Then the following
conditions are equivalent:

(1) (A, o) is simple relative to its state-filters set;

(ii) A is simple.

Proof. (i) = (i) According to Theorem 5.2 it follows that (A, o) is simple and o is
faithful. According to Theorem 5.1 ker (¢) is a maximal state-filter of A. Let now F
be a filter of A, F # {1}. Since ker (0) = {1} C F and ker (¢) is maximal, we deduce
that F' = A, so A is simple.

(1) = (1) Clearly. O

From of the Theorems 5.3 and 5.3 it follows:

Theorem 5.4. Let (A,0) be a state-morphism BL—algebra and o is faithful. Then
the following conditions are equivalent:

(i) A is simple;

(ii) (A, o) is simple.

Proof. (i) = (i) Results from the Remark 5.1.

(i) = (i) If (A, o) is simple, since o is faithful, then from the Theorem 5.2 it follows
that (A, o) is simple relative to its state-filters set and then, from the Theorem 5.3
we deduce that A is simple. O

Definition 5.3. A BL—algebra A is called local if it has only a mazximal filter. A
state BL—algebra (A, o) is called local if o (A) is local.

Next we define a new concept:

Definition 5.4. A state BL—algebra (A, o) is local relative to its state-filters set if
it has only a mazimal state-filter.

Example 5.2. Let’s consider the BL—algebra A and the state-operator

o:A— A from Example 3.2. Then A is local, (A, ) is local and (A, o) is local
relative to its state-filters set. In Example 3.3 the BL—algebra A is not local, but
(A, o) is local relative to its state-filters set.

Theorem 5.5. Let (A, 0) be a state BL—algebra. Then the following conditions are
equivalent:
(1) (A, o) is local relative to its state-filters set;

(i) (A, o) is local.

Proof. (i) = (ii) Let F be the only maximal state-filter of (A4, 0). Then F'No (A4) is a
filter of o (A). We will prove that FNo (A) is the only maximal filter of o (4). If FN
c(A) =0 (A),theno (A) C F,s00 € F, a contradiction. Let I be an arbitrary proper
filter of o (A). We consider the set F, (I) = {z € A | z > i,i € I} ,which represents
the state—filter generated by I in (A,0). If F,(I) = A, then 0 € F, (I),s00 € I,
false. Then F, (I) is a proper state-filter, so F, (I) C F, that is,
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I=Inoc(A)CF,I)Nnc(A) CFno(4).

Then F No (A) is a proper filter which contains any proper filter I of o (A), thus
it is the only maximal filter of o (A4), so (A, o) is local.

(#4) = (i) Let I be the only maximal filter of o (A) and the set

F,(I)={z€ A| z>1i,i € I}, which represents the state—filter generated by I in
(A,0). Let F (I) = {F | F is a proper state-filter of (A,0) and I C F'}.

If F, (I) is not proper, then 0 € F, (I), so 0 € I, false. Thus F, (I) € F(I),
so F (I) is nonvoid. It is easily to verify that F (I) is inductively ordered, so by
Zorn’s Lemma then is F a maximal element of F (I). We will prove that F is the
only maximal state-filter of (A, o) . Indeed, let F; be an arbitrary proper state-filter of
(A, o). Let’s suppose that there exists an element © € Fy\ F. Then o (x) € FiNo (A).
If i No(A) = o0(A) it follows that o (A) C Fy, so 0 € F, a contradiction. Thus
Fino(A) #o0(A),FiNo(A) is a filter of o (A) and, since I is a maximal filter of
o (A), it follows that Fy No (A) C 1,80 o (x) € 1.

Then o (z) € F,(I), so o(x) € F. Since x ¢ F and F is a maximal state-filter,
then, according to Proposition 4.8, it follows that there exists n € N* such that
(o (x)")" € F.

But o (z)" € F, a contradiction. Thus F; C F, so F is the only maximal state-filter
of (A,0), so (A, o) is local relative to its state-filters set. O

Definition 5.5. A BL—algebra A is called semisimple if Rad (A) = {1}. Let (A4, 0)
be a state BL—algebra. (A, o) is called semisimple if Rad (o (A)) = {1}.

Concerning all this, we are now going to define a new concept:

Definition 5.6. A state BL—algebra (A, o) is called semisimple relative to its state-
filters set if Rad, (A) = {1}.

Example 5.3. Let’s consider the state BL—algebra (A, o) from Example 8.2. The A
algebra is not semisimple, but (A, o) is semisimple because Rad (o (A)) = {1}. It is
not semisimple relative to its state-filters set.

The A algebras from Examples 3.3, 3.4 are semisimple, (A, o) is not semisimple,
but they are semisimple relative to its state-filters set.

The A algebra from Example 3.5 is not semisimple, (A, o) is not semisimple relative
to its state-filters set, but (A, o) is semisimple.

The Iy, algebra from Proposition 3.1 is semisimple, and, since o = idy, (I ,0) is
semisimple and semisimple relative to its state-filters set.

Proposition 5.2. ([2]) Let (A,0) be a state BL—algebra. Then
o (Rad (A)) 2 Rad (o (A)) = o (Rad, (A)) .

Theorem 5.6. Let (A, 0) be a state BL—algebra. Then the following conditions are
equivalent:

(1) (A, o) is semisimple and o is faithful;

(i1) (A, o) is semisimple relative to its state-filters set.

Proof. (i) = (ii) According to Proposition 5.2 we have o (Rad, (A)) = Rad (o (4)) =
{1}, so Rad, (A) C ker (¢) = {1}, that is, Rad, (A) = {1}.

(#4) = (i) Rad (0o (A)) = o (Rad, (A)) = o ({1}) = {1}, so (4, o) is semisimple.
We will prove that o is faithful. Let € ker (¢), that is, o (x) = 1. Let’s suppose
that * ¢ Rad, (A).Then there exists a maximal state-filter F' such that « ¢ F.
According to Proposition 4.4 there exists n € N* such that (o (z)")" € F,s00 € F, a
contradiction. Thus z € Rad, (A) = {1}, so o is faithful.

O
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