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A note on totally umbilical proper slant submanifold of a
Lorentzian β−Kenmotsu manifold

Khushwant Singh, Siraj Uddin, and Meraj Ali Khan

Abstract. In the present note, we study a slant submanifold of a Lorentzian β-Kenmotsu
manifold which is totally umbilical. We prove that every totally umbilical proper slant sub-

manifold M of a Lorentzian β-Kenmotsu manifold M̄ is either minimal or if M is not minimal
then we derive a formula for slant angle of M .
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1. Introduction

The idea of slant submanifolds was introduced by B.Y. Chen [2] in the setting of
almost Hermitian manifolds. Since then many research articles have been appeared on
the existence of these submanifolds in different known spaces. The slant submanifolds
of an almost contact metric manifolds were defined and studied by A. Lotta [4].

Recently, M. A. Khan and others [3], studied these submanifolds in the setting
of Lorentzian paracontact manifolds. In this paper, we study slant submanifolds of
Lorentzian β-Kenmotsu manifolds. We consider, M as a totally umbilical proper
slant submanifold of Lorentzian β-Kenmotsu manifold M̄ and prove that M is ei-
ther minimal or if it is not minimal then we get a formula of its slant angle θ =

tan−1(
√

g(X,Y )
η(X)η(Y ) ).

2. Preliminaries

Let M̄ be a n-dimensional Lorentzian almost paracontact manifold with the al-
most paracontact metric structure (ϕ, ξ, η, g), that is, ϕ is a (1, 1) tensor field, ξ is a
contravariant vector field, η is a 1−form and g is a Lorentzian metric with signature
(−,+,+, · · · ,+) on M̄ , satisfying [5]:

ϕ2X = X + η(X)ξ, η(ξ) = −1, ϕ(ξ) = 0, η ◦ ϕ = 0, (2.1)

g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ), η(X) = g(X, ξ). (2.2)

Also, if on M̄ the following additional conditions hold:

(∇̄Xϕ)Y = β{g(ϕX, Y )ξ − η(Y )ϕX}, (2.3)

∇̄Xξ = β{X − η(X)ξ} (2.4)
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for all X,Y ∈ TM̄ , where ∇̄ is the Levi-Civita connection with respect to the
Lorentzian metric g. Then M̄ is said to be a Lorentzian β−Kenmotsu. Again if
we put

Φ(X,Y ) = g(X,ϕY ),

then by (2.2), Φ(X,Y ) is symmetric (0, 2) tensor field [5], i.e., Φ(X,Y ) = Φ(Y,X).
Now, let M be a submanifold of M̄ . Let TM be the Lie algebra of vector fields

in M and T⊥M the set of all vector fields normal to M . If ∇ be the Levi-Civita
connection on M , then Gauss-Weingarten formulas are given by

∇̄XY = ∇XY + h(X,Y ) (2.5)

∇̄XV = −AV X +∇⊥
XV (2.6)

for any X Y ∈ TM and any V ∈ T⊥M , where ∇⊥ is the induced connection in the
normal bundle, h is the second fundamental form of M and AV is the Weingarten
endomorphism associated with V . The second fundamental form h and the shape
operator A are related by

g(AV X,Y ) = g(h(X,Y ), V ) (2.7)

where g denotes the metric on M̄ as well as the induced metric on M .
For any X ∈ TM , we write

ϕX = TX + FX (2.8)

where TX is the tangential component of ϕX and FX is the normal component of
ϕX respectively. Similarly, for any V ∈ T⊥

x M, we have

ϕV = tV + fV (2.9)

where tV (resp. fV ) is the tangential component (resp. normal component) of ϕV .
As we know metric g is Lorentzian it is easy to observe that for each x ∈ M and

X, Y ∈ TxM

g(TX, Y ) = g(X,TY ). (2.10)

The covariant derivative of the morphisms T and F are defined respectively as

(∇̄XT )Y = ∇XTY − T∇XY (2.11)

(∇̄XF )Y = ∇⊥
XFY − F∇XY (2.12)

for any X,Y ∈ TM .
Throughout, the structure vector field ξ assumed to be tangential to M , otherwise

M is simply anti-invariant. For any X, Y ∈ TM on using (2.4) and (2.5) we may
obtain

(a) ∇Xξ = β{X − η(X)ξ}, (b) h(X, ξ) = 0. (2.13)

On using (2.3), (2.5), (2.6), (2.7), (2.9), (2.11) and (2.12), we obtain

(∇̄XT )Y = β{g(TX, Y )ξ − η(Y )TX}+AFY X + th(X,Y ) (2.14)

(∇̄XF )Y = fh(X,Y )− βη(Y )FX − h(X,TY ). (2.15)

A submanifold M is said to be totally umbilical if

h(X,Y ) = g(X,Y )H, (2.16)

where H is the mean curvature vector. Furthermore, if h(X,Y ) = 0 for all X,Y ∈
TM , then M is said to be totally geodesic and if H = 0 then M is minimal in M̄ .
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3. Slant submanifolds

Through out the section we considerM as an immersed submanifold of a Lorentzian
manifold M̄ . Such submanifolds we always consider tangent to the structure vector
field ξ.

A submanifold M of an almost contact metric manifold M̄ is said to be a slant
submanifold if for any x ∈ M and X ∈ TxM −⟨ξ⟩, the angle between ϕX and TxM is
constant. The constant angle θ ∈ [0, π/2] is then called slant angle of M in M̄ . The
tangent bundle TM of M is decomposed as

TM = D ⊕ ⟨ξ⟩ (3.1)

where the orthogonal complementary distribution D of ⟨ξ⟩ is known as the slant
distribution on M . If µ is an invariant subspace of the normal bundle T⊥M , then

T⊥M = FTM ⊕ µ. (3.2)

For a proper slant submanifold M of an Lorentzian paracontact manifold M̄ with a
slant angle θ, M. A. Khan et. al. [3] proved the following theorem.

Theorem 3.1. Let M be a submanifold of an LP -contact manifold M̄ such that
ξ ∈ TM . Then, M is slant submanifold if and only if there exist a constant λ ∈ [0, 1]
such that

T 2 = λ(I + η ⊗ ξ). (3.3)

Furthermore, if θ is slant angle of M , then λ = cos2 θ.

Thus, we have the following consequences of the formula (3.3),

g(TX, TX) = cos2 θ[g(X,Y ) + η(X)η(Y )] (3.4)

g(FX,FY ) = sin2 θ[g(X,Y ) + η(X)η(Y )] (3.5)

for any X,Y ∈ TM .
In, the following theorems we consider M as a totally umbilical submanifold of a

Lorentzian β-Kenmotsu manifold M̄ .

Theorem 3.2. Let M be a totally umbilical Riemannian submanifold of a Lorentzian
β-Kenmotsu manifold M̄ , then atleast one of the following statements is true
(i) H ∈ µ
(ii) M is trivial.

Proof. For any X,Y ∈ TM then from (2.14), we have

(∇̄XT )Y = AFY X + th(X,Y ) + β{g(TX, Y )ξ − η(Y )TX}.
Taking the product with ξ, we obtain

g(∇XTY, ξ) = g(h(X, ξ), FY ) + g(th(X,Y ), ξ)− β(g(TX, Y )

As M is a totally umbilical slant submanifold of M̄ , then from (2.16), the above
equation takes the form

−g(TY,∇Xξ) = g(H,FY )η(X) + g(X,Y )g(tH, ξ)− βg(TX, Y ).

Using (2.13), we get

−βg(TY,X) = g(H,FY )η(X) + g(X,Y )g(tH, ξ)− βg(TX, Y ).

Then from (2.10), we obtain

−βg(TX, Y ) = g(H,FY )η(X) + g(X,Y )g(tH, ξ)− βg(TX, Y ). (3.6)
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The second term of right hand side in (3.6) is identically zero, then the above equation
takes the form

g(H,FY )η(X) = 0. (3.7)

Thus from (3.7), it follows that either H ∈ µ or M is trivial. This proves the theorem
completely. �

Now, using the above theorem we have the following main result of this paper.

Theorem 3.3. Let M be a non trivial totally umbilical proper slant submanifold of a
Lorentzian β−Kenmotsu manifold M̄ . Then at least one of the following statements
is true
(i) M is minimal

(ii) If M is not minimal, then the slant angle of M is θ = tan−1(
√

g(X,Y )
η(X)η(Y ) )

for any X,Y ∈ TM .

Proof. For any X,Y ∈ TM , we have

∇̄XϕY − ϕ∇̄XY = β{g(ϕX, Y )ξ − η(Y )ϕX}.
From (2.5) and (2.8), we obtain

∇̄XTY + ∇̄XFY − ϕ(∇XY + h(X,Y )) = β{g(TX + FX, Y )ξ − η(Y )(TX + FX)}.
Again using (2.5), (2.6) and (2.8), we get

β{g(TX, Y )ξ − η(Y )TX} − βη(Y )FX = ∇XTY + h(X,TY )

−AFY X +∇⊥
XFY − T∇XY − F∇XY − ϕh(X,Y ).

As M is totally umbilical proper slant, then

β{g(TX, Y )ξ − η(Y )TX} − βη(Y )FX = ∇XTY + g(X,TY )H −AFY X

+∇⊥
XFY − T∇XY − F∇XY − g(X,Y )ϕH.

Taking product with ϕH and using the fact that H ∈ µ (Theorem 3.2), we obtain

g(X,TY )g(H,ϕH) + g(∇⊥
XFY, ϕH) = g(F∇XY, ϕH) + g(X,Y )g(ϕH, ϕH)

−βη(Y )g(FX, ϕH).

Using (2.2) and the fact that H ∈ µ, then ϕH is also lies in µ, thus we have

g(∇⊥
XFY, ϕH) = g(X,Y )∥H∥2.

Then from (2.6), we derive

g(∇̄XFY, ϕH) = g(X,Y )∥H∥2. (3.8)

Now for any X ∈ TM , we have

(∇̄Xϕ)H = ∇̄XϕH − ϕ∇̄XH.

Using (2.3) and the fact that H ∈ µ, we obtain

0 = ∇̄XϕH − ϕ∇̄XH.

Using (2.5), (2.6), (2.8) and (2.9), we obtain

−AϕHX +∇⊥
XϕH = −TAHX − FAHX + t∇⊥

XH + f∇⊥
XH. (3.9)

Taking the product in (3.9) with FY for any Y ∈ TM and using the fact f∇⊥
XH ∈ µ,

the above equation gives

g(∇⊥
XϕH,FY ) = −g(FAHX,FY ).
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Using (3.4), we obtain that

g(∇̄XFY, ϕH) = sin2 θ[g(AHX,Y ) + η(AHX)η(Y )],

that is,
g(∇̄XFY, ϕH) = sin2 θ[g(X,Y ) + η(X)η(Y )]∥H∥2. (3.10)

Thus, from (3.8) and (3.10), we derive

[cos2 θg(X,Y )− sin2θη(X)η(Y )]∥H∥2 = 0. (3.11)

Thus, it follows from (3.11) that either H = 0, i.e., M is minimal or if M is not

minimal then the slant angle of M is θ = tan−1(
√

g(X,Y )
η(X)η(Y ) ). This completes the

proof. �
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