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Projection Algorithm for Split Feasibility Problem

Cristina Pop̂ırlan

Abstract. The split feasibility problem has many applications in various fields of science
and technology (for example solving systems of linear equalities and/or inequalities). The
class of methods, generally called projection methods, has witnessed great progress in recent
years and the algorithms have been applied with success in different areas. The paper reviews
algorithmic structures and specific algorithms for the split feasibility problem.
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1. Introduction

Let H be a real Hilbert space and C ⊂ H be a closed and convex subset. In general
the optimization problems have the form:

find an element x∗ ∈ C which satisfies some additional condition leading to a
solution set being a closed and convex subset.

Examples for this optimization problem are: the convex feasibility problem (studied
by Bauschke and Borwein in 1996, [1]), the split feasibility problem (introduced by
Censor and Elfving in 1994, [4]). Iterative methods, which try to solve such problems
consist very often in adaptive construction of the operator T : C → H with FixT the
solution of the problem.

Classical iterative method used to solve optimization problem is Mann iteration
process:

xk+1 = (1− tk)xk + tkT (xk)

where tk is a sequence of real numbers satisfying some properties (tk ∈ (0, 1)), usually
called the control sequence (or the weight factor).

Starting from the iterative methods we have projection algorithm use to solve this
type of optimization problem. Projection algorithms employ projections onto convex
sets in various ways. This class of algorithms has a great progress in recent years
and its algorithms have been applied with success in different problems. Projections
onto sets are used in a wide variety of methods in optimization problems. Projection
methods are iterative algorithms that use projections onto sets.

A projection algorithm reaches its goal, related to the whole family of sets, by
performing projections onto the individual sets. Projection algorithms employ pro-
jections onto convex sets in various ways. They may use different kinds of projections
and, sometimes, even use different projections within the same algorithm.

Received June 25, 2010. Revision received August 17, 2010.

52



PROJECTION ALGORITHM FOR SFP 53

2. Projection algorithm for the split feasibility problem

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2.
The split feasibility problem is formulated as finding a point x satisfying the

property:
x ∈ C, Ax ∈ Q,

where A : H1 → H2 is a bounded linear operator.
The split feasibility problem was introduced by Censor and Elfving (1994) ([4]) and

was studied by Byrne (2002, 2004) ([3]). It attracts many authors attention due to
its application in signal processing. The split feasibility problem has many practical
applications and that is way various algorithms have been invented to solve it ([2]).
One of thees algorithms was given by Byrne [3] who introduced the CQ algorithm.

Let’s consider the initial point x0 ∈ H1 arbitrarily, and define (xn)n≥0 recursively
as

xn+1 = PC(I − γA∗(I − PQ)A)xn (1)
where 0 < γ < 2/ρ(A ∗A) and where PC denotes the projector onto C and ρ(A ∗A)

is the spectral radius of the self-adjoint operator A ∗A.
Then the sequence (xn)n≥0 generated by the CQ algorithm converges strongly

to a solution of the split feasibility problem whenever H1 is finite-dimensional and
whenever there exists a solution to the split feasibility problem.

It can be observed that the CQ algorithm is a particular case of the Mann iteration
for approximating fixed points of nonexpansive mappings.

Take an initial point x0 ∈ C arbitrarily, and construct (xn)n≥0 recursively as
xn+1=tnxn + (1− tn)Txn,

where tn ∈ [0, 1] satisfying
∞∑

n=0
tn(1− tn) = ∞. If T is nonexpansive with a nonempty

fixed point set, then the sequence (xn)n≥0 generated by the Mann iteration converges
weakly to a fixed point of T. It is known that Mann algorithm is in general not
strongly convergent ([6]) and neither is the CQ algorithm.

So, the CQ algorithm need not necessarily converge strongly in the case when H1

is infinite dimensional.

Definition 2.1. The mapping T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H1.

Definition 2.2. The mapping T is said to be contractive if there exist 0< α < 1
such that

‖Tx− Ty‖ ≤α‖x− y‖, ∀x, y ∈ H1.

Remark 2.1. Obviously, contractions are nonexpansive, and if T is nonexpansive,
then I - T is monotone.

Lemma 2.1. Let C be a nonempty closed convex subset of H1 and T : C → C a
nonexpansive mapping with nonempty fix set (Fix(T ) 6= ∅). If (xn)n≥1 is a sequence
in C weakly converging to x and if the nsequence ((I − T )xn converges strongly to y,
then (I − T )x = y. In particular, if y = 0, then x∈ Fix(T ).

Let PC be the projection from H1 onto a nonempty closed convex subset C of H1;
usually defined as:
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PCx = min
y∈C

‖x− y‖, x ∈ H1

For every c ∈ C we have

〈x− PCx, c− PCx〉≤ 0,

so PC is nonexpansive.
In order to use nonexpasive mappings we can approximate them by using contrac-

tions. We know that the mapping I − γA∗(I − PQ)A is nonexpansive.
Consider x0 arbitrary chosen

Consider a sequence {αn}n≥0 ∈ (0, 1)
xn+1 = PC [(1− αn)(I − γA∗(I − PQ)A)]xn

The sequence {αn}n≥0 must be considered such that
(1) lim

n→∞
αn=0;

(2)
∞∑

n=0
αn = ∞;

(3) either
∞∑

n=0
|αn+1 − αn| < ∞ or lim

n→∞
|αn+1−αn|

αn
=0

Remark 2.2. Usually the sequence{αn} is considered αn = 1
(1+n) for all n≥ 0.

Theorem 2.1. [7] The sequence {xn}n≥0 generated by algorithm CQ converges strongly
to the minimum-norm solution x̃ of the split feasibility problem.

3. Experimental test

Let’s consider the following split feasibility problem:
Let C ⊂ Rn, Q ⊂ Rm be nonempty, closed convex sets, and A a real matrix,

A ∈ Rm×n. Find x ∈ C so that Ax ∈ Q if such an element exists.
In order to use the CQ algorithm we must find a fix point of the following operator

PC(I − γA∗(I − PQ)A)xn, where γ > 0.
In general, the split feasibility problem considered in real space has the form:

minimize
1
2
||PQ(Ax)−Ax||2.

The convexly constrained linear problem requires to solve the constrained linear
system:

Ax = b
x ∈ C,

where b∈ Q.
This problem can be solved by finding a point that satisfies the relation:

min
x∈C

‖Ax− b‖2 + α‖x‖2,
where α > 0 is a parameter that influence the number of iteration calculated until a
solution of the split feasibility problem is found.

To solve the split feasibility problem we consider the next algorithm:
So the split feasibility problem is equivalent with the following minimization prob-

lem
min
x∈C

‖(I − PQ)Ax‖.
From the last relations we can observe that the split feasibility problem for a real

space is equivalent with finding a point that minimize the relation:
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Algorithm 1 Modified CQ algorithm for the split feasibility problem

Consider the set C nonempty, closed and convex, C ⊂ Rn

Consider the set Q nonempty, closed and convex, Q ⊂ Rm

Consider b ∈ Q
Consider the matrix A, A ∈ Rm×n

Consider a real number α ∈ (0, 1)
Find a point from C that minimize the relation:

‖Ax− b‖2 + α‖x‖2

‖(I − PQ)Ax‖2+α‖x‖2,
where α > 0 is the regularization parameter.

If we note the point that satisfies the previous relation by x∗, then we have:

x∗ := min
x∈C

{‖(I − PQAx)‖2 + α‖x‖2}

Theorem 3.1. [7] Let x∗ be given by the relation x∗ := min
x∈C

{‖(I − PQAx)‖2 + α‖x‖2}.
Then x∗ converges strongly as α → 0 to the minimum-norm solution x̃ of the split fea-
sibility problem.

In order to solve the convex feasibility problem we have the following algorithm:

Algorithm 2 Modified CQ algorithm

Consider the set C nonempty, closed and convex, C ⊂ Rn

Consider the set Q nonempty, closed and convex, Q ⊂ Rm

Consider b ∈ Q
Consider the matrix A, A ∈ Rm×n

Consider a real number α ∈ (0, 1)
Determine the point from C so that the relation is minimized:

‖(I − PQAx)‖2 + α‖x‖2

The general CQ algorithm for the split feasibility problem, and the one that show
us how the regularization factor influence the number of iterations calculated until a
solution of the problem is found, is:

This algorithm permits us to analyze how the regularization factor α influence the
number of points calculated until the solution of the convex feasibility problem is
determinate.

Example 3.1. Let’s consider the following system:





x + 2y + 3 = 0
2x + 3y + 6 = 0
−4x + y + 6 = 0
−2x− 7y + 1 = 0
x− 3y + 2 = 0
−5x + y + 7 = 0

The results obtained for this example are presented in the table 1
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Algorithm 3 CQ algorithm

Consider the set C nonempty, closed and convex, C ⊂ Rn

Consider the set Q nonempty, closed and convex, Q ⊂ Rm

Consider b ∈ Q
Consider the matrix A, A ∈ Rm×n

Let x0 ∈ C be an initial point
Consider a real number α ∈ (0, 1)
Calculate ρ(A∗A)
Take γ ∈ (0, 2

ρ(A∗A) )
Determine the operator I − γA∗(I − PQ)A
n = 0
while xn is not a solution for the split feasibility problem do

Calculate (I − γA∗(I − PQ)A)xn

xn+1 = PC(I − γA∗(I − PQ)A)xn

n = n + 1
end while

Table 1. The number of iterations calculated for the starting point (1,4)

initial approximation regularization factor number of iterations
(1,1) 0.1 2
(1,1) 0.2 3
(1,1) 0.3 19
(1,1) 0.4 25
(1,1) 0.5 67
(1,1) 0.6 83
(1,1) 0.7 106
(1,1) 0.8 143
(1,1) 0.9 168

Example 3.2. Let’s consider a linear system with m = 8 equations and n = 2
unknowns. 




2x + 4y + 1 = 0
2x− 3y + 3 = 0
4x− y + 2 = 0
−2x + 7y + 1 = 0
−2x− 3y + 2 = 0
2x− 7y + 1 = 0
3x− 3y + 2 = 0
5x + y + 2 = 0

For different starting points, we observe that the regularization factor α influence
the number of iterations calculated. For small regularization factor (closer to 0) the
number of iterations is very small, but when the regularization factor is increasing the
number of iterations is also getting bigger.

Applying this algorithm for a lot of numerical data we can analyze the influence of
the regularization factor. For different n and m all the numerical results give us the
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Table 2. The number of iterations calculated for the starting point (1,4)

initial approximation regularization factor number of iterations
(1,4) 0.1 5
(1,4) 0.2 7
(1,4) 0.3 16
(1,4) 0.4 31
(1,4) 0.5 75
(1,4) 0.6 153
(1,4) 0.7 182
(1,4) 0.8 218
(1,4) 0.9 234

Figure 1. The relation between the regularization factor and the
iterations number

same conclusion: an optimal regularization factor is the one that is very small (closer
to 0).

4. Conclusion

The projection algorithm used in this paper to solve the split feasibility problem is
the CQ algorithm. The paper present the algorithm and analyze the influence of the
regularization factor on the number of iterations calculated until the solution of the
split feasibility problem is computed. For the same algorithm is interesting to find
how the parameter γ ∈ (0, 2

ρ(A∗A) ) influence the number of iterations and if there is
a relation between the regularization factor and the parameter γ.
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