A note on $B L$-algebras with internal state

Nicolae Mircea Constantinescu

Abstract

The scope of this paper is to put in evidence some properties of the BL-algebras with internal state. I introduce the concepts of prime and maximal state-filters, I prove a Prime state-filter theorem 4.7 and I characterize the set $\operatorname{Rad}_{\sigma}(A)$, which represents the intersection of all maximal state-filters of a state BL-algebra (A, σ). Also, I introduce the concepts of simple, semisimple and local state BL-algebras relative to its state-filter set.

2010 Mathematics Subject Classification. Primary 03B50; Secondary 03G25. Key words and phrases. BL-algebra, state $B L$-algebra, state-operator, filter, state-filter.

1. Introduction

The concept of state $M V$-algebras was firstly introduced by Flaminio and Montagna in [4] and [5] as a $M V$-algebra endowed with a unary operation σ (called a state-operator), which preserves the usual properties of states. Di Nola and Dvurečenskij presented in [6] a stronger version of states $M V$-algebras namely state-morphism $M V$-algebras. Afterwards Ciungu, Dvurečenskij and Hyčko extended in [2] the concept of state (morphism) $M V$-algebra and in the case of $B L$-algebras and they extended the properties of a state-operator. The present article is structured into five sections.

In Section 2, basic properties regarding the concepts of $M V$-algebra, $B L$-algebra are being presented, as well as some basic properties of the operations defined on these algebras, which are to be used afterwards. The concept of state (morphism) -operator on a $B L$-algebra also belongs to this section, as well some of its properties.

In Section 3 some examples of state $B L$-algebras are presented. In Section 4 the concept of state-filter on a state $B L$-algebra is introduced. There are presented some examples of filters and state-filters, as well as the concepts of maximal statefilter, prime state-filter, some of their characteristics and, if the state-operator σ is a morphism, the set $\operatorname{Rad}_{\sigma}(A)$ is characterised, in which $\operatorname{Rad}_{\sigma}(A)$ represents the intersection of all maximal state-filters of a state $B L$-algebra (A, σ).

In Section 5, there are presented some classes of $B L$-algebras such as simple, semisimple and local as well as simple, semisimple and local state $B L$-algebras. There are introduced the concepts of simple, semisimple and local state $B L$-algebras relative to its state-filters set and there are establishished relations between these structures in certain conditions imposed to the state-operator σ.

2. Preliminaries

Definition 2.1. An algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of the type $(2,2,2,2,0,0)$ is called a $B L$-algebra if satisfies the following axioms:

Received July 05, 2010. Revision received September 04, 2010.
(1) $(A, \wedge, \vee, 0,1)$ is a bounded lattice;
(2) $(A, \odot, 1)$ is a commutative monoid;
(3) $x \odot y \leq z$ iff $x \leq y \rightarrow z$;
(4) $x \wedge y=x \odot(x \rightarrow y)$;
(5) $(x \rightarrow y) \vee(y \rightarrow x)=1$;
for every $x, y, z \in A$.
We will denote $x^{*}=x \rightarrow 0, x \in A$. If $x \in A$, we define $x^{0}=1$ and for $n \geq 1$ we define $x^{n}=x^{n-1} \odot x$.
Definition 2.2. Let A be a $B L$-algebra and $x \in A$. If there exists the least number $n \in \mathbb{N}^{*}$ such that $x^{n}=0$, then we set ord $(x)=n$. If there is no such a number (that is, $x^{n}>0$, for every $n \geq 0$), then we set ord $(x)=\infty$.

We recall some results relative to $B L$-algebras:
Proposition 2.1. Let A be a $B L$-algebra. Then:
(1) if $a \leq b$ and $c \leq d$ then $a \odot c \leq b \odot d$;
(2) $a \odot(b \vee c)=(a \odot b) \vee(a \odot c)$;
(3) $a \vee(b \odot c) \geq(a \vee b) \odot(a \vee c)$;
(4) $a^{m} \vee b^{n} \geq(a \vee b)^{m n}, m, n \in \mathbb{N}$;
(5) $(a \odot b)^{*}=a \rightarrow b^{*}$;
(6) $a \odot(a \rightarrow(a \odot b))=a \odot b$;
for every $a, b, c \in A$.
Definition 2.3. An algebra $(A, \oplus, *, 0)$ of the type $(2,1,0)$ is called a $M V$-algebra if satisfies the following axioms:
(1) $(A, \oplus, 0)$ is a commutative monoid;
(2) $x^{* *}=x$, for every $x \in A$;
(3) $x \oplus 0^{*}=0^{*}$, for every $x \in A$;
(4) $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$, for every $x, y \in A$.

On a $B L$-algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ we define the operation \oplus on A by $x \oplus y=$ $\left(x^{*} \odot y^{*}\right)^{*}, x, y \in A$. If $x^{* *}=x$, for every $x \in A$, then $(A, \oplus, *, 0)$ it becomes a $M V$-algebra. We are now defining the concept of state-operator on a $B L$-algebra.

Definition 2.4. [2] Let A be a $B L$-algebra. An application $\sigma: A \rightarrow A$ which verifies the properties:
$(1)_{B L} \sigma(0)=0 ;$
$(2)_{B L} \sigma(x \rightarrow y)=\sigma(x) \rightarrow \sigma(x \wedge y)$;
$(3)_{B L} \sigma(x \odot y)=\sigma(x) \odot \sigma(x \rightarrow x \odot y)$;
$(4)_{B L} \sigma(\sigma(x) \odot \sigma(y))=\sigma(x) \odot \sigma(y) ;$
$(5)_{B L} \sigma(\sigma(x) \rightarrow \sigma(y))=\sigma(x) \rightarrow \sigma(y) ;$
for every $x, y \in A$, is called state-operator on A, and the pair (A, σ) is called a state $B L$-algebra or, more precisely, a BL-algebra with internal state.

Some examples of state-operators will be presented in Section 3.
Proposition 2.2. [2] In a state $B L$-algebra (A, σ) the following hold:
(a) $\sigma(1)=1$;
(b) $\sigma\left(x^{*}\right)=\sigma(x)^{*}$, for every $x \in A$;
(c) if $x, y \in A$ and $x \leq y$ then $\sigma(x) \leq \sigma(y)$;
(d) $\sigma(x \odot y) \geq \sigma(x) \odot \sigma(y)$, for every $x, y \in A$;
(e) $\sigma(x \rightarrow y) \leq \sigma(x) \rightarrow \sigma(y)$, for every $x, y \in A$;
(f) $\sigma(\sigma(x))=\sigma(x)$, for every $x \in A$;
(g) $\sigma(A)$ is a $B L$-subalgebra of A and $\sigma(A)=\{x \in A \mid \sigma(x)=x\}$.

Definition 2.5. [2] A state-morphism operator on a $B L$-algebra A is an application $\sigma: A \rightarrow A$ which verifies $(1)_{B L},(2)_{B L},(4)_{B L},(5)_{B L}$ and $(6)_{B L} \sigma(x \odot y)=\sigma(x) \odot \sigma(y)$, for every $x, y \in A$.
 on A. Indeed, by using $(6)_{B L}$ we have:
$\sigma(x) \odot \sigma(x \rightarrow x \odot y)=\sigma(x \odot(x \rightarrow x \odot y))=\sigma(x \odot y)$, according to Proposition 2.1.

If σ is a state-operator on A, we define $\operatorname{ker}(\sigma)=\{x \in A \mid \sigma(x)=1\}$.
Definition 2.6. A state-operator $\sigma: A \rightarrow A$ is called faithful iff $\operatorname{ker}(\sigma)=1$.

3. Examples of state-operators on $B L$-algebras

Example 3.1. If A is a $B L$-algebra, then $\sigma: A \rightarrow A$, defined by $\sigma(x)=x$, for every $x \in A$, is a state-operator on A, called the identity state-operator on A. Thus $\left(A, i d_{A}\right)$ is a state $B L$-algebra.

Example 3.2. [2] Let $A=\{0, a, b, 1\}$ be with $0<a<b<1$.
Then $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ with the following operations:

\odot	0	a	b	1
0	0	0	0	0
a	0	0	a	a
b	0	a	b	b
1	0	a	b	1

\rightarrow	0	a	b	1
0	1	1	1	1
a	a	1	1	1
b	0	a	1	1
1	0	a	b	1
(since $\left.b^{* *}=1 \neq b\right)$				

it becomes a $B L-$ algebra, but not a $M V$-algebra $\left(\right.$ since $\left.b^{* *}=1 \neq b\right)$.
The fact that $\sigma: A \rightarrow A$, given by $\sigma(0)=0, \sigma(a)=a, \sigma(b)=\sigma(1)=1$, is a stateoperator on A, is verified. Moreover, $(6)_{B L}$ holds, so σ is a state-morphism operator on A.

Example 3.3. [3] Let $A=\{0, a, b, c, d, 1\}$, with the operations \odot and \rightarrow given by the following tables:

\odot	0	a	b	c	d	1
0	0	0	0	0	0	0
a	0	a	0	a	0	a
b	0	0	0	0	b	b
c	0	a	0	a	b	c
d	0	0	b	b	d	d
1	0	a	b	c	d	1

\rightarrow	0	a	b	c	d	1
0	1	1	1	1	1	1
a	d	1	d	1	d	1
b	c	c	1	1	1	1
c	b	c	d	1	d	1
d	a	a	c	c	1	1
1	0	a	b	c	d	1

Then the $B L$-algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $M V$-algebra.
We will determine the state-operators on A. Let $\sigma: A \rightarrow A$ be a state-operator. From $(1)_{B L}$ we have $\sigma(c \rightarrow a)=\sigma(c) \rightarrow \sigma(c \wedge a)$, so
$\sigma(c)=\sigma(c) \rightarrow \sigma(a)$. From the table of the operation \rightarrow we deduce that the equation $x=x \rightarrow y$ has only the solutions $x=c, y=a$ and $x=y=1$.

In the first case we have $\sigma(c)=c$ and $\sigma(a)=a$ and then
$\sigma(d)=\sigma\left(a^{*}\right)=\sigma(a)^{*}$ (accordind to the Proposition 2.2, $\left.(b)\right)=a^{*}=d$, and $\sigma(b)=$ $\sigma\left(c^{*}\right)=\sigma(c)^{*}=b$, so $\sigma=i d_{A}$. In the second case we have $\sigma(c)=\sigma(a)=1$, and then $\sigma(d)=\sigma(a)^{*}=0, \sigma(b)=\sigma(c)^{*}=0$, thus
$\sigma(0)=\sigma(b)=\sigma(d)=0$ and $\sigma(c)=\sigma(a)=1$, which verifies $(1)_{B L}-(6)_{B L}$, so this is also a state-morphism operator.
Example 3.4. [3] Let $A=\{0, a, b, c, d, 1\}$, with the following tables of operations:

\odot	0	a	b	c	d	1
0	0	0	0	0	0	0
a	0	0	a	0	0	a
b	0	a	b	0	a	b
c	0	0	0	c	c	c
d	0	0	a	c	c	d
1	0	a	b	c	d	1
Then it becomes a						

\rightarrow	0	a	b	c	d	1
0	1	1	1	1	1	1
a	d	1	1	d	1	1
b	c	d	1	c	d	1
c	b	b	b	1	1	1
d	a	b	b	d	1	1
1	0	a	b	c	d	1

$\sigma(d \rightarrow c)=\sigma(d) \rightarrow \sigma(d \wedge c)=\sigma(d) \rightarrow \sigma(c)=\sigma(d)$. Since the equation $x=x \rightarrow$ y has only the solutions $x=d, y=c$ and $x=y=1$ we obtain $\sigma(d)=d, \sigma(c)=c$ or $\sigma(d)=\sigma(c)=1$. In the first case we have $\sigma=i d_{A}$, and in the second case we have $\sigma(a)=\sigma(b)=\sigma(0)=0$ and $\sigma(c)=\sigma(d)=\sigma(1)=1$, both operators being state-morphism operators.
Example 3.5. [3] Let $A=\{0, c, a, b, 1\}$, in which $0<c<a, b<1$ and a, b are incomparable, with the following tables of operations :

\odot	0	c	a	b	1
0	0	0	0	0	0
c	0	c	c	c	c
a	0	c	a	c	a
b	0	c	c	b	c
1	0	c	a	b	1

\rightarrow	0	c	a	b	1
0	1	1	1	1	1
c	0	1	1	1	1
a	0	b	1	b	1
b	0	a	a	1	1
1	0	c	a	b	1

The application $\sigma: A \rightarrow A$, given by $\sigma(0)=0$ and $\sigma(x)=1$ otherwise, is a state-morphism operator.

We recall that a t-norm is a function $t:[0,1] \times[0,1] \rightarrow[0,1]$, which verifies the conditions:
(1) $t(x, y)=t(y, x)$, for every $x, y \in[0,1]$;
(2) $t(t(x, y), z)=t(x, t(y, z))$, for every $x, y, z \in[0,1]$;
(3) $t(x, 1)=x$, for every $x \in[0,1]$;
(4) if $x \leq y$ then $t(x, z) \leq t(y, z), x, y, z \in[0,1]$.

If t is continuous, we define $x \odot_{t} y=t(x, y)$ and
$x \rightarrow_{t} y=\sup \{z \in[0,1] \mid t(z, x) \leq y\}$, for $x, y \in[0,1]$. In these conditions $\mathbf{I}_{t}=$ ($[0,1]$, min, max, $\odot_{t}, \rightarrow_{t}, 0,1$) is a $B L$-algebra. Moreover, according to [1], the variety of $B L$-algebras is generated by all the \mathbf{I}_{t} with a continuous norm t. There are three basic continuous t-norms on [0,1] :
(i) Lukasiewicz: $\mathrm{L}(x, y)=\max \{x+y-1,0\}$, with
$x \rightarrow_{\mathrm{E}} y=\min \{1-x+y, 1\}$;
(ii) Gödel: $G(x, y)=\min \{x, y\}$, with $x \rightarrow_{G} y=1$ if $x \leq y$ and $x \rightarrow_{G} y=y$ otherwise;
(iii) product: $P(x, y)=x y$, with $x \rightarrow_{P} y=1$ if $x \leq y$ and $x \rightarrow_{P} y=\frac{y}{x}$ otherwise. Then we have:
Proposition 3.1. [2]
(1) If σ is a state-operator on \mathbf{I}_{E}, then $\sigma(x)=x$, for every $x \in[0,1]$.
(2) Let $a \in[0,1]$ and we define $\sigma_{a}(x)=x$ if $x \leq a$ and $\sigma_{a}(x)=1$ otherwise. For $a \in(0,1]$ we define the application $\sigma^{a}(x)=x$ if $x<a$ and $\sigma_{a}(x)=1$ otherwise.

Then σ_{a} şi σ^{a} are state-morphism operators on \mathbf{I}_{G} and, if σ is a state-operator on \mathbf{I}_{G}, then $\sigma=\sigma_{a}$ or $\sigma=\sigma^{a}$ for a certain $a \in[0,1]$.
(3) If σ is a state-operator \mathbf{I}_{P}, then $\sigma(x)=x$, for every $x \in[0,1]$ or $\sigma(x)=1$, for every $x>0$.

Proposition 3.2. [2] Let A be a finite linear Gödel $B L$-algebra, that is, $x^{2}=x$, for every $x \in A$. Then, with the notations from Proposition $3.1 \sigma^{a}$ and σ_{a} are statemorphism operators, and any state-operator on A is of the form σ^{a} or σ_{a}, for a certain $a \in[0,1]$.

Actually we have the following more general result:
Proposition 3.3. Let A be a linear Gödel $B L$-algebra and $B \subset A$ such that $0 \in$ $B, 1 \notin B$ and, if $x \in B, y \in A \backslash B$, then $x<y$. Then the application $\sigma_{B}:[0,1] \rightarrow$ $[0,1]$, given by $\sigma_{B}(x)=x$ if $x \in B$ and $\sigma_{B}(x)=1$ otherwise, is a state-morphism operator on A, and, conversely, any state-operator on A is of such a form.

Proof. Firstly we observe that, if $x, y \in A$ then
$x \odot y \geq x \odot(x \wedge y)=x \odot(x \odot(x \rightarrow y))=x^{2} \odot(x \rightarrow y)=x \odot(x \rightarrow y)$
$=x \wedge y \geq x \odot y$, so $x \odot y=x \wedge y=\min \{x, y\}$, for every $x, y \in A$.
Then $x \rightarrow y=\sup \{z \in A \mid x \odot z \leq y\}=\sup \{z \in A \mid x \wedge z \leq y\}$.
If $x \leq y$, then $x \rightarrow y=1$.
If $x>y$, then $\sup \{z \in A \mid x \wedge z \leq y\}=\sup \{z \in A \mid \min \{x, z\} \leq y\}=y$.
We will verify the $(1)_{B L}-(5)_{B L}$ axioms. Since $0 \in B$ we have that $\sigma_{B}(0)=0$, so the $(1)_{B L}$ is proved.

If $x, y \in B$, then we have: $\sigma_{B}(x \rightarrow y)=1=\sigma_{B}(x) \rightarrow \sigma_{B}(x \wedge y)$, if $x \leq y$, and, if $x>y$ we have $\sigma_{B}(x \rightarrow y)=\sigma_{B}(y)$, and $\sigma_{B}(x) \rightarrow \sigma_{B}(x \wedge y)=x \rightarrow x \wedge y=x \rightarrow$ $y=y=\sigma_{B}(y)=\sigma_{B}(x \rightarrow y)$.

If $x, y \in A \backslash B$, then, since $y \leq x \rightarrow y$, it follows that $x \rightarrow y \in A \backslash B$, so $\sigma_{B}(x \rightarrow y)=1$, and $\sigma_{B}(x) \rightarrow \sigma_{B}(x \wedge y)=1$ (since $\left.x \wedge y \in A \backslash B\right)$.

If $x \in B, y \in A \backslash B$, then $\sigma_{B}(x \rightarrow y)=\sigma_{B}(1)=1=\sigma_{B}(x) \rightarrow \sigma_{B}(x \wedge y)$.
If $y \in B, x \in A \backslash B$, then $\sigma_{B}(x \rightarrow y)=\sigma_{B}(y)=y$ and $\sigma_{B}(x) \rightarrow \sigma_{B}(x \wedge y)=1 \rightarrow$ $y=y$, so we have an equality again.

Thus (2) $)_{B L}$ is proved.
We will now prove $(6)_{B L}$, which means that, according to the Remark 2.1
$(3)_{B L}$ is proved. Indeed, if $x, y \in B$, then $x \odot y=\min \{x, y\} \in B$, so $\sigma_{B}(x \odot y)=$ $x \odot y=\sigma_{B}(x) \odot \sigma_{B}(y)$. If $x, y \in A \backslash B$, then $x \odot y=\min \{x, y\} \in A \backslash B$, so $\sigma_{B}(x \odot y)=1=\sigma_{B}(x) \odot \sigma_{B}(y)$.

If $x \in B, y \in A \backslash B$, then $x \odot y=\min \{x, y\}=x$, so $\sigma_{B}(x \odot y)=\sigma_{B}(x)=x=$ $\sigma_{B}(x) \odot 1=\sigma_{B}(x) \odot \sigma_{B}(y)$. Thus $(6)_{B L}$ is fulfilled.

If $x \in B$, then $\sigma_{B}\left(\sigma_{B}(x)\right)=\sigma_{B}(x)$, and if $x \in A \backslash B$, then we have $\sigma_{B}\left(\sigma_{B}(x)\right)=$ $\sigma_{B}(1)=1=\sigma_{B}(x)$,so $\sigma_{B}\left(\sigma_{B}(x)\right)=\sigma_{B}(x), \forall x \in A$.

Then $\sigma_{B}\left(\sigma_{B}(x) \odot \sigma_{B}(y)\right)=\sigma_{B}\left(\sigma_{B}(x \odot y)\right)$ (according to $\left.(6)_{B L}\right)=\sigma_{B}(x \odot y)=$ $\sigma_{B}(x) \odot \sigma_{B}(y), \forall x, y \in A$, so $(4)_{B L}$ is verified.

In order to complete the first part of the proof, we still have to verify $(5)_{B L}$. Indeed, if $x, y \in B$, then $\sigma_{B}\left(\sigma_{B}(x) \rightarrow \sigma_{B}(y)\right)=\sigma_{B}(x \rightarrow y)$, and $\sigma_{B}(x) \rightarrow \sigma_{B}(y)=x \rightarrow y$. If $x \leq y$, then $x \rightarrow y=1$, so $\sigma_{B}(x \rightarrow y)=x \rightarrow y$. If $x>y, x \rightarrow y=y$, and $\sigma_{B}(x \rightarrow y)=\sigma_{B}(y)=y$, so equality once more. Let's now suppose that $x, y \in A \backslash B$. Then $\sigma_{B}\left(\sigma_{B}(x) \rightarrow \sigma_{B}(y)\right)=\sigma_{B}(1)=1=\sigma_{B}(x) \rightarrow \sigma_{B}(y)$.

If $x \in B, y \in A \backslash B$, then $\sigma_{B}\left(\sigma_{B}(x) \rightarrow \sigma_{B}(y)\right)=\sigma_{B}(x \rightarrow 1)=1=\sigma_{B}(x) \rightarrow$ $\sigma_{B}(y)$.

Finally, if $y \in B, x \in A \backslash B$, then $\sigma_{B}\left(\sigma_{B}(x) \rightarrow \sigma_{B}(y)\right)=\sigma_{B}(1 \rightarrow y)=\sigma_{B}(y)=$ $\sigma_{B}(x) \rightarrow \sigma B(y)$.

Conversely, let σ be a state-operator on A and let $a \in(0,1)$.
We are going to prove $\sigma(a)=a$ or $\sigma(a)=1$. Let's suppose that $\sigma(a)<a$.
Then, according to $(2)_{B L}, \sigma(a \rightarrow \sigma(a))=\sigma(a) \rightarrow \sigma(a \wedge \sigma(a))=\sigma(a) \rightarrow$ $\sigma(\sigma(a))=\sigma(a) \rightarrow \sigma(a)=1$.

But $a \rightarrow \sigma(a)=\sigma(a)$, so $\sigma(a \rightarrow \sigma(a))=\sigma(a)$, so $\sigma(a)=1$, a contradiction. If $a<\sigma(a)$, then, from $(2)_{B L}$ we have $\sigma(\sigma(a) \rightarrow a)=\sigma(\sigma(a)) \rightarrow \sigma(\sigma(a) \wedge a)=$ $\sigma(a) \rightarrow \sigma(a)=1$. Since $\sigma(a) \rightarrow a=a$, we obtain $\sigma(a)=1$.

Let $B=\{a \in[0,1) \mid \sigma(a)=a\}$. Then $\sigma(x)=x$, if $x \in B$, and $\sigma(x)=1$, if $x \in A \backslash B$. Obviously $0 \in B, 1 \notin B$. Let $x \in B, y \in A \backslash B$. If $y \leq x$, then $\sigma(y) \leq \sigma(x)$, that is $1 \leq x$, a contradiction. So $x<y$. Thus $\sigma=\sigma_{B}$, in which B fulfills the conditions from the enounciation.

Example 3.6. [2] Let A be a $B L$-algebra. Then $(A \times A, \wedge, \vee, \odot, \rightarrow, 0,1)$ it becomes $a B L$-algebra, where $(a, b) \leq(c, d)$ iff $a \leq c$ and $b \leq d$, and the operations are defined on the components. Let $\sigma: A \times A \rightarrow A \times A$ be, defined by $\sigma(a, b)=(a, a)$, for every $(a, b) \in A \times A$. It is easily to prove that σ is a state-morphism operator on $A \times A$.

4. Filters and state-filters

Definition 4.1. Let A be a $B L$-algebra. A nonvoid subset $F \subseteq A$ is called filter if the following conditions are verified:
(1) $x, y \in F$ implies $x \odot y \in F$;
(2) $x \in F$ and $x \leq y$ implies $y \in F$.

A proper filter of A is called a maximal filter if it doesn't belong to any other proper filter of A. The intersection all the maximal filters of A is denoted by $\operatorname{Rad}(A)$.

Definition 4.2. [2] Let (A, σ) be a state(morphism) BL-algebra. A nonvoid subset $F \subseteq A$ is called a state (morphism) - filter of (A, σ), if F is a filter of A with the property that if $x \in F$, then $\sigma(x) \in F$. A proper state-filter of (A, σ) is called a maximal state-filter if it doesn't belong to any other proper state-filter of (A, σ). The intersection all the maximal state-filters of (A, σ) is denoted by $\operatorname{Rad}_{\sigma}(A)$.
Example 4.1. If we consider the Example 3.1 then the filters of A and the state-filters of (A, σ) are the same.

For A the $B L$-algebra from Example 3.2 the filters are $\{1\},\{b, 1\}, A$, and the statefilters of (A, σ) are $\{1\},\{b, 1\}, A$. The (state)filter $\{b, 1\}$ is a maximal (state)filter. In this case $\operatorname{Rad}(A)=\operatorname{Rad}_{\sigma}(A)=\{b, 1\}$.

Let's now consider A the BL-algebra from Example 3.3 and the state-operator $\sigma: A \rightarrow A$, defined by $\sigma(0)=\sigma(b)=\sigma(d)=0, \sigma(a)=\sigma(c)=1$. The filters of A are $\{1\},\{d, 1\},\{a, c, 1\}, A$, and the state-filters of (A, σ) are $\{1\},\{a, c, 1\}, A$. The BL-algebra A has two maximal filters: $\{d, 1\}$ şi $\{a, c, 1\}$. There exists only an maximal state-filter of (A, σ), namely $\{a, c, 1\}$. In this case we have $\operatorname{Rad}(A)=\{1\}$, and $\operatorname{Rad}_{\sigma}(A)=\{a, c, 1\}$.

Let's now the $B L$-algebra from Example 3.4 and the state-operator $\sigma: A \rightarrow A$, defined by $\sigma(d)=\sigma(c)=\sigma(1)=1, \sigma(a)=\sigma(b)=\sigma(0)=0$. The filters of A are $\{1\},\{b, 1\},\{c, d, 1\}, A$, and the state-filters of (A, σ) are $\{1\},\{c, d, 1\}, A$. There are two maximal filters, namely $\{b, 1\}$ and $\{c, d, 1\}$, so $\operatorname{Rad}(A)=\{1\}$, and a single maximal state-filter, $\{c, d, 1\}$, so $\operatorname{Rad}_{\sigma}(A)=\{c, d, 1\}$.

For A the $B L$-algebra from Example 3.5 and the state-operator $\sigma: A \rightarrow A$, defined by $\sigma(0)=0$ and $\sigma(x)=1$ otherwise, the filters and the state-filters are the same: $\{1\},\{a, 1\},\{b, 1\},\{c, a, b, 1\}, A$. We have $\operatorname{Rad}(A)=\operatorname{Rad}_{\sigma}(A)=\{c, a, b, 1\}$. For the algebra \mathbf{I}_{E}, since ord $(x)<\infty$, for every $x \neq 1$, the only filters are $\{1\}$ and $[0,1]$. Since the single state-operator on \mathbf{I}_{E} is $i d_{\mathbf{I}_{L}}$, these are also the only state-filters.

In the case of the algebra \mathbf{I}_{G}, the filters are the sets of the form $[x, 1]$ or $(x, 1]$, where $x \in[0,1] . \mathbf{I}_{G}$ has an only maximal filter, namely $(0,1]$. According to Proposition 3.1(2) if σ is a state-operator on \mathbf{I}_{G}, then $\sigma=\sigma^{a}$ or $\sigma=\sigma_{a}$ (with thoses notations). For any of these state-operators, the state-filters and the filters of \mathbf{I}_{G} are the same. In the case of the algebra \mathbf{I}_{P}, since ord $(x)<\infty$, for every $x \neq 1$, the only filters are $\{1\}$ ş $[0,1]$, which are therefore the only state-filters.

Proposition 4.1. Let A and B be two $B L$-algebras and let us consider $A \times B$ the $B L$-algebra product of A and B. If F_{1}, F_{2} are filters of A, respectively B, then $F_{1} \times F_{2}$ is a filter of $A \times B$ and, conversely, any filter of $A \times B$ is of the form $F_{1} \times F_{2}$, where F_{1}, F_{2} are filters of A, respectively B.

Proof. If F_{1}, F_{2} are filters of A, respectively B, then it is imediate that $F_{1} \times F_{2}$ is a filter of $A \times B$. Conversely, let F be a filter of $A \times B$. Since F is nonvoid, then the sets $F_{1}:=\{x \in A \mid$ there exists $y \in B$ such that $(x, y) \in F\} \subseteq A$ and $F_{2}:=$ $\{y \in B \mid$ there exists $x \in A$ such that $(x, y) \in F\} \subseteq B$ will be too.

We are going to prove that F_{1}, F_{2} are filters and $F=F_{1} \times F_{2}$. Indeed, if $a, b \in$ F_{1}, then there exists $c, d \in B$ such that $(a, c),(b, d) \in F$, so $(a \odot b, c \odot d) \in F$, so $a \odot b \in F_{1}$. If $a \in F_{1}$ and $a \leq c$, then, since there exists $b \in B$ such that $(a, b) \in F$ and since $(a, b) \leq(c, b)$, it follows that $(c, b) \in F$, therefore $c \in F_{1}$. Thus F_{1} is a filter and analogously it shows that F_{2} is a filter. Let $(a, b) \in F$. Then $a \in F_{1}, b \in F_{2}$, so $(a, b) \in F_{1} \times F_{2}$, so $F \subseteq F_{1} \times F_{2}$. Let's now $(a, b) \in F_{1} \times F_{2}$. Since $a \in F_{1}, b \in F_{2}$, there exist $x \in A, y \in B$ such that $(a, y),(x, b) \in F$. Then $(a, 1),(1, b) \in F$ and so $(a \odot 1,1 \odot b) \in F$, that is, $(a, b) \in F$, therefore $F_{1} \times F_{2} \subseteq F$. Thus $F=F_{1} \times F_{2}$.

Let's now consider an $B L$-algebra A which contains proper filters and the stateoperator $\sigma: A \times A \rightarrow A \times A, \sigma(a, b)=(a, a)$, for every $(a, b) \in A \times A$, from the Example 3.6. According to Proposition 4.1 any filter of $A \times A$ is of the form $F_{1} \times F_{2}$, with F_{1}, F_{2} filters of A. If $F_{1} \times F_{2}$ is a state-filter of $(A \times A, \sigma)$, then $F_{1} \subseteq F_{2}$. Indeed, let $a \in F_{1}$. Then $(a, 1) \in F_{1} \times F_{2}$, so $\sigma(a, 1)=(a, a) \in F_{1} \times F_{2}$, that is, $a \in F_{2}$.

Conversely, if $F_{1} \times F_{2}$ is a filter of $A \times A$ such that $F_{1} \subseteq F_{2}$, and $(a, b) \in F_{1} \times F_{2}$, then $\sigma(a, b)=(a, a) \in F_{1} \times F_{2}$, so the state-filters of $(A \times A, \sigma)$ are the sets of the form $F_{1} \times F_{2}$, in which F_{1}, F_{2} are filters of A with $F_{1} \subseteq F_{2}$.

Remark 4.1. [2] Let A be a $B L$-algebra and σ a state-operator on A. Then $\operatorname{ker}(\sigma)$ is a state-filter of (A, σ).

Proposition 4.2. [2] Let A be a $B L$-algebra. A proper filter F of A is a maximal filter iff for any $a \notin F$, there exists $n \in \mathbb{N}^{*}$ such that $\left(a^{n}\right)^{*} \in F$.

Proposition 4.3. [7] Let A be a $B L$-algebra.
Then $\operatorname{Rad}(A)=\left\{x \in A \mid\left(x^{n}\right)^{*} \leq x\right.$, for every $\left.n \in \mathbb{N}\right\}$.
Proposition 4.4. [2] Let (A, σ) be a state $B L$-algebra and $X \subseteq A$. Then the statefilter $F_{\sigma}(X)$ generated by X is the set
$\left\{x \in A \mid x \geq\left(x_{1} \odot \sigma\left(x_{1}\right)\right)^{n_{1}} \odot \ldots \odot\left(x_{k} \odot \sigma\left(x_{k}\right)\right)^{n_{k}}, x_{i} \in X, n_{i} \geq 1, k \geq 1\right\}$.

If F is a state-filter of (A, σ) and $a \notin F$, then the state-filter generated by F and a is the set $F_{\sigma}(F, a)=\left\{x \in A \mid x \geq i \odot(a \odot \sigma(a))^{n}, i \in F, n \geq 1\right\}$. A proper statefilter F is a maximal state-filter iff for any $a \notin F$ there exists $n \in \mathbb{N}^{*}$ such that $\left(\sigma(a)^{n}\right)^{*} \in F$.

In watt follow we will introduce the concept of a prime state-filter, we will establish some results related to this concept on the basis of which we are going to characterise the set $\operatorname{Rad}_{\sigma}(A)$, in the case of a state-morphism $B L$-algebra (A, σ).

Proposition 4.5. Let (A, σ) be a state $B L$-algebra and P a proper state-filter of (A, σ). Then the following statements are equivalent:
(i) If P_{1}, P_{2} are two state-filters of (A, σ) such that $P=P_{1} \cap P_{2}$, then $P=P_{1}$ or $P=P_{2}$;
(ii) If $(a \odot \sigma(a)) \vee(b \odot \sigma(b)) \in P, a, b \in A$, then $a \in P$ or $b \in P$.

Proof. $(i) \Rightarrow(i i)$. Let $a, b \in A$ such that $(a \odot \sigma(a)) \vee(b \odot \sigma(b)) \in P$. We consider the sets $F_{\sigma}(P, a)=\left\{x \in A \mid x \geq i \odot(a \odot \sigma(a))^{n}, i \in P, n \geq 1\right\}$ and $F_{\sigma}(P, b)=$ $\left\{x \in A \mid x \geq i \odot(b \odot \sigma(b))^{n}, i \in P, n \geq 1\right\}$, which represent state-filters generated by P and a, respectively P and b (according to Proposition 4.4).

Obviously, $P \subseteq F_{\sigma}(P, a) \cap F_{\sigma}(P, b)$. If $x \in F_{\sigma}(P, a) \cap F_{\sigma}(P, b)$, then there exist $i_{1}, i_{2} \in P$ and $m, n \in \mathbb{N}^{*}$ such that $x \geq i_{1} \odot(a \odot \sigma(a))^{m}$ and $x \geq i_{2} \odot(b \odot \sigma(b))^{n}$, so $x \geq\left(i_{1} \odot(a \odot \sigma(a))^{m}\right) \vee\left(i_{2} \odot(b \odot \sigma(b))^{n}\right) \geq\left(i_{1} \vee i_{2}\right) \odot\left(i_{1} \vee(b \odot \sigma(b))^{n}\right) \odot$ $\left(i_{2} \vee(a \odot \sigma(a))^{m}\right) \odot\left((a \odot \sigma(a))^{m} \vee(b \odot \sigma(b))^{n}\right)$ (according to Proposition 2.1, (3))
$\geq\left(i_{1} \vee i_{2}\right) \odot\left(i_{1} \vee(b \odot \sigma(b))^{n}\right) \odot\left(i_{2} \vee(a \odot \sigma(a))^{m}\right) \odot((a \odot \sigma(a)) \vee(b \odot \sigma(b)))^{m n}$ (according to Proposition 2.1, (4)) .

But $i_{1} \vee i_{2}, i_{1} \vee(b \odot \sigma(b))^{n}, i_{2} \vee(a \odot \sigma(a))^{m}$ and $((a \odot \sigma(a)) \vee(b \odot \sigma(b)))^{m n}$ belong to P, and then it follows that $x \in P$. Thus $P=F_{\sigma}(P, a) \cap F_{\sigma}(P, b)$, and, from the hypothesis, we obtain that $P=F_{\sigma}(P, a)$ or $P=F_{\sigma}(P, b)$, that is, $a \in P$ or $b \in P$.
$(i i) \Rightarrow(i)$. Let P_{1}, P_{2} be two state-filters of (A, σ) such that $P=P_{1} \cap P_{2}$. Let's suppose that $P \neq P_{1}$ and $P \neq P_{2}$. Then there exist $a \in P_{1} \backslash P$ and $b \in P_{2} \backslash P$. Then $a \odot \sigma(a) \in P_{1}, b \odot \sigma(b) \in P_{2}$, so $(a \odot \sigma(a)) \vee(b \odot \sigma(b)) \in P_{1} \cap P_{2}=P$, hence $a \in P$ or $b \in P$, a contradiction. Therefore $P=P_{1}$ or $P=P_{2}$.

Definition 4.3. Let (A, σ) be a state $B L$-algebra. A proper state-filter P of (A, σ) is called a prime state-filter if it verify one of the equivalent conditions from the Proposition 4.5.

Proposition 4.6. Let (A, σ) be a state $B L-a l g e b r a$. Then any maximal state-filter of (A, σ) is a prime state-filter.

Proof. Let F be a maximal state-filter of (A, σ) and P_{1}, P_{2} two state-filters such that $F=P_{1} \cap P_{2}$. If $F \neq P_{1}$, then F is strictly contained in P_{1}, and, since F is a maximal state-filter, it follows that $P_{1}=A$. Then $F=A \cap P_{2}=P_{2}$. Therefore F is a prime state-filter.

Definition 4.4. Let (A, σ) be a state $B L$-algebra. A nonovoid subset I of A is called state-ideal if the following conditions are verified:
(1) $a, b \in I$ implies $a \oplus b \in I$;
(2) $a \in I, b \leq a$ implies $b \in I$;
(3) $a \in I$ implies $\sigma(a) \in I$.

Proposition 4.7. (Prime state-filter theorem) Let I be a state-ideal and F a state-filter on a state $B L$-algebra (A, σ) such that $F \cap I=\varnothing$. Then there is a prime state-filter P such that $F \subseteq P$ and $P \cap I=\varnothing$.
Proof. Consider the set
$\mathbf{F}(F)=\left\{F^{\prime} \mid F^{\prime}\right.$ is a state-filter such that $F \subseteq F^{\prime}$ and $\left.F^{\prime} \cap I=\varnothing\right\}$.
Since $F \in \mathbf{F}(F)$, it follows that $\mathbf{F}(F)$ is nonvoid. It is easily to prove that the set $\mathbf{F}(F)$ is inductively ordered, so, by Zorn's Lemma in $\mathbf{F}(F)$ then is P a maximal element. I want to prove that P is a prime state-filter. Since $P \in \mathbf{F}(F)$, it follows that P is a proper state-filter and $P \cap I=\varnothing$.

Let $a, b \in A$ such that $(a \odot \sigma(a)) \vee(b \odot \sigma(b)) \in P$. Let's suppose that $a \notin P$ and $b \notin P$. Consider the sets $F_{\sigma}(P, a)$ şi $F_{\sigma}(P, b)$, which represent state-filters generated by P and a, respectively P and b. Then P is strictly contained in $F_{\sigma}(P, a)$ and $F_{\sigma}(P, b)$ and, by the maximality of P, we deduce that $F_{\sigma}(P, a) \notin \mathbf{F}(F)$ and $F_{\sigma}(P, b) \notin \mathbf{F}(F)$. Thus $F_{\sigma}(P, a) \cap I \neq \varnothing$ and $F_{\sigma}(P, b) \cap I \neq \varnothing$. Let $x \in F_{\sigma}(P, a) \cap I$ and $y \in F_{\sigma}(P, b) \cap I$. Then there exist $i_{1}, i_{2} \in P$ and $m, n \in \mathbb{N}$ such that $x \geq i_{1} \odot(a \odot \sigma(a))^{m}$ and $y \geq i_{2} \odot(b \odot \sigma(b))^{n}$, so $x \vee y \geq\left(i_{1} \odot(a \odot \sigma(a))^{m}\right) \vee\left(i_{2} \odot(b \odot \sigma(b))^{n}\right) \geq\left(i_{1} \vee i_{2}\right) \odot$ $\left(i_{1} \vee(b \odot \sigma(b))^{n}\right) \odot\left(i_{2} \vee(a \odot \sigma(a))^{m}\right) \odot((a \odot \sigma(a)) \vee(b \odot \sigma(b)))^{m n} \in P$, that is, $x \vee y \in P$. But $x, y \in I$, so $x \vee y \in I$, hence $P \cap I \neq \varnothing$, a contradiction.

Thus P is a prime state-filter.

Proposition 4.8. Let (A, σ) be a state $B L$-algebra and $a \in A, a<1$. Then there exists a prime state-filter P of (A, σ) such that $a \notin P$.
Proof. Like in the Proposition 4.7 we consider the set
$\mathbf{F}(a)=\{F \mid F$ is a state-filter and $a \notin F\}$. Since $\{1\} \in \mathbf{F}(a)$, it follows that $\mathbf{F}(a)$ is nonvoid.

We can easily prove that the set $\mathbf{F}(a)$ is inductively ordered, so by Zorn's Lemma then is P a maximal element of $\mathbf{F}(a)$. I want to prove that P is a prime state-filter. Let $x, y \in A$ such that $(x \odot \sigma(x)) \vee(y \odot \sigma(y)) \in P$. Let's suppose that $x \notin P$ and $y \notin P$. Considering the sets $F_{\sigma}(P, x)$ and $F_{\sigma}(P, y)$, which represent state-filters generated by P and x, respectively P and y, it follows that P is strictly contained in $F_{\sigma}(P, x)$ and $F_{\sigma}(P, y)$ and, by the maximality of P, we deduce that $a \in F_{\sigma}(P, x) \cap F_{\sigma}(P, y)$. Then there exist $i_{1}, i_{2} \in P$ and $m, n \in \mathbb{N}$ such that $a \geq i_{1} \odot(x \odot \sigma(x))^{m}$ and $a \geq i_{2} \odot(y \odot \sigma(y))^{n}$, so $a \geq\left(i_{1} \odot(x \odot \sigma(x))^{m}\right) \vee\left(i_{2} \odot(y \odot \sigma(y))^{n}\right) \geq\left(i_{1} \vee i_{2}\right) \odot$ $\left(i_{1} \vee(y \odot \sigma(y))^{n}\right) \odot\left(i_{2} \vee(x \odot \sigma(x))^{m}\right) \odot((x \odot \sigma(x)) \vee(y \odot \sigma(y)))^{m n} \in P$, so $a \in P$, a contradiction. Thus P is a prime state-filter and $a \notin P$.

Corollary 4.1. Let (A, σ) be a state $B L$-algebra and P a proper state-filter of (A, σ). Then there exists a maximal state-filter F_{0} of (A, σ) such that $P \subseteq F_{0}$.
Proof. The Proposition 4.7 is applied for $I=\{0\}$ and $F=P$. Let F_{0} be a maximal element of the set $\mathbf{F}(P)=\left\{F^{\prime} \mid F^{\prime}\right.$ is a proper state-filter and $\left.P \subseteq F^{\prime}\right\}$. I want to prove that F_{0} is a maximal state-filter of (A, σ). Indeed, if F_{1} is a state-filter of (A, σ) such that $F_{0} \subseteq F_{1}$ then, the maximality of F_{0}, it follows that $F_{1} \notin \mathbf{F}(P)$, so F_{1} is not a proper state-filter, so $F_{1}=A$.

On the basis of the previous results, we will be able to characterize the set $\operatorname{Rad} d_{\sigma}(A)$, of the intersection of all maximal state-filters of a state-morphism $B L$-algebra (A, σ). Firstly, we will establish the following result:

Proposition 4.9. Let (A, σ) be a state $B L$-algebra. Then
$\left\{x \in A \mid\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x)\right.$, for every $\left.n \in \mathbb{N}\right\} \subseteq \operatorname{Rad}_{\sigma}(A)$.
Proof. Consider $B=\left\{x \in A \mid\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x)\right.$, for every $\left.n \in \mathbb{N}\right\}$ and let $x \in B$. Let's suppose that $x \notin \operatorname{Rad}_{\sigma}(A)$, therefore there exists a maximal state-filter F of (A, σ) such that $x \notin F$. According to Proposition 4.8 , there exists $n \in \mathbb{N}$ such that $\left(\sigma(x)^{n}\right)^{*} \in F$. Since $\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x)$, we deduce that $\sigma(x) \in F$. But then $\sigma(x)^{n} \in F$ and, since $\left(\sigma(x)^{n}\right)^{*} \in F$, we obtain that $F=A$, a contradiction. Therefore $B \subseteq \operatorname{Rad}_{\sigma}(A)$.

Proposition 4.10. Let (A, σ) be a state-morphism $B L$-algebra. Then

$$
\operatorname{Rad}_{\sigma}(A) \subseteq\left\{x \in A \mid\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x), \text { for every } n \in \mathbb{N}\right\}
$$

Proof. Consider $B=\left\{x \in A \mid\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x)\right.$, for every $\left.n \in \mathbb{N}\right\}$ and let
$x \in \operatorname{Rad}_{\sigma}(A)$. Let's suppose that $x \notin B$, so there exists $n \in \mathbb{N}$ such that $\left(\sigma(x)^{n}\right)^{*} \nless \sigma(x)$, that is, $\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)<1$. According to Proposition 4.8 there exists a prime state-filter P of (A, σ) such that $\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x) \notin P$. On the other hand $\sigma\left(\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)\right)=\sigma\left(\sigma\left(\left(x^{n}\right)^{*}\right) \rightarrow \sigma(x)\right)$ (since σ is a morphism) $=$ $\sigma\left(\left(x^{n}\right)^{*}\right) \rightarrow \sigma(x)$ (from the $\left.(4)_{B L}\right)=\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)$ and, analogously,

$$
\sigma\left(\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}\right)=\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}
$$

Then $\left(\left(\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)\right) \odot \sigma\left(\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)\right)\right)$
$\vee\left(\left(\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}\right) \odot \sigma\left(\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}\right)\right)$
$=\left(\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)\right)^{2} \vee\left(\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}\right)^{2}$
$\geq\left(\left(\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x)\right) \vee\left(\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}\right)\right)^{4}$
(according to Proposition 2.1, (4)) $=1 \in P$, and, since P is prime and
$\left(\sigma(x)^{n}\right)^{*} \rightarrow \sigma(x) \notin P$, we deduce that $\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*} \in P$.
But $\sigma(x) \rightarrow\left(\sigma(x)^{n}\right)^{*}=\left(\sigma(x) \odot \sigma(x)^{n}\right)^{*}$ (from Proposition 2.1, (5)),
thus $\left(\sigma(x)^{n+1}\right)^{*} \in P$. According to Corrollary 4.1, there exists a maximal state-
filter F_{0} of (A, σ) such that $P \subseteq F_{0}$, so $\left(\sigma(x)^{n+1}\right)^{*} \in F_{0}$, that is, $\sigma(x)^{n+1} \notin F_{0}$. Then $\sigma(x) \notin F_{0}$ and so $x \notin F_{0}$, namely $x \notin \operatorname{Rad}_{\sigma}(A)$, a contradiction. Therefore $\operatorname{Rad}_{\sigma}(A) \subseteq B$.

From Propositions 4.9 and 4.10 we obtain:
Theorem 4.1. Let (A, σ) be a state-morphism $B L$-algebra. Then
$\operatorname{Rad}_{\sigma}(A)=\left\{x \in A \mid\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x)\right.$, for every $\left.n \in \mathbb{N}\right\}$.
Moreover, $\operatorname{Rad}(A) \subseteq \operatorname{Rad}_{\sigma}(A)$.
Proof. The first part result from Propositions 4.9 and 4.10. For the second part, let $x \in \operatorname{Rad}(A)$, so $\left(x^{n}\right)^{*} \leq x$, for every $n \in \mathbb{N}$.

Then $\sigma\left(\left(x^{n}\right)^{*}\right) \leq \sigma(x)$, for every $n \in \mathbb{N}$, so $\left(\sigma(x)^{n}\right)^{*} \leq \sigma(x)$, for every $n \in \mathbb{N}$, that is, $x \in \operatorname{Rad}_{\sigma}(A)$.

5. Classes of $B L-$ algebras

Within this section, we are going to present some classes of $B L$-algebras, such as simple, semisimple and local $B L$-algebras, we will then define the concepts of simple,
semisimple and local state $B L$-algebras (A, σ), next we will introduce the concepts of simple, semisimple and local state $B L$-algebras (A, σ) relative to its state-filters set, and we will finally establish relations between these concepts, which occur in some conditions imposed to the state-operator σ.

Definition 5.1. $A B L$-algebra A is called simple if its only filters are $\{1\}$ and A. A state $B L$-algebra (A, σ) is called simple if $\sigma(A)$ is simple.

We will now define a new concept:
Definition 5.2. A state $B L$-algebra (A, σ) is called simple relative to its state-filters set if it has only two state-filters: $\{1\}$ and A.

Example 5.1. Let's consider a state $B L$-algebra (A, σ). If $\sigma=i d_{A}$, then the three concepts from Definition 5.1 are the same. Let's consider the state $B L-\operatorname{algebra}(A, \sigma)$ from Example 3.2. We have $\sigma(A)=\{0, a, 1\}$.

If $I \subseteq \sigma(A)$ is a filter, $I \neq\{1\}$, and if $a \in I$, then $a \odot a=0 \in I$, so $I=\sigma(A)$. Thus $\sigma(A)$ is simple, so (A, σ) is simple. By the contrary, according to Example 4.1 A is not simple and (A, σ) is not simple relative to its state-filters set. For each state $B L$-algebras (A, σ) from Examples 3.3, 3.4, 3.5 we have $\sigma(A)=\{0,1\}$, so (A, σ) is simple, but A is notsimple and (A, σ) is not simple relative to its state-filters set.
Remark 5.1. According to [2], if (A, σ) is a state $B L$-algebra such that A is simple, then $\sigma(A)$ is simple, so (A, σ) is simple.

Theorem 5.1. [2] Let (A, σ) be a state-morphism $B L$-algebra. Then the following conditions are equivalent:
(1) (A, σ) is simple;
(2) $\operatorname{ker}(\sigma)$ is a maximal filter of A.

Proposition 5.1. Let (A, σ) be a state $B L$-algebra. If (A, σ) is simple relative to its state-filters set, then (A, σ) is simple.
Proof. Let J be a filter of $\sigma(A), J \neq\{1\}$. We will prove that $J=\sigma(A)$. Consider $\mathbf{F}_{J}=\{z \in A \mid z \geq j$, for a certain $j \in J\}$. If $x, y \in \mathbf{F}_{J}$, then there exist $j_{1}, j_{2} \in J$ such that $x \geq j_{1}, y \geq j_{2}$, so $x \odot y \geq j_{1} \odot j_{2} \in J$, hence $x \odot y \in \mathbf{F}_{J}$. If $x \in \mathbf{F}_{J}$ and $x \leq y$, then obviously $y \in \mathbf{F}_{J}$.

If $x \in \mathbf{F}_{J}$, then $x \geq j, j \in J$, so $\sigma(x) \geq \sigma(j)=j($ since $j \in \sigma(A))$, hence $\sigma(x) \in$ \mathbf{F}_{J}. Therefore \mathbf{F}_{J} is a state-filter of (A, σ). Since (A, σ) is simple relative to its statefilters set, and $\mathbf{F}_{J} \neq\{1\}$ (since $J \subseteq \mathbf{F}_{J}$), it follows that $\mathbf{F}_{J}=A$, so $0 \in \mathbf{F}_{J}$, hence $0 \in J$, that is, $J=\sigma(A)$.

Remark 5.2. If (A, σ) is a simple state $B L$-algebra relative to its state-filters set, then, since $\operatorname{ker}(\sigma)$ is a state filter and $\operatorname{ker}(\sigma) \neq A$, it follows that $\operatorname{ker}(\sigma)=\{1\}$, thus σ is a faithful operator.
Remark 5.3. If (A, σ) is a simple state $B L$-algebra, then it doesn't necessarly follow that σ is faithful. For instance, for the simple state $B L$-algebra (A, σ) from the Example 3.2 we have $\operatorname{ker}(\sigma)=\{b, 1\} \neq\{1\}$.

Theorem 5.2. Let (A, σ) be a state $B L-$ algebra. Then the following conditions are equivalent:
(i) (A, σ) is simple relative to its state-filters set;
(ii) (A, σ) is simple and σ is faithful.

Proof. $(i) \Rightarrow(i i)$ Results from the Proposition 5.1 and the Remark 5.2.
$($ ii $) \Rightarrow(i)$ Let I be a state-filter of (A, σ). Then $I \cap \sigma(A)$ is a filter of $\sigma(A)$, and so $I \cap \sigma(A)=\{1\}$ or $I \cap \sigma(A)=\sigma(A)$. If $I \cap \sigma(A)=\sigma(A)$, then $\sigma(A) \subseteq I$ and, since $0 \in \sigma(A)$, we deduce that $I=A$. If $I \cap \sigma(A)=\{1\}$, let $x \in I$. Then $\sigma(x) \in I \cap \sigma(A)$, so $\sigma(x)=1$, that is, $x=1$ (since σ is faithful), so $I=\{1\}$. Therefore the only state-filters of (A, σ) are $\{1\}$ and A.

Theorem 5.3. Let (A, σ) be a state-morphism $B L$-algebra. Then the following conditions are equivalent:
(i) (A, σ) is simple relative to its state-filters set;
(ii) A is simple.

Proof. $(i) \Rightarrow(i i)$ According to Theorem 5.2 it follows that (A, σ) is simple and σ is faithful. According to Theorem $5.1 \mathrm{ker}(\sigma)$ is a maximal state-filter of A. Let now F be a filter of $A, F \neq\{1\}$. Since $\operatorname{ker}(\sigma)=\{1\} \subseteq F$ and $\operatorname{ker}(\sigma)$ is maximal, we deduce that $F=A$, so A is simple.
(ii) \Rightarrow (i) Clearly.

From of the Theorems 5.3 and 5.3 it follows:
Theorem 5.4. Let (A, σ) be a state-morphism $B L$-algebra and σ is faithful. Then the following conditions are equivalent:
(i) A is simple;
(ii) (A, σ) is simple.

Proof. $(i) \Rightarrow($ ii) Results from the Remark 5.1.
$(i i) \Rightarrow(i)$ If (A, σ) is simple, since σ is faithful, then from the Theorem 5.2 it follows that (A, σ) is simple relative to its state-filters set and then, from the Theorem 5.3 we deduce that A is simple.

Definition 5.3. $A B L$-algebra A is called local if it has only a maximal filter. A state $B L$-algebra (A, σ) is called local if $\sigma(A)$ is local.

Next we define a new concept:
Definition 5.4. A state $B L$-algebra (A, σ) is local relative to its state-filters set if it has only a maximal state-filter.

Example 5.2. Let's consider the $B L$-algebra A and the state-operator
$\sigma: A \rightarrow A$ from Example 3.2. Then A is local, (A, σ) is local and (A, σ) is local
 (A, σ) is local relative to its state-filters set.
Theorem 5.5. Let (A, σ) be a state $B L$-algebra. Then the following conditions are equivalent:
(i) (A, σ) is local relative to its state-filters set;
(ii) (A, σ) is local.

Proof. $(i) \Rightarrow(i i)$ Let F be the only maximal state-filter of (A, σ). Then $F \cap \sigma(A)$ is a filter of $\sigma(A)$. We will prove that $F \cap \sigma(A)$ is the only maximal filter of $\sigma(A)$. If $F \cap$ $\sigma(A)=\sigma(A)$, then $\sigma(A) \subseteq F$, so $0 \in F$, a contradiction. Let I be an arbitrary proper filter of $\sigma(A)$. We consider the set $F_{\sigma}(I)=\{z \in A \mid z \geq i, i \in I\}$, which represents the state-filter generated by I in (A, σ). If $F_{\sigma}(I)=A$, then $0 \in F_{\sigma}(I)$, so $0 \in I$, false. Then $F_{\sigma}(I)$ is a proper state-filter, so $F_{\sigma}(I) \subseteq F$, that is,
$I=I \cap \sigma(A) \subseteq F_{\sigma}(I) \cap \sigma(A) \subseteq F \cap \sigma(A)$.
Then $F \cap \sigma(A)$ is a proper filter which contains any proper filter I of $\sigma(A)$, thus it is the only maximal filter of $\sigma(A)$, so (A, σ) is local.
(ii) $\Rightarrow(i)$ Let I be the only maximal filter of $\sigma(A)$ and the set
$F_{\sigma}(I)=\{z \in A \mid z \geq i, i \in I\}$, which represents the state-filter generated by I in (A, σ). Let $\mathbf{F}(I)=\{F \mid F$ is a proper state-filter of (A, σ) and $I \subseteq F\}$.

If $F_{\sigma}(I)$ is not proper, then $0 \in F_{\sigma}(I)$, so $0 \in I$, false. Thus $F_{\sigma}(I) \in \mathbf{F}(I)$, so $\mathbf{F}(I)$ is nonvoid. It is easily to verify that $\mathbf{F}(I)$ is inductively ordered, so by Zorn's Lemma then is F a maximal element of $\mathbf{F}(I)$. We will prove that F is the only maximal state-filter of (A, σ). Indeed, let F_{1} be an arbitrary proper state-filter of (A, σ). Let's suppose that there exists an element $x \in F_{1} \backslash F$. Then $\sigma(x) \in F_{1} \cap \sigma(A)$. If $F_{1} \cap \sigma(A)=\sigma(A)$ it follows that $\sigma(A) \subseteq F_{1}$, so $0 \in F_{1}$, a contradiction. Thus $F_{1} \cap \sigma(A) \neq \sigma(A), F_{1} \cap \sigma(A)$ is a filter of $\sigma(A)$ and, since I is a maximal filter of $\sigma(A)$, it follows that $F_{1} \cap \sigma(A) \subseteq I$, so $\sigma(x) \in I$.

Then $\sigma(x) \in F_{\sigma}(I)$, so $\sigma(x) \in F$. Since $x \notin F$ and F is a maximal state-filter, then, according to Proposition 4.8, it follows that there exists $n \in \mathbb{N}^{*}$ such that $\left(\sigma(x)^{n}\right)^{*} \in F$.

But $\sigma(x)^{n} \in F$, a contradiction. Thus $F_{1} \subseteq F$, so F is the only maximal state-filter of (A, σ), so (A, σ) is local relative to its state-filters set.

Definition 5.5. $A B L$-algebra A is called semisimple if $\operatorname{Rad}(A)=\{1\}$. Let (A, σ) be a state $B L$-algebra. (A, σ) is called semisimple if $\operatorname{Rad}(\sigma(A))=\{1\}$.

Concerning all this, we are now going to define a new concept:
Definition 5.6. A state $B L$-algebra (A, σ) is called semisimple relative to its statefilters set if $\operatorname{Rad}_{\sigma}(A)=\{1\}$.
Example 5.3. Let's consider the state $B L$-algebra (A, σ) from Example 3.2. The A algebra is not semisimple, but (A, σ) is semisimple because $\operatorname{Rad}(\sigma(A))=\{1\}$. It is not semisimple relative to its state-filters set.

The A algebras from Examples 3.3, 3.4 are semisimple, (A, σ) is not semisimple, but they are semisimple relative to its state-filters set.

The A algebra from Example 3.5 is not semisimple, (A, σ) is not semisimple relative to its state-filters set, but (A, σ) is semisimple.

The \mathbf{I}_{E} algebra from Proposition 3.1 is semisimple, and, since $\sigma=i d_{E},\left(\mathbf{I}_{E}, \sigma\right)$ is semisimple and semisimple relative to its state-filters set.

Proposition 5.2. ([2]) Let (A, σ) be a state $B L-a l g e b r a$. Then
$\sigma(\operatorname{Rad}(A)) \supseteq \operatorname{Rad}(\sigma(A))=\sigma\left(\operatorname{Rad}_{\sigma}(A)\right)$.
Theorem 5.6. Let (A, σ) be a state $B L$-algebra. Then the following conditions are equivalent:
(i) (A, σ) is semisimple and σ is faithful;
(ii) (A, σ) is semisimple relative to its state-filters set.

Proof. $\quad(i) \Rightarrow(i i)$ According to Proposition 5.2 we have $\sigma\left(\operatorname{Rad}_{\sigma}(A)\right)=\operatorname{Rad}(\sigma(A))=$ $\{1\}$, so $\operatorname{Rad}_{\sigma}(A) \subseteq \operatorname{ker}(\sigma)=\{1\}$, that is, $\operatorname{Rad}_{\sigma}(A)=\{1\}$.
(ii) $\Rightarrow(i) \operatorname{Rad}(\sigma(A))=\sigma\left(\operatorname{Rad}_{\sigma}(A)\right)=\sigma(\{1\})=\{1\}$, so (A, σ) is semisimple. We will prove that σ is faithful. Let $x \in \operatorname{ker}(\sigma)$, that is, $\sigma(x)=1$. Let's suppose that $x \notin \operatorname{Rad}_{\sigma}(A)$. Then there exists a maximal state-filter F such that $x \notin F$. According to Proposition 4.4 there exists $n \in \mathbb{N}^{*}$ such that $\left(\sigma(x)^{n}\right)^{*} \in F$, so $0 \in F$, a contradiction. Thus $x \in \operatorname{Rad}_{\sigma}(A)=\{1\}$, so σ is faithful.

References

[1] R. Cignoli, F. Esteva, L. Godo, and A. Torrens, Basic fuzzy logic is the logic of continuos t-norms and their residua, Soft Computing 4 (2000), 106-112.
[2] L.C. Ciungu, A. Dvurečenskij, and M. Hyċko, State BL-algebras, Soft Computing DOI:10.1007/s00500-010-0571-5.
[3] A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
[4] T. Flaminio, and F. Montagna, An algebraic approach to states of $M V$-algebras, In: V. Nováck(ed), Fuzzy Logic 2 (2007), Proc. of the 5th EUSFLAT Conf., Sept. 11-14, 2007, Ostrava, Vol II, 201-206.
[5] T. Flaminio, and F. Montagna, $M V$-algebras with internal states and probabilistic fuzzy logic, Inter. J. Approx. Reasoning 50 (2009), 138-152.
[6] A. Di Nola, and A. Dvurečenskij, State-morphism MV - algebras, Ann. Pure Appl. Logic 161 (2009), 161-173. DOI:10.1016/ j.apal.2009.05.003.
[7] A. Di Nola, G. Georgescu, and A. Iorgulescu, Pseudo- BL-algebras: Part II, Multiple Val Logic 8 (2002), 717-750.
(Nicolae Mircea Constantinescu) Faculty of Mathematics and Computer Science, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania
E-mail address: mnconst69@yahoo.com

