
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 37(3), 2010, Pages 12–21
ISSN: 1223-6934

Fuzzy Logic Controller Based on Association Rules
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Abstract. The task of the standard Mamdani fuzzy logic controller is to find a crisp control
action from the fuzzy rule-base and from a set of crisp inputs. In this paper we modify the
classical Fuzzy Inference Engine in order to activate a set of rules having the same conclusion;
thus we obtain a fuzzy set as output (like as in Generalized Modus Ponens reasoning), which
can be defuzzified in order to obtain a crisp value. Usually, the inference rules used in a fuzzy
logic controller are given by a domain expert; in our system, these rules are automatically
induced as fuzzy association rules starting from a training set. The fuzzy confidence value
associated with each rule is used to obtain the fuzzy set inferred by our system.
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1. Introduction

The database of a rule-based system may contain imprecisions which are inherent
in the description of the rules given by the expert. Because such an inference can not
be made by the methods which use classical two valued logic or many valued logic,
Zadeh [17] and Mamdani [13] suggested an inference rule called ”compositional rule
of inference”. Afterwards, Zadeh gave a theory of approximate reasoning [18], that is
the deduction of imprecise conclusions from a set of imprecise premises. The theory
of approximate reasoning is based on fuzzy logic inference processes. An important
part of fuzzy reasoning is represented by Fuzzy Logic Control (FLC), derived from the
control theory based on mathematical models of the open-loop process. The Fuzzy
Logic Control is very useful when the needed models are not known or when they are
too complex for analysis with conventional quantitative techniques. In a fuzzy logic
controller, the expert knowledge is of the form

IF (a set of conditions are satisfied) THEN (a set of consequences are inferred)

where the antecedents and the consequences of the rules are associated with fuzzy
concepts (linguistic terms). The task of a FLC system is to find a crisp control action
from the fuzzy rule-base and from the actual crisp inputs. Because the inputs and
the outputs of fuzzy rule-based systems are fuzzy sets, we have to fuzzify the crisp
inputs and to defuzzify the fuzzy outputs. A standard FLC system consists from four
parts, as it results from the Figure 1. The most known FLC systems are: Mamdani,
Tsukamoto, Sugeno and Larsen. The research in the field of Fuzzy Logic Control is
the subject of many papers and books ([15, 14, 12, 9].

In this paper we modify the classical Fuzzy Inference Engine of the standard Mam-
dani controller in order to activate only a set of rules having the same conclusion; thus
we obtain a fuzzy set as output (like as in Generalized Modus Ponens reasoning),
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Figure 1. Fuzzy logic controller

which can be defuzzified in order to obtain a crisp value. Usually, the inference rules
used by FLC are provided by a domain expert. In our case, these rules are induced
as fuzzy association rules using a training set.

The our FLC system works as follows:
(1) generate rules used by inference engine
(2) compute the firing level of each rule, corresponding to input data
(3) compute the matching value of the input data with each set of rules having the

same conclusion
(4) select the best set of rules used in the inference process
(5) compute the fuzzy set that represents the conclusion inferred and its correspond-

ing crisp value obtained by defuzzification process.
The rest of paper is organized as follows: Section 2 presents the basic concepts with

references to our approach. In Section 3 it is described the our FLC system. The
Section 4 contains an example about presented system and the last section discusses
conclusions and future works.

2. Basic Concepts

In this section we present the basic notion about concepts used in this paper.

2.1. Fuzzy Sets. A fuzzy set A in the universe U is defined by membership function
µA : U → [0, 1]. Because the majority of practical applications work with trapezoidal
or triangular distributions and these representations are still a subject of various recent
papers ( [6], [16] for instance) we will work with membership functions represented
by trapezoidal fuzzy numbers. Such a number N = (m, m,α, β) is defined as

µN (x) =





0 for x < m− α
x−m + α

α for x ∈ [m− α, m]
1 for x ∈ [m,m]
m + β − x

β
for x ∈ [m,m + β]

0 for x > m + β
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Definition 2.1. A function T : [0, 1]2 → [0, 1] is a t-norm iff it is commutative,
associative, non-decreasing and T (x, 1) = x ∀x ∈ [0, 1].

The t-norms are used to compute the firing levels of the rules. The rules are
represented by fuzzy implications. Let X and Y be two variables whose domains are
U and V , respectively. A causal link from X to Y is represented as a conditional
possibility distribution ( [18], [19]) πY/X which restricts the possible values of Y for
a given value of X. For the rule

if X is A then Y is B (1)

we have
∀u ∈ U, ∀v ∈ V, πY/X(v, u) = µA(u) → µB(v) (2)

where → is an implication operator and µA and µB are the membership functions of
the fuzzy sets A and B, respectively.

Definition 2.2. An implication is a function I : [0, 1]2 → [0, 1] satisfying the
following conditions for all x, y, z ∈ [0, 1] :

I1: If x ≤ z then I(x, y) ≥ I(z, y)

I2: If y ≤ z then I(x, y) ≤ I(x, z)

I3: I(0, y) = 1 (falsity implies anything)

I4: I(x, 1) = 1 (anything implies tautology)

I5: I(1,0)=0 (Booleanity)

Here, we use Lukasiewicz’s implication defined as

IL(x, y) = min(1− x + y, 1) (3)

that is one of most important implication, as is proved in [4].

2.2. Fuzzy Association Rules. Mining of association rules represents one of the
most important task in data mining. An association rule describes an interesting
relationship among different attributes. The task of discovering boolean association
rules was introduced by Agrawal in [2]. Fuzzy association rules can handle both
quantitative and categorical data and are expressed in linguistic terms, which are
more natural and understandable for human beings.

The basic problem of finding fuzzy association rules was introduced in [11]. Let
DB = {t1, . . . , tn} be a database characterized by a set I = {i1, . . . , im} of categorical
or quantitative attributes (items). For each attribute ik, (k = 1, . . . , m), we will
consider n(k) associated fuzzy sets. Let Fik

= {F 1
ik

, . . . , F
n(k)
ik

} be the set of all these
fuzzy sets. For an attribute ik and a fuzzy set F j

ik
, the membership function, denoted

µF j
ik

, is defined as:

µF j
ik

: dom(ik) → [0, 1], k = 1, . . . , m, j = 1, . . . , n(k) (4)

We call fuzzy itemset the tuple 〈X, FX〉 , where X ⊆ I is a set of attributes and
FX is a set of fuzzy sets associated with attributes from X.

Definition 2.3. A fuzzy association rule is an implication of the following form

X ∈ FX ⇒ Y ∈ FY
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where X, Y ∈ I, X ∩ Y = ∅, X = {x1, . . . , xp}, Y = {y1, . . . , yq}, and FX =
{a1, . . . , ap}, FY = {b1, . . . , bq} are fuzzy sets related to attributes from X and Y
respectively. More exactly, ai ∈ Fxi

, (i = 1, . . . , p), and bi ∈ Fyi
, (i = 1, . . . , q).

The left side X ∈ FX of the rule is called antecedent, while the right side of the
rule Y ∈ FY is called consequent. We denote this rule with:

〈X, FX〉 ⇒ 〈Y, FY 〉
An example of a fuzzy association rule is the following:

”IF Age is young and Income is high THEN Cars is many”

Here, X = {Age, Income}, Y = {Cars}, FX = {young, high}, FY = {many} and
the rule can be represented as:

〈{Age, Income}, {young, high}〉 ⇒ 〈Cars, many〉
In order to express the quality of a fuzzy association rule two quality measures,

fuzzy support and fuzzy confidence, have been proposed in [11].

Definition 2.4 (Itemset fuzzy support value). The fuzzy support value of itemset
fuzzy itemset 〈X, FX〉 in DB is:

FS〈X,FX〉 =

∑
ti∈DB

∏
xj∈X αaj (ti[xj ])

|DB| (5)

where

αaj (ti[xj ]) =

{
µaj (ti[xj ]), if µaj (ti[xj ]) ≥ ω

0, otherwise
(6)

and ω is a user specified minimum threshold for the membership function. Thus, the
values of membership functions less than this minimum threshold, ω, are ignored

Definition 2.5 (Rule fuzzy support value). Let 〈X,FX〉 ⇒ 〈Y, FY 〉 be a fuzzy asso-
ciation rule. The fuzzy support value of the rule is defined as fuzzy support value
of the itemset 〈{X, Y }, {FX , FY }〉 :

FS〈X,FX〉⇒〈Y,FY 〉 = FS〈{X,Y },{FX ,FY }〉

Definition 2.6 (Rule Fuzzy Confidence). Let 〈X, FX〉 ⇒ 〈Y, FY 〉 , a fuzzy association
rule. The fuzzy confidence value of the rule is defined as:

FC〈X,FX〉⇒〈Y,FY 〉 =
FS〈Z,FZ〉
FS〈X,FX〉

where Z = {X,Y } and FZ = {X, Y }.
A fuzzy association rule is considered as interesting if it has enough support and

high confidence value.

3. Proposed System

According with the structure presented in Figure 1 an FLC requires the following
operations: fuzzification, reasoning and defuzzification. In our system these opera-
tions are implemented as follows:
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Figure 2. Fuzzy singleton as fuzzifier

3.1. Fuzzification and Defuzzification. A fuzzification operator transforms crisp
data into fuzzy sets. For instance, x0 ∈ U is fuzzified into x0 (according to Figure 2).

The fuzzy control action C inferred from the fuzzy control system is transformed
into a crisp control action:

z0 = defuzzifier(C),
where defuzzifier is a defuzzification operator. One of the most used defuzzifica-
tion operator, for a discrete fuzzy set C = {(ci, µC(ci)), i = 1, 2, ..., N} is Middle-
of-Maxima: the defuzzified value is defined as mean of all values of the universe of
discourse, having maximal membership grades

z0 =
1
N

N∑

j=1

µC(cj).

3.2. Reasoning. In order to perform reasoning a set of rules are necessary. Typically
rules for fuzzy logic controllers appear in if-then form and are obtained from the
knowledge of experts and operators. As a result, the rules are limited, subjective and
inaccurate.

In our system, these rules are automatically induced as fuzzy association rules
starting from a training set. We can use any algorithm for mining fuzzy association
rules (see [3, 5, 7, 8]) to induce fuzzy association rules. We consider that the training
set is described as a set de transactions DB = {t1, . . . , tn} characterized by a set I =
{i1, . . . , im} of attributes. These attributes are represented by the input and output
variables of fuzzy logic controller. For each attribute (variable) ik, (k = 1, . . . ,m), we
will consider n(k) linguistic values represented as fuzzy sets.

We generate only rules with input attributes in premise and output attributes in
conclusion. The generated rules has the following form:

R : if X1 is A1 and ... and Xr is Ar then Y is B : (FS, FC) (7)

where Xi, i ∈ {1, 2, ..., r} represent the input variables, Y is an output variable, Ai, i ∈
{1, 2, ..., r} and B are linguistic values associated with Xi and Y respectively, and
(FS, FC) are the fuzzy support and the fuzzy confidence of rule.

For a given rule R the input data x = {x1, . . . , xr} generates the firing level

α = T (µX1(x1), . . . , µXr (xr)) (8)

where T is a t-norm.
We partition the generated rules in subsets with same conclusion:

R(B) =





R1 : if X1
1 is A1

1 and ... and X1
r1

is A1
r1

then Y is B : (FS1, FC1)
. . .
RP : if XP

1 is AP
1 and ... and XP

rP
is AP

rP
then Y is B : (FSP , FCP )

(9)
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For each rule subset R(B) = {R1, . . . ,RP } we compute the matching value of
input data x as follows:

MR(B) =
∑P

i=1 αi ∗ FCi∑P
i=1 FCi

(10)

where αi is the firing level of the rule Ri.
In order to compute the output of FLC for the input x, the system selects the

subset of rules R(C) having the maximum matching measure. This subset will be
identified as a single rule having the conclusion C and the firing level α = MR(C).
The inferred conclusion C ′ is given by [9]:

µC′(v) = IL(α, µC(v))

according with Figure 3

Figure 3. Conclusion obtained with Lukasiewicz implication

The crisp value y0 associated to a conclusion C ′ inferred by means of the firing
level α and the conclusion C represented by the fuzzy number (mC ,mC , αC , βC) is
obtained using the Middle-of-Maxima operator [10]:

y0 =
mC + mC + (1− α)(βC − αC)

2
(11)

If the same maximum matching measure is obtained for two or more subsets of
rules, R(C1), . . . ,R(Ck), then we compute the crisp output, yi, for every subsetR(Ci)
and the final crisp output is computed as weighted average:

y0 =
∑k

i=1 yi ∗ FS〈Y,Ci〉∑k
i=1 FS〈Y,Ci〉

(12)

where FS〈Y,Ci〉 is fuzzy support value of fuzzy itemset 〈Y, Ci〉.

4. A Case Study

In order to show how the proposed system works, we consider an example inspired
from [1] concerning washing machines. We consider a FLC with two inputs and one
output. The input variables are degree-of-dirt (DD) and type-of-dirt (TD); the output
variable is washing-time (WT ). We consider the universes of discourse [0, 100] for the
input variables and [0, 60] for the output variable.

For the input variable DD we can take into consideration the following three lin-
guistic variables (fuzzy sets):

FDD = {Small,Medium, Large}
with membership functions defined as the following trapezoidal fuzzy numbers (see
Figure 4(a)):
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(a) The membership function of the input variable degree-of-dirt
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(b) The membership function of the input variable type-of-dirt
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(c) The membership function of the output variable washing-time

Figure 4. Membership functions for Fuzzy Logic Controller

Small = (0, 20, 0, 20)
Medium = (40, 60, 20, 20)
Large = (80, 100, 20, 0)
Similarly, let

FTD = {V eryNotGreasy,NotGreasy, Medium,Greasy, V eryGreasy}
the set of linguistic variables (fuzzy sets) associated with the input variable TD with
membership functions defined as the trapezoidal fuzzy numbers (see Figure 4(b)):
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V eryNotGreasy = (0, 10, 0, 20)
NotGreasy = (20, 30, 10, 10)
Medium = (40, 60, 20, 20)
Greasy = (70, 80, 10, 10)
V eryGreasy = (90, 100, 20, 0).

For the output variable WT we consider the following set of linguistic variables
(fuzzy sets)

FWT = {V eryShort, Short, Medium,Long, V eryLong}.
The membership functions for these linguistic variables are defined as follows (see
Figure 4(c)):

V eryShort = (0, 5, 0, 5)
Short = (10, 15, 10, 5)
Medium = (20, 30, 5, 5)
Long = (35, 50, 5, 10)
V eryLong = (50, 60, 10, 0).

In order to extract the rules used by the inference engine of FLC, we use a modified
implementation of Fuzzy Apriori-T algorithm [3]. This algorithm runs on a training
dataset and keep only rules with support and confidence greater than or equal to
the minimum support threshold and minimum confidence threshold respectively. A
fragment from training dataset is presented in Table 1.

TID DD TD WT

1 10 15 3
2 2 63 31
3 4 73 52
4 89 70 49
5 61 74 73
6 41 22 11

Table 1. Training dataset fragment

The Table 2 contains the fuzzy association rules obtained applying the Fuzzy
Apriori-T algorithm on training dataset. In the following we partition these rules
in subsets with same conclusion and obtain:
R(V eryLong) = {R1}, R(Long) = {R2, R3, R4}, R(Medium) = {R5, R6, R7},
R(Short) = {R8} and R(V eryShort) = {R9}.

Now, we have inference rules for our FLC.
Let consider that we want to compute the output for the following input data

x = (79, 62).
First, we compute the firing level for each rule Ri, i = 1 . . . 9 (see Table 3), using

the t-norm t(x, y) = xy.
After this step, for each partition of rules we compute the matching value of the

input data x using the formula (10) (see Table 4) and select the rule set having the
maximum matching measure, R(Long).

Now, the fuzzy output is computed according to the Figure 3 and the crisp output
obtained using the formula (11) is 43.1763.
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ID Rule Confidence
R1 If DD is Large and TD is Greasy then WT is VeryLong 91,27%
R2 If DD is Medium and TD is Greasy then WT is Long 92,06%
R3 If DD is Small and TD is Greasy then WT is Long 91,83%
R4 If DD is Large and TD is Medium then WT is Long 83,54%
R5 If DD is Medium and TD is Medium then WT is Medium 84,52%
R6 If DD is Small and TD is Medium then WT is Medium 92,11%
R7 If DD is Large and TD is NotGreasy then WT is Medium 92,89%
R8 If DD is Medium and TD is NotGreasy then WT is Short 94,94%
R9 If DD is Small and TD is NotGreasy then WT is VeryShort 74,65%

Table 2. Fuzzy Association Rules

Rule Firing Level (α)
R1 0,1900
R2 0,0100
R3 0,0000
R4 0,8550
R5 0,0450
R6 0,0000
R7 0,0000
R8 0,0000
R9 0,0000

Table 3. Firing Level for input x

Rule Set Matching Level
R(V eryLong) 0,1900
R(Long) 0,2705
R(Medium) 0,01417
R(Short) 0,0000
R(V eryShort) 0,0000

Table 4. Matching Level for input x

5. Conclusion

This paper presents a fuzzy controller model of Mamdani type. While the standard
Mamdani controller activate a set of rules with different conclusions, our model acti-
vate a set of rules having the same conclusion; thus we obtain a fuzzy set as output
(like as in Generalized Modus Ponens reasoning), which can be defuzzified in order
to obtain a crisp value. Moreover, the rules used by Fuzzy Inference Engine are gen-
erated using Data Mining techniques. In the future we intend to extend this version
in order to work with crisp data, intervals and/or linguistic terms as inputs.
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