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About the precision in Jensen-Steffensen inequality

Flavia-Corina Mitroi

Abstract. The main objective of the present paper is to estimate the precision of Jensen-
Steffensen inequality. We obtain results that complement, generalize, unify and agree with
some of the previously known results in this area.
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1. Introduction

In the paper [4] S. Furuichi estimates the difference between arithmetic and geo-
metric means by the following formula to which we will refer as Furuichi’s inequality.

Proposition 1.1. We consider a1, a2, ..., an ≥ 0 and p1, p2, ..., pn ≥ 0 with
∑n

i=1 pi =
1 and λ = min {p1, p2, ..., pn} . Then we have

n∑

i=1

piai −
n∏

i=1

api

i ≥ nλ

(∑n
i=1 ai

n
−

n∏

i=1

a
1/n
i

)
.

If we assume that λ is attained by only one weight pk, then we have equality if and
only if a1 = a2 = ... = an.

The aim of this paper is to prove a much more general result concerning the
precision in Jensen-Steffensen inequality.

2. Preliminary notions

For the convenience of the reader we briefly recall few definitions and theorems:

Definition 2.1. Let I, J be two intervals and ϕ : I → J a continuous, increasing
and bijective function. The weighted quasi-arithmetic mean M[ϕ] of a nonempty set
of data x = (x1, x2, ..., xn) ∈ In with weights p = (p1, p2, ..., pn) , where pi ≥ 0,∑n

i=1 pi = 1, is defined by the formula

M[ϕ] (x;p) = ϕ−1

(
n∑

i=1

piϕ (xi)

)
.
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Particularly the weighted arithmetic mean A (x;p) =
∑n

i=1 pixi corresponds to
ϕ (x) = x, and the weighted geometric mean G (x;p) =

∏n
i=1 xpi

i corresponds to
ϕ (x) = log x.

Definition 2.2. We consider two continuous, bijective and increasing functions ϕ :
I → I, ψ : J → J . A function f : I → J is called (M[ϕ],M[ψ]) - convex if for every
two points a, b ∈ I and all λ ∈ [0, 1]

f
(
ϕ−1 ((1− λ)ϕ (a) + λϕ (b))

) ≤ ψ−1 ((1− λ) ψ (f (a)) + λψ (f (b))) .

The function is called strictly (M[ϕ],M[ψ]) - convex if the inequality is strict for
all a 6= b and λ ∈ (0, 1) .

According to the definition, we observe some particular cases, depending on which
type of mean, arithmetic (A) or geometric (G), it is given on its domain and codomain
(see also C.P. Niculescu [5]):
• (A,A)-convex functions (the usual convex functions)
• (A,G)-convex functions (the log-convex functions)
• (G,A)-convex functions
• (G,G)-convex functions (the multiplicatively convex functions).
If f : I ⊂ (0,∞) → (0,∞) is a

(
M[ϕ],M[ψ]

)− convex function, then g := ψ◦f ◦ϕ−1

is convex.
A basic result concerning the convex functions is Jensen’s inequality. Its formal

statement is as follows:

Proposition 2.1 (Jensen’s inequality). A real valued function f defined on I is
convex if and only if for all x1, x2, ..., xn ∈ I and p1, p2, ..., pn ∈ (0, 1) with

∑n
i=1 pi = 1

we have

f

(
n∑

i=1

pixi

)
≤

n∑

i=1

pif (xi) .

If f is strictly convex then the equality holds if and only if x1 = x2 = ... = xn.

It is well known that the assumption “p1, p2, ..., pn ∈ [0, 1]”can be slightly relaxed
and the result is known as the Jensen-Steffensen inequality:

Proposition 2.2 (Jensen-Steffensen inequality). We consider x1, x2, ..., xn ∈ I, x1 ≥
x2 ≥ ... ≥ xn and the real numbers w1, w2, ..., wn such that the partial sums Wk =∑k

i=1 wi, k ∈ {1, 2, ..., n} , verify the relations:

0 ≤ Wk ≤ Wn, for all k ∈ {1, 2, ..., n− 1} , (JS)

Wn > 0.

Then every convex function f defined on I verifies the inequality:

f

(
1

Wn

n∑

i=1

wixi

)
≤ 1

Wn

n∑

i=1

wif (xi) . (1)

If f is strictly convex then the inequality is strict unless x1 = x2 = ... = xn.
(See C.P. Niculescu and L.-E. Persson [6, Theorem 1.5.6] for details.)

The left term of the Jensen-Steffensen inequality is well defined. We can easily
deduce this from the following lemma.



ABOUT THE PRECISION IN JENSEN-STEFFENSEN INEQUALITY 75

Lemma 2.1. Let ϕ : I → J be a continuous, increasing and bijective function.
We consider x = (x1, x2, ..., xn) ∈ In such that x1 ≥ x2 ≥ ... ≥ xn and w =
(w1, w2, ..., wn) an n -tuple of real numbers that satisfies the conditions (JS). Then

x̄ = ϕ−1

(
1

Wn

n∑

i=1

wiϕ (xi)

)

verifies that x1 ≥ x̄ ≥ xn.

Proof. Since we have,

Wn (ϕ (x1)− ϕ (x̄)) =
n∑

i=1

wi [ϕ (x1)− ϕ (xi)]

=
n−1∑

j=1

(ϕ (xj)− ϕ (xj+1)) (Wn −Wj) ≥ 0

and

Wn (ϕ (xn)− ϕ (x̄)) =
n∑

i=1

wi [ϕ (xi)− ϕ (xn)]

=
n−1∑

j=1

(ϕ (xj)− ϕ (xj+1)) Wj ≥ 0,

we deduce ϕ (x1) ≥ ϕ (x̄) ≥ ϕ (xn) . Because ϕ is increasing, we may say that x1 ≥
x̄ ≥ xn, which is the required result. ¤

According to Lemma 2.1, if x = (x1, x2, ..., xn) denote a vector from In, then x̄ ∈ I.
Let f : I ⊂ (0,∞) → (0,∞) be a

(
M[ϕ], A

)−convex function. Then f ◦ ϕ−1 is
convex and verifies the Jensen-Steffensen inequality; this means that:

(
f ◦ ϕ−1

)
(

1
Wn

n∑

i=1

wiϕ (xi)

)
≤ 1

Wn

n∑

i=1

wi

(
f ◦ ϕ−1

)
(xi) .

Let u =
(

1
n , 1

n , ..., 1
n

)
denote the uniform distribution vector. We denote

T (f,w,x) =
1

Wn

n∑

i=1

wif (xi)− f

(
ϕ−1

(
1

Wn

n∑

i=1

wiϕ (xi)

))
.

Definition 2.3. A Steffensen-Popoviciu measure on [a, b] is any signed Borel measure
µ such that

µ ([a, b]) > 0 and
∫ b

a

f+ (x) dµ (x) ≥ 0

for all convex functions f on [a, b].

3. Main results

3.1. The discrete case. Now we can state and prove our main result:

Theorem 3.1. We denote Pmax = maxi{pi}
Pn

, where p = (p1, p2, ..., pn) is an n-
tuple of real numbers that satisfies the conditions (JS) and Pn =

∑n
i=1 pi. Under the

assumptions of the Lemma 2.1, if f is
(
M[ϕ], A

)−convex on I, then

(0 ≤)T (f,p,x) ≤ nPmaxT (f,u,x) .
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We assume that Pmax is attained by only one weight and that f is strictly(
M[ϕ], A

)−convex. Then we have equality if and only if x1 = x2 = ... = xn.

Proof. Let j ∈ {1, 2, .., n} be an index such that Pmax = pj

Pn
> 0. Hence, after we

divide the inequality by nPmax, we must prove that
n∑

i=1

pj − pi

npj
f (xi) +

Pn

npj
f

(
ϕ−1

(
1

Pn

n∑

i=1

piϕ (xi)

))
≥ f

(
M[ϕ] (x;u)

)
.

For this purpose, we take wi := pj−pi

npj
≥ 0 for i = 1, ..., n and wn+1 := Pn

npj
> 0.

Observe that Wn+1 = Pn

npj
+

∑n
i=1

pj−pi

npj
= 1.

The left side of this inequality can be developed as follows, using Jensen’s inequal-
ity:

n∑

i=1

pj − pi

npj
f (xi) +

Pn

npj
f

(
ϕ−1

(
1

Pn

n∑

i=1

piϕ (xi)

))

=
n∑

i=1

wif (xi) + wn+1f

(
ϕ−1

(
1

Pn

n∑

i=1

piϕ (xi)

))

≥ f

(
ϕ−1

(
n∑

i=1

wiϕ (xi) + wn+1
1

Pn

n∑

i=1

piϕ (xi)

))

= f
(
M[ϕ] (x;u)

)
.

The equality case is a simple consequence of Jensen-Steffennsen inequality. ¤

We are in position to establish bounds for T (f,p,x) under the Jensen-Steffensen
conditions:

Theorem 3.2. We consider x1 ≥ x2 ≥ ... ≥ xn in I, p1, p2, ..., pn and q1, q2, ..., qn real
numbers such that

0 ≤ Pk ≤ 1, for all k ∈ {1, 2, ..n− 1} , Pn = 1, (2)
0 < Qk < 1, for all k ∈ {1, 2, ..n− 1} , Qn = 1,

where Pk =
∑k

i=1 pi and Qk =
∑k

i=1 qi, k = 1, ..., n. We denote

m̃ = min
k=1..n−1

{
Pk

Qk
;
1− Pk

1−Qk

}
and M̃ = max

k=1..n−1

{
Pk

Qk
;
1− Pk

1−Qk

}
.

If f is
(
M[ϕ], A

)−convex on I, then there holds the relation:

m̃T (f,q,x) ≤ T (f,p,x) ≤ M̃T (f,q,x) . (3)

Proof. We prove only the first inequality (the second one has a similar approach).
Let m be a nonnegative real constant such that

m ≥ 0, Pk −mQk ≥ 0, (1− Pk)−m (1−Qk) ≥ 0,

for all k = 1, ..., n− 1. We have

(1− Pk)−m (1−Qk) = 1−m− (Pk −mQk) ≥ 0.

Then, obviously,
1−m ≥ Pk −mQk ≥ 0.
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It follows that it has to be 1 − m =
∑n

i=1 (pi −mqi) ≥ 0. Clearly, under our
assumptions we have

m ≤ min
k=1..n−1

{
Pk

Qk
;
1− Pk

1−Qk

}
= m̃.

The inequality we intend to prove is

mT (f,q,x) ≤ T (f,p,x) . (4)

This means

f

(
ϕ−1

(
n∑

i=1

piϕ (xi)

))
≤

n∑

i=1

(pi −mqi) f (xi) + mf

(
ϕ−1

(
n∑

i=1

qiϕ (xi)

))
.

Via Lemma 2.1 we conclude that there is an integer k, 2 ≤ k ≤ n such that

xk−1 ≥ ϕ−1

(
n∑

i=1

qiϕ (xi)

)
≥ xk. (5)

We apply the Jensen-Steffensen inequality for the monotonically decreasing (n + 1)-
tuple y = (y1, ..., yn+1)

yi =





xi, for i = 1, .., k − 1
ϕ−1 (

∑n
i=1 qiϕ (xi)) , for i = k

xi−1, for i = k + 1, .., n + 1

and

wi =





pi −mqi, for i = 1, .., k − 1
m, for i = k

pi−1 −mqi−1, for i = k + 1, .., n + 1
.

It is clear that w satisfies the conditions JS:

Wj =
{

Pj −mQj ≥ 0 for j = 1, .., k − 1
Pj−1 −mQj−1 + m ≥ 0 for j = k, .., n

Wn+1 =
n∑

i=1

(pi −mqi) + m = 1,

Wn+1 −Wj =
{

(1− Pj)−m (1−Qj) + m for j = 1, .., k − 1
(1− Pj−1)−m (1−Qj−1) for j = k, .., n

≥ 0

A simple computation leads us to the conclusion that the inequality (4) is true, as
claimed:

n∑

i=1

(pi −mqi) f (xi) + mf

(
ϕ−1

(
n∑

i=1

qiϕ (xi)

))

≥ f

(
ϕ−1

(
n∑

i=1

(pi −mqi) ϕ (xi) + m

n∑

i=1

qiϕ (xi)

))

= f

(
ϕ−1

(
n∑

i=1

piϕ (xi)

))
.

This completes the proof of the right side inequality. ¤

We may easily observe that T (f,p,x) does not change if we simultaneously per-
mute the components of p and x. We can put the condition x1 ≥ x2 ≥ ... ≥ xn to
the hypothesis without loss of generality, since this will not restrict the values, only
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will put them in a different order. The second inequality of the following theorem is a
particular case of the Theorem 3.1, namely for a probability vector p = (p1, p2, ..., pn).

Theorem 3.3. We consider p = (p1, p2, ..., pn) such that pi > 0,
∑n

i=1 pi = 1. Then
we have

npminT (f,u,x) ≤ T (f,p,x) ≤ npmaxT (f,u,x) ,

where
pmin = min {p1, p2, ..., pn} and pmax = max {p1, p2, ..., pn} .

We assume that each value pmin and pmax is attained by only one weight and that f is
strictly

(
M[ϕ], A

)−convex. Then we have equality if and only if x1 = x2 = ... = xn.

Proof. The first inequality:
Since pi > 0, i = 1, .., n, we have pmin > 0. Let j ∈ {1, 2, .., n} be an index such

that pmin = pj .
Then we may notice that npj +

∑n
i=1 (pi − pj) = 1. Then

n∑

i=1

pif (xi)− npjT (f,u,x) =
n∑

i=1

(pi − pj) f (xi) + npjf
(
M[ϕ] (x;u)

)

≥ f

(
ϕ−1

(
pj

n∑

i=1

ϕ (xi) +
n∑

i=1

(pi − pj)ϕ (xi)

))
= f

(
M[ϕ] (x;p)

)
.

The proof of the second inequality is completely similar to that of Theorem 3.1 and,
hence, the details are omitted.

The equality case:
Since pmin 6= pmax, if f is strictly

(
M[ϕ], A

)−convex then we have equality if and
only if T (f,u,x) = 0. This yields x1 = x2 = ... = xn, thus the proof is completed. ¤

For ϕ (x) = log x and f (x) = x the left side of the inequality of this theorem
coincides with Furuichi’s inequality and the right side of it has been proved recently
by J.M. Aldaz [1].

The following corollary is useful in practice.

Corollary 3.1. For i = 1, ..., n, we consider pi > 0 with
∑n

i=1 pi = 1.
i) If f is a convex function then

npmin

(
1
n

n∑

i=1

f (xi)− f

(
1
n

n∑

i=1

xi

))

≤
n∑

i=1

pif (xi)− f

(
n∑

i=1

pif (xi)

)
≤ npmax

(
1
n

n∑

i=1

f (xi)− f

(
1
n

n∑

i=1

xi

))

ii) If f is a (GA) -convex function then

npmin

(
1
n

n∑

i=1

f (xi)− f

(
n∏

i=1

x
1/n
i

))

≤
n∑

i=1

pif (xi)− f

(
n∏

i=1

xpi

i

)
≤ npmax

(
1
n

n∑

i=1

f (xi)− f

(
n∏

i=1

x
1/n
i

))
.

iii) If f is a log-convex function then
( ∏n

i=1 f (xi)
1
n

f
(

1
n

∑n
i=1 xi

)
)npmin

≤
∏n

i=1 f (xi)
pi

f (
∑n

i=1 pixi)
≤

( ∏n
i=1 f (xi)

1
n

f
(

1
n

∑n
i=1 xi

)
)npmax

.
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Proof. Directly from the Theorem 3.3 we obtain i) and ii).
iii) For the convex mapping log f we can apply i). ¤

Remark 3.1. We take another probability vector q = (q1, q2, ..., qn) with qi > 0,∑n
i=1 qi = 1. Applying one more time the Theorem 3.3 we see that the expression

T (f,p,x) can be estimated by lower and upper bounds as follows
pmin

qmax
T (f,q,x) ≤ npminT (f,u,x)

≤ T (f,p,x)

≤ npmaxT (f,u,x) ≤ pmax

qmin
T (f,q,x) .

The following theorem is improving the precision of the double inequality

pmin

qmax
T (f,q,x) ≤ T (f,p,x) ≤ pmax

qmin
T (f,q,x) . (6)

Theorem 3.4. For i = 1, ..., n, we consider xi ∈ I, pi > 0 with
∑n

i=1 pi = 1 and
qi > 0 with

∑n
i=1 qi = 1. Then

min
i=1..n

{
pi

qi

}
T (f,q,x) ≤ T (f,p,x) ≤ max

i=1..n

{
pi

qi

}
T (f,q,x) . (7)

If f is strictly
(
M[ϕ], A

)−convex then both sides of the inequality are equalities if
and only if x1 = x2 = ... = xn or pi = qi for all i = 1, ..., n.

Proof. The first inequality :
Let m be a positive real constant such that pi −mqi ≥ 0 for all i = 1, ..., n. Then

0 < m ≤ mini=1..n

{
pi

qi

}
≤ 1.

From pi −mqi ≥ 0 for all i = 1, ..., n follows that 1−m =
∑n

i=1 (pi −mqi) ≥ 0.

If mini=1..n

{
pi

qi

}
= 1 then pi = qi for all i = 1, ..., n and the first inequality of (7)

obviously is an equality.
Hence, it remains to consider the case when mini=1..n

{
pi

qi

}
< 1. Then 0 < m < 1.

The inequality we intend to prove is

mT (f,q,x) ≤ T (f,p,x) . (8)

Since
∑n

i=1 (pi −mqi) + m = 1, a simple computation leads us to the conclusion
that (8) holds:

n∑

i=1

(pi −mqi) f (xi) + mf
(
M[ϕ] (x;q)

)

≥ f

(
ϕ−1

(
n∑

i=1

(pi −mqi) ϕ (xi) + m

n∑

i=1

qiϕ (xi)

))

= f
(
M[ϕ] (x;p)

)
.

The second inequality :
Let M be a positive real constant such that Mqi − pi ≥ 0 for all i = 1, ..., n. Then

M ≥ maxi=1..n

{
pi

qi

}
≥ 1.

From Mqi − pi ≥ 0 for all i = 1, ..., n follows that M − 1 =
∑n

i=1 (Mqi − pi) ≥ 0.

If maxi=1..n

{
pi

qi

}
= 1 then pi = qi for all i = 1, ..., n and the second inequality of

(7) is an equality.
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We consider the case when maxi=1..n

{
pi

qi

}
> 1. Then M > 1.

We intend to prove that

T (f,p,x) ≤ MT (f,q,x) . (9)

Since
∑n

i=1
Mqi−pi

M + 1
M = 1, a simple computation bring us to the conclusion that

(9) is true:
n∑

i=1

Mqi − pi

M
f (xi) +

1
M

f
(
M[ϕ] (x;p)

)

≥ f

(
ϕ−1

(
n∑

i=1

Mqi − pi

M
ϕ (xi) +

1
M

n∑

i=1

piϕ (xi)

))

= f
(
M[ϕ] (x;q)

)
.

Equality case:
We consider that f is strictly

(
M[ϕ], A

)−convex. Then all terms of the inequality
are equal if and only if

T (f,p,x) = T (f,q,x) = 0

(this yields x1 = x2 = ... = xn) or

min
i=1..n

{
pi

qi

}
= max

i=1..n

{
pi

qi

}
,

(that is if pi = qi for all i = 1, ..., n). ¤

The Theorem 3.4 is an improvement of a result due to S. S. Dragomir (see [3,
Theorem 1]).

Remark 3.2. We can see the first assertion of Theorem 3.3 as a corollary of the
Theorem 3.4 if we consider the particular case q =

(
1
n , 1

n , ..., 1
n

)
.

When we combine the relations (6) and (7) we obtain

pmin

qmax
T (f,q,x) ≤ min

i=1..n

{
pi

qi

}
T (f,q,x)

≤ T (f,p,x)

≤ max
i=1..n

{
pi

qi

}
T (f,q,x) ≤ pmax

qmin
T (f,q,x) .

Moreover, every two probability vectors p and q are satisfying the conditions (2).
Therefore, one has the relation 3 valid in this case. Since

min
i=1..n

{
pi

qi

}
≤ m̃ and max

i=1..n

{
pi

qi

}
≥ M̃

(see J. Barić, A. Matković [2, Lemma 1] for proof), we conclude that the bounds we
obtain via Theorem 3.2 are tighter than those obtained with Theorem 3.4.

3.2. The integral case. For µ a Steffensen-Popoviciu measure on [a, b] and f :
[a, b] → R a

(
M[ϕ], A

)−convex function then we have

f

(
ϕ−1

(
1

µ ([a, b])

∫ b

a

ϕ (x) dµ (x)

))
≤ 1

µ ([a, b])

∫ b

a

f (x) dµ (x) .
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(See C.P. Niculescu and L.-E. Persson [6, Chapter 4] for more results concerning
the Steffensen-Popoviciu measures.) We consider p : [a, b] → R such that p (x) dx is
an absolutely continuous measure and

0 <

∫ b

a

p (x) dx, 0 ≤
∫ t

a

p (x) dx ≤
∫ b

a

p (x) dx (SP)

for all t ∈ [a, b] . Then p (x) dx is a Steffensen-Popoviciu measure and f verifies

f

(
ϕ−1

(∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))
≤ 1∫ b

a
p (x) dx

∫ b

a

f (x) p (x) dx. (10)

Let’s define

T (f, p) :=

∫ b

a
f (x) p (x) dx
∫ b

a
p (x) dx

− f

(
ϕ−1

(∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))
.

Theorem 3.5. If p (x) dx is an absolutely continuous Steffensen-Popoviciu measure
that verifies the conditions ( SP), then if Psup < ∞ we have

0 ≤ T (f, p) ≤ Psup (b− a) T (f, id) ,

for every f : [a, b] → R a
(
M[ϕ], A

)−convex function, where

Psup =
1∫ b

a
p (x) dx

· sup
t,s∈[a,b]

{∫ t

s
p (x) dx

t− s
; s 6= t

}

(the integral analogue of Theorem 3.1).

Proof. The first inequality follows from (10).
We will prove the second inequality. We denote

M = Psup (b− a) > 0.

The inequality we intend to prove is

T (f, p) ≤ MT (f, id) .

If M − 1 = 0 then we have an equality. We consider the case M − 1 > 0 and define

q (x) := M
1

b− a
− p (x)∫ b

a
p (x) dx

.

Then ∫ t

s

q (x) dx = M
t− s

b− a
−

∫ t

s
p (x) dx

∫ b

a
p (x) dx

≥ 0.

It is obvious that
∫ b

a

q (x) dx = M − 1 > 0,

∫ t

a

q (x) dx = M
t− a

b− a
−

∫ t

a
p (x) dx

∫ b

a
p (x) dx

≥ 0,

∫ b

a

q (x) dx−
∫ t

a

q (x) dx ≥ 0.
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This means that q (x) dx is a Steffensen-Popoviciu measure that verifies the conditions
( SP). Since f is convex we have

∫ b

a

q (x) dx · f
(

ϕ−1

(∫ b

a
ϕ (x) q (x) dx
∫ b

a
q (x) dx

))
≤

∫ b

a

f (x) q (x) dx.

We must prove that
∫ b

a
f (x)

b− a
dx− 1

M

∫ b

a
f (x) p (x) dx
∫ b

a
p (x) dx

+
1
M

f

(
ϕ−1

(∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))

≥ f

(
ϕ−1

(∫ b

a
ϕ (x) dx

b− a

))
.

Indeed, using (10), we get

1
M

∫ b

a

f (x) q (x) dx +
1
M

f

(
ϕ−1

(∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))

≥ M − 1
M

· f
(

ϕ−1

(∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))

+
1
M

f

(
ϕ−1

(∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))

≥ f

(
ϕ−1

(
1
M

∫ b

a

ϕ (x) q (x) dx +
1
M

∫ b

a
ϕ (x) p (x) dx
∫ b

a
p (x) dx

))

= f

(
ϕ−1

(∫ b

a
ϕ (x) dx

b− a

))
.

¤

Using this technique, the reader can easily prove the integral analogues of all the-
orems we have state in Section 3 for the discrete case. We succinctly state below the
results but we are omitting their proofs.

Theorem 3.6. Let p (x) dx and q (x) dx be two absolutely continuous, Popoviciu-
Steffensen measures that verifies

∫ b

a

p (x) dx = 1, 0 ≤
∫ t

a

p (x) dx ≤
∫ b

a

p (x) dx,

∫ b

a

q (x) dx = 1, 0 <

∫ t

a

q (x) dx <

∫ b

a

q (x) dx,

for all t ∈ (a, b) . We denote

m̃ = inf
t∈(a,b)

{∫ t

a
p (x) dx∫ t

a
q (x) dx

,

∫ b

t
p (x) dx

∫ b

t
q (x) dx

}
,

M̃ = sup
t∈(a,b)

{∫ t

a
p (x) dx∫ t

a
q (x) dx

,

∫ b

t
p (x) dx

∫ b

t
q (x) dx

}
.

Then
m̃T (f, q) ≤ T (f, p) ≤ M̃T (f, q)
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(the integral analogue of Theorem 3.2).

Theorem 3.7. Let p (x) dx be a absolutely continuous measure, where p : [a, b] →
(0,∞) is increasing, such that

∫ b

a
p (x) dx = 1 and define

T (f, p) :=
∫ b

a

f (x) p (x) dx− f

(
ϕ−1

(∫ b

a

ϕ (x) p (x) dx

))
.

We denote

pinf = inf
t,s∈[a,b]

{∫ t

s
p (x) dx

t− s
; s 6= t

}
, psup = sup

t,s∈[a,b]

{∫ t

s
p (x) dx

t− s
; s 6= t

}
.

Then

(b− a) pinfT
(

f,
id

b− a

)
≤ T (f, p) ≤ (b− a) psupT

(
f,

id

b− a

)

for every f : [a, b] → R a
(
M[ϕ], A

)−convex function (the integral analogue of Theo-
rem 3.3).

Remark 3.3. Let p (x) dx and q (x) dx be two absolutely continuous measures, where
p, q : [a, b] → (0,∞) are increasing such that

∫ b

a
p (x) dx = 1 and

∫ b

a
q (x) dx = 1.

Applying one more time the Theorem 3.7 , we see that the expression T (f, p) can be
estimated by lower and upper bounds as follows

pinf

qsup
T (f, q) ≤ (b− a) pinfT

(
f,

id

b− a

)

≤ T (f, p)

≤ (b− a) psupT
(

f,
id

b− a

)
≤ psup

qinf
T (f, q) .

These bounds are improved by the following result:

Theorem 3.8. Let p (x) dx and q (x) dx be two absolutely continuous measures, where
p, q : [a, b] → (0,∞) are increasing such that

∫ b

a
p (x) dx = 1 and

∫ b

a
q (x) dx = 1. Then

the following inequalities hold

inf
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
T (f, q)

≤ T (f, p) ≤ sup
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
T (f, q) ,

for every f : [a, b] → R a
(
M[ϕ], A

)−convex function (the integral analogue of Theo-
rem 3.4).

Remark 3.4. Under the assumption of Theorem 3.8 we have

m̃ ≥ inf
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
and M̃ ≤ sup

t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
.

Indeed, these are true since

sup
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
≥

∫ t

a
p (x) dx∫ t

a
q (x) dx

≥ inf
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
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and

sup
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}
≥

∫ b

s
p (x) dx

∫ b

s
p (x) dx

≥ inf
t,s∈[a,b]

{∫ t

s
p (x) dx∫ t

s
q (x) dx

; s 6= t

}

for all t, s ∈ (a, b) .
We conclude that the bounds we obtain via Theorem 3.6 are tighter than those

obtained with Theorem 3.8.
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