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Pressure field of acoustic sensor of order q

Ana-Maria Chiselev and Luminita Moraru

Abstract. The order of sensors has been defined related to the order of the Taylor series
approximation of the pressure field at that point. Following this definition, the pressure,
vector, and sensor is of order zero, one, and two, respectively. For this theoretical study,
a multi-channel three-dimensional spatial filter is derived for a directional acoustic sensor of
arbitrary order. There are found formulas for pressure field and beam pattern of the directional
acoustic sensor.
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1. Introduction

There is a qualitative relationship between the Taylor series expansion of a pressure
field and a vector sensor. Cray and Nuttall [2] utilized the four physical quantities
measured by a vector sensor as inputs to a multi-channel filter and demonstrated
that a single vector sensor can perform spatial filtering or beamforming. There are
studies about the factors that lead to the improved direction-of arrival estimation
performance of a vector sensor-array as compared to the pressure sensor array [4].

The Taylor series and the multi-channel filtering concept introduce and investigate
the acoustic dyadic sensor [6]. This sensor arises from the second-order approximation
of the Taylor series expansion of the pressure field. It was shown that a dyadic sensor
can produce a beamwidth and a maximum array gain of 65◦ and 9.5 dB as compared
to 105◦ and 6 dB for a vector sensor.

Cray [2] presented theory for acoustic receivers of order greater than two. It was
pointed out that, although further improvement in directionality is achieved by high-
order directional sensors, these sensors can be significantly more sensitive to non-
acoustic noise sources. In spite of practical limitations, it was demonstrated that a
super-directive array can provide substantial improvement over a conventional array
in particular instances.

2. Acoustic Sensor of Order q

It can be define an acoustic sensor located at a point (x, y, z) in three dimensional
space. To determine the pressure field at any point (x, y, z) we use the expansion of
the Taylor series of the pressure field about the point (x, y, z), we assume the sensor
is located at (0, 0, 0) and we have
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P (x, y, z, t) =
∞∑

m=0

∞∑
n=0

∞∑
p=0

Pm,n,p(t)
xmynzp

m!n!p!
(1)

where

Pm,n,p =
∂m+n+pP (x, y, z, t)

∂xm∂yn∂zp
| x = 0, y = 0, z = 0 (2)

are the various spatial partial derivatives of the pressure evaluated at the point
(0, 0, 0). The above equations show that the sensor must measure at the origin the
pressure and all of its spatial partial derivatives. Clearly, this is not possible in
practice. More practical sensors can be defined by truncating the three-dimensional
Taylor series. In this order, it is useful to express the sum (1) in the form

P (x, y, z, t) =
∞∑

d=0

Pd(x, y, z, t)
d!

(3)

where

P (x, y, z, t) =
∑

m+n+p+d=0

Pm,n,p(t)
(

d
m, n, p

)
xmynzp (4)

is an homogeneous polynomial of degree d in the variables x, y, z and
(

d
m, n, p

)
=

d!
m!n!p! is a multinomial coefficient [4]. A generalized acoustic sensor of order q is
defined as

P̂ (x, y, z, t) =
q∑

d=0

Pd(x, y, z, t)
d!

. (5)

The approximation to the pressure field given by Eq. (5) is a multivariable polyno-
mial in x, y, z of degree q. When q = 0, Eq. (5) defines a generalized acoustic sensor
of order 0, which is the ordinary acoustic pressure sensor. If q = 1, Eq. (5) defines
a generalized acoustic sensor of order one [3]. This sensor is the pressure gradient
or vector sensor. The vector sensor measures the pressure and the gradient of the
pressure. When q = 2, Eq. (5) defines a generalized acoustic sensor of order two.
This sensor is the acoustic dyadic sensor. The dyadic sensor measures the pressure,
the pressure gradient, and the Hessian of the pressure.

To study the directionality of acoustic sensor, we consider a plane wave (Fig. 1)
propagating towards the origin of a rectangular coordinate system.

Located at the origin is an acoustic sensor of order q. The pressure of the planar
wave front can be written

P (x, y, z, t) = P (t +
ar

c
) = P (t +

axx + ayy + azz

c
) (6)

ax = sin φ cos θ, ay = sin φ sin θ, az = cos φ. (7)
Equation (2) becomes

Pm,n,p(t) =
am

x an
yap

z

cm+n+p
· ∂m+n+pP (t)

∂tm+n+p
. (8)

The temporal Fourier transform of Eq. (4) is
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Figure 1. Plane wave propagating towards the origin of a rectan-
gular coordinate system.

Pm,n,p(ω) =
am

x an
yap

z

cm+n+p
(jω)m+n+pP (ω). (9)

Taking the temporal Fourier transform of Eq. (4) results in

Pd(x, y, z, ω) =
∑

m+n+p=d

Pm,n,p(ω)
(

d
m, n, p

)
xmynzp (10)

Pd(x, y, z, ω) = (
jω

c
)dP (ω)×

∑

m+n+p=d

(
d

m, n, p

)
(axx)m(ayy)n(azz)p. (11)

Applying the multinomial formula to the summation in Eq. (11) leads to

Pd(x, y, z, ω) = (
jω

c
)d(axx + ayy + azz)dP (ω) (12)

Pd(a, r) =
(

jω

c
)d(a · r)dP (ω) (13)

And we have

P̂ (r, ω) =
q∑

d=0

Pd(r, ω)
d!

. (14)

Equation (14) represents the pressure-field extrapolation in the frequency domain
made by a generalized acoustic sensor of order q. As the value of q increases, the
accuracy of the extrapolation increases. Consider now a more general form of Eq.
(14)

P̂b(r, ω) =
q∑

d=0

Bd(ω)Pd(r, ω) (15)

where the various Bd(ω) are to be interpreted as weights. Eq. (15) may be inter-
preted as the temporal Fourier transform of the output of a multi-channel filter when
the inputs are the derivatives Pm,n,p(t) defined by Eq. (2). When each Bd(ω) is equal
to 1

d! , the multi-channel filter is an extrapolator. The vector r specifies the point at
which the extrapolation is made. Consider the following values for the weights:
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Bd(ω) = bd(
c

jω
)d, d = 0, 1, 2, · · · (16)

For Eq.(15) we have

P̂b(r, ω) = P (ω)g(a · r) (17)

g(a · r) =
q∑

d=0

bd(a · r)d. (18)

Since Eq. (17) now corresponds to a multi-channel spatial filter, the vector r will
be replaced by

as = sin φs cos θsx̂ + sin φs sin θsŷ + cos φsẑ (19)

g(a · as) = g(φ, θ) =
q∑

d=0

bd(a · as)d (20)

where

a · as = sin φ sin φs cos(θ − θs) + cos φ cosφs). (21)
The function given by Eq. (20) is the beam pattern of the multi-channel filter, or

equivalently, the beam pattern of the associated directional acoustic sensor of order
q. The basic structural equations for the multi-channel filter are

P̂b(φ, θ, ω) =
q∑

d=0

Bd(ω)Pd(φ, θ, ω) (22)

Pd(φ, θ, ω) =
∑

m+n+p=d

fm,n,pPm,n,p(ω) (23)

fm,n,p =
(

d
m, n, p

)
sinm+n(φs) cosp(φs) cosm(θs) sinn(θs). (24)

Equation (22) is the same as Eq. (15) with the exception that the dependence
on the angles φ and θ is made explicit. There are two sets of coefficients associated
with the multi-channel filter, namely, fm,n,p and bd. The fm,n,p coefficients, which
are computed from Eq. (24), determine the angles φs and bd at which the magnitude
of the beam pattern g(φ, θ) attains its maximum value. The coefficients bd are to be
chosen so as to achieve some optimality condition such as maximum array gain.

The input P (t) is the temporal variation of the pressure at the acoustic sensor. The
dependence of the output on φ and θ is explicitly determined by the beam pattern
function g(φ, θ). The beam pattern for the acoustic sensor of order q is given by Eq.
(20). It can be express the beam pattern in the alternative forms:

gu(u) =
q∑

d=0

bd · ud (25)

gΨ(Ψ) =
q∑

d=0

bd cosd Ψ (26)

where
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Figure 2. The angle ψ between the vector ns and the unit vector a

u = a · ns. (27)
Equations (25) and (26) represent the beam pattern in u space and Ψ space, re-

spectively. The variable Ψ, which is illustrated in Fig. 2, is the angle between the
unit vectors a and ns. The directional acoustic sensor is has the direction indicated
by the steering vector ns.

The unit vector a is collinear with the wave number vector k (Fig. 1). The ranges
of the variables u and Ψ are −1 ≤ u ≤ 1 and 0 ≤ Ψ ≤ π.

The beam pattern of the directional acoustic sensor has been expressed in the three
forms defined by Eqs. (20), (25), and (26).

Correspondingly, the beam power pattern (the square of the beam pattern), has
the three forms [4, 5]:

B′(φ, θ) = g2(φ, θ) =
2q∑

n=0

cn(a · ns)n (28)

B′
u(u) = g2

u(u) =
2q∑

n=0

cnun (29)

B′
Ψ(Ψ) = g2

Ψ(Ψ) =
2q∑

n=0

cn cosn Ψ (30)

with

cn =
p∑

m=0

bp−mbm, n = 0, 1, 2 · · · , 2q. (31)

If u = 1 in Eq.(25)

q∑

d=1

bd = 1 (32)

then the value of the beam power pattern at u = 1 is unity, B′
u(1) = 1. In the

design of the multi-channel filter, which gives the acoustic sensor its directionality, it
will be assumed that the filter coefficients bd satisfy the constraint specified by Eq.
(32). The filter coefficients must be selected such that the beam power pattern B′

u(u)
have values generally less than unity when u 6= 1 . One design criterion that achieves
this objective is the maximization of the array gain.
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The array gain of a spatial filter is defined as the ratio of the noise power out of an
omni-directional device to the noise power out of the spatial filter (directional sensor).

Burdic [1] defines the array gain (expressed in decibel) as

AG = 10 log

∫ 2

0
i
∫ π

0
|N(φ, θ)|2 sin φdφdθ∫ 2

0
i
∫ π

0
|N(φ, θ)|2B′(φ, θ) sin φdφdθ

(33)

|N(φ, θ)|2 is the noise field angular intensity distribution. If the noise field is
isotropic, then φ and θ are constant. The array gain is

AG = − log I (34)
where

I =
1
4π

∫ 2π

0

∫ π

0

B′(φ, θ) sin φdφdθ (35)

The quantity I represents the normalized noise power out of the spatial filter. The
power is normalized with respect to the noise power out of an omni-directional sensor.

3. Conclusion

In this paper we presented formula for the pressure-field extrapolation in the fre-
quency domain made by a generalized acoustic sensor of order q. With this formula
it can be express the value of beam power pattern of an acoustic sensor of order q.
Studying sensors of order 0, 1, 2 and their factors, this study can improve directional
of arrival performance of a vector-sensor array as compared to a pressure sensor array.
For future work, we propose finding explicit formulas for first, second and third order
directional acoustic sensor.
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