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Fixed point of ϕ-contraction in metric spaces endowed with a
graph

Florin Bojor

Abstract. The purpose of this paper is to present some fixed point results for self-generalized
contractions in metric spaces. We obtain sufficient conditions for the existence of a fixed point
of the mapping T : X → X in the metric space X endowed with a graph G such that the set
V (G) of vertices of G coincides with X.
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1. Introduction

Let T be a selfmap of a metric space (X, d). Following Petruşel and Rus [5], we
say that T is a Picard operator (abbr., PO) if T has a unique fixed point x∗ and
lim

n→∞
Tnx = x∗ for all x ∈ X and T is weakly Picard operator (abbr. WPO) if the

sequence (Tnx)n∈N converges, for all x ∈ X and the limit (which depends on x ) is a
fixed point of T .

Let (X, d) be a metric space. Let ∆ denotes the diagonal of the Cartesian product
X ×X. Consider a directed graph G such that the set V (G) of its vertices coincides
with X, and the set E (G) of its edges contains all loops, i.e., E (G) ⊇ ∆. We assume
G has no parallel edges, so we can identify G with the pair (V (G) , E (G)). Moreover,
we may treat G as a weighted graph (see [[4], p. 309]) by assigning to each edge the
distance between its vertices. By G−1 we denote the conversion of a graph G, i.e.,
the graph obtained from G by reversing the direction of edges. Thus we have

E
(
G−1

)
= {(x, y) | (y, x) ∈ G} .

The letter G̃ denotes the undirected graph obtained from G by ignoring the di-
rection of edges. Actually, it will be more convenient for us to treat G̃ as a directed
graph for which the set of its edges is symmetric. Under this convention,

E
(
G̃

)
= E (G) ∪ E

(
G−1

)
(1)

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G) , E′ ⊆ E (G) and for any edge
(x, y) ∈ E′, x, y ∈ V ′. Now we recall a few basic notions concerning connectivity of
graphs. All of them can be found, e.g., in [4]. If x and y are vertices in a graph G,
then a path in G from x to y of length N (N ∈ N) is a sequence (xi)

N
i=0 of N + 1

vertices such that x0 = x, xN = y and (xn−1, xn) ∈ E (G) for i = 1, ..., N . A graph
G is connected if there is a path between any two vertices. G is weakly connected if
G̃ is connected. If G is such that E (G) is symmetric and x is a vertex in G, then the
subgraph Gx consisting of all edges and vertices which are contained in some path
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beginning at x is called the component of G containing x. In this case V (Gx) = [x]G,
where [x]G is the equivalence class of the following relation R defined on V (G) by the
rule:

yRz if there is a path in G from y to z.
Clearly, Gx is connected.

Recently, two results have appeared, giving sufficient conditions for f to be a PO
if (X, d) is endowed with a graph. The first result in this direction was given by J.
Jakhymski [3] who also presented its applications to the Kelisky-Rivlin theorem on
iterates of the Bernstein operators on the space C [0, 1].

Definition 1.1 ([3], Def. 2.1). We say that a mapping f : X → X is a Banach
G-contraction or simply G-contraction if f preserves edges of G, i.e.,

∀x, y ∈ X ((x, y) ∈ E (G) ⇒ (f (x) , f (y)) ∈ E (G)) (2)

and f decreases weights of edges of G in the following way:

∃α ∈ (0, 1) , ∀x, y ∈ X ((x, y) ∈ E (G) ⇒ d (f (x) , f (y)) 6 αd (x, y)) (3)

Theorem 1.1 ([3], Th 3.2). Let (X, d) be complete, and let the triple (X, d, G) have
the following property:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there is
a subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Let f : X → X be a G-contraction, and Xf = {x ∈ X |(x, fx) ∈ E (G)}. Then the
following statements hold.

1. cardFix f = card {[x]G̃ |x ∈ Xf }.
2. Fix f 6= ∅ iff Xf 6= ∅.
3. f has a unique fixed point iff there exists x0 ∈ Xf such that Xf ⊆ [x0]G̃.
4. For any x ∈ Xf , f

∣∣
[x]G̃

is a PO.
5. If Xf 6= ∅ and G is weakly connected, then f is a PO.
6. If X ′ := ∪{[x]G̃ |x ∈ G} then f |X′ is a WPO.
7. If f ⊆ E (G), then f is a WPO.

Subsequently, Bega, Butt and Radojević extended Theorem 1.1 for set valued map-
pings.

Definition 1.2 ([1], Def. 2.6). Let F : X ; X be a set valued mapping with nonempty
closed and bounded values. The mapping F is said to be a G-contraction if there exists
a k ∈ (0, 1) such that

D (Fx, Fy) 6 kd (x, y) for all x, y ∈ E (G)

and if u ∈ Fx and v ∈ Fy are such that

d (u, v) 6 kd (x, y) + α, for each α > 0

then (u, v) ∈ E (G).

Theorem 1.2. Let (X, d) be a complete metric space and suppose that the triple
(X, d, G) has the property:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there is
a subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Let F : X ; X be a G-contraction and
Xf = {x ∈ X : (x, u) ∈ E (G) for some u ∈ F (x)}. Then the following statements
hold:

1. For any x ∈ XF , F
∣∣
[x]G̃

has a fixed point.
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2. If XF 6= ∅ and G is weakly connected, then F has a fixed point in X.
3. If X ′ := ∪{[x]G̃ : x ∈ XF }, then F |X′ has a fixed point.
4. If F ⊆ E (G) then F has a fixed point.
5. FixF 6= ∅ if and only if XF 6= ∅.
We recall that:

Definition 1.3. A function ϕ : R+ → R+ satisfying
i. ϕ is monotone increasing, i.e., t1 6 t2 implies ϕ (t1) 6 ϕ (t2);
ii. (ϕn (t))n∈N converges to 0 for all t > 0;

is said to be a comparison function.

Definition 1.4. A function ϕ : R+ → R+ satisfying
i. ϕ is monotone increasing, i.e., t1 6 t2 implies ϕ (t1) 6 ϕ (t2);

ii.
∞∑

n=0
ϕn (t) converges for all t > 0;

is said to be a (c)− comparison function .

Remark 1.1. Any (c)-comparison function is a comparison function.

Remark 1.2. If ϕ : R+ → R+ is a comparison function then ϕ (t) < t, for all t > 0,
ϕ (0) = 0 and ϕ is right continuous at 0.

Example 1.1. ϕ : R+ → R+, ϕ (t) =
{

1
2 t; t ∈ [0, 1]
t− 1

2 ; t > 1 is a (c)-comparison function.

Example 1.2. ϕ : R+ → R+, ϕ (t) = t
1+t is a comparison function but not a (c)-

comparison function.

We refer to Rus [7] and Berinde [2] for a detailed study of ϕ-contractions.

Definition 1.5. Let (X, d) a metric space. A mapping T : X → X is a ϕ-contraction
if there exists a comparison function ϕ : R+ → R+ such that:

d (Tx, Ty) 6 ϕ (d (x, y)) , for all x, y ∈ X.

Now we discuss some types of continuity of mappings. The first of them is well
known and often used in the metric fixed point theory.

Definition 1.6. A mapping T : X → X is called orbitally continuous if for all x ∈ X
and any sequence (kn)n∈N of positive integers, T knx → y ∈ X implies T

(
T knx

) → Ty
as n →∞.

Definition 1.7. A mapping T : X → X is called orbitally G-continuous if given
x ∈ X and a sequence (xn)n∈N,

xn → x and (xn, xn+1) ∈ E (G) for n ∈ N imply Txn → Tx

The aim of this paper is to study the existence of fixed points for
(G,ϕ)−contraction in metric spaces endowed with a graph G by defining the (G,ϕ)−
contraction.

2. Main Results

Throughout this section we assume that (X, d) is a metric space, and G is a directed
graph such that V (G) = X and E (G) ⊇ ∆. The set of all fixed points of a mapping
T is denoted by FixT .

By using the idea of Jakhymski [3], we will say that:
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Definition 2.1. Let (X, d) be a metric space and G a graph. The mapping T : X → X
is said to be a (G,ϕ)− contraction if:

1. ∀x, y ∈ X ((x, y) ∈ E (G) ⇒ (Tx, Ty) ∈ E (G)).
2. there exists a comparison function ϕ : R+ → R+ such that:

d (Tx, Ty) 6 ϕ (d (x, y))

for all (x, y) ∈ E (G).

Remark 2.1. If T is a (G,ϕ)−contraction, then T is both a
(
G−1, ϕ

)−contraction

and a
(
G̃, ϕ

)
− contraction. This is consequence of symmetry of d and 1.

Example 2.1. Any ϕ− contraction is a (G0, ϕ)− contraction, where the graph G0

is defined by E (G0) = X ×X.

Example 2.2. Any G− contraction is a (G,ϕ)− contraction, where the comparison
function is ϕ : R+ → R+, ϕ (t) = at.

Definition 2.2. We say that sequences (xn)n∈N and (yn)n∈N, elements of X, are
Cauchy equivalent if each of them is a Cauchy sequence and d (xn, yn) → 0.

The first main result of this section is a fixed point theorem for (G,ϕ)−contraction
on an complete metric space endowed with a graph.

Theorem 2.1. Let (X, d) be a metric space endowed with a graph G and T : X → X
be an operator. We suppose that:
(i.) G is weakly connected;
(ii.) for any sequence (xn)n∈N ⊂ X with d (xn, xn+1) → 0 there exists k, n0 ∈ N such

that (xkn, xkm) ∈ E (G) for all m,n ∈ N m, n > n0;
(iii.)a T is orbitally continuous

or
(iii.)b T is orbitally G-continuous and there exists a subsequence (Tnkx0)k∈N of (Tnx0)n∈N

such that (Tnkx0, x
∗) ∈ E (G) for each k ∈ N ;

(iv.) there exists a comparison function ϕ : R+ → R+ such that T is a (G, ϕ) −
contraction;

(v.) the metric d is complete.
Then T is a PO.

Proof. Let x0 ∈ X be such that (x0, Tx0) ∈ E (G). Then, from the definition and an
easy induction we obtain

(
Tnx0, T

n+1x0

) ∈ E (G) and d
(
Tnx0, T

n+1x0

)
6 ϕn (d (x0, Tx0)) for all n ∈ N.

So lim
n→∞

d
(
Tnx0, T

n+1x0

)
= 0 and by (ii.) there exists k, n0 ∈ N such that

(
T knx0, T

kmx0

) ∈ E (G) for all m, n ∈ N m,n > n0.

Since d
(
T knx0, T

k(n+1)x0

) → 0 , for an arbitrary ε > 0, we can choose N ∈ N, N >
n0 such that

d
(
T knx0, T

k(n+1)x0

)
< ε− ϕ (ε) for each n > N.

Since
(
T knx0, T

k(n+1)x0

) ∈ E (G) we have for any n > N that

d
(
T knx0, T

k(n+2)x0

)
6 d

(
T knx0, T

k(n+1)x0

)
+ d

(
T k(n+1)x0, T

k(n+2)x0

)

< ε− ϕ (ε) + ϕk
(
d

(
T knx0, T

k(n+1)x0

))
< ε.
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Now since
(
T knx0, T

k(n+2)x0

) ∈ E (G) we have for any n > N that

d
(
T knx0, T

k(n+3)x0

)
6 d

(
T knx0, T

k(n+1)x0

)
+ d

(
T k(n+1)x0, T

k(n+3)x0

)

< ε− ϕ (ε) + ϕk
(
d

(
T knx0, T

k(n+2)x0

))
< ε.

By induction we have

d
(
T knx0, T

k(n+m)x0

)
< ε, for any m ∈ N and n > N.

Hence
(
T knx0

)
n∈N is a Cauchy sequence in (X, d). From (v.) we have T knx0 → x∗,

as n →∞. Because d
(
Tnx0, T

n+1x0

) → 0, we get Tnx0 → x∗, as n →∞.
Let x ∈ X be arbitrarily chosen. Then:

(1) If (x, x0) ∈ E (G), then (Tnx, Tnx0) ∈ E (G) , ∀n ∈ N and thus d (Tnx, Tnx0) 6
ϕ (d (x, x0)) , ∀n ∈ N . Letting n →∞ we obtain that Tnx → x∗.

(2) If (x, x0) /∈ E (G), then, from (i.), there exists a path (xi)
M
i=0 in G̃ from x0 to x,

i.e., xM = x and (xi−1, xi) ∈ E
(
G̃

)
for i = 1, ..., M . An easy induction shows

(Tnxi−1, T
nxi) ∈ E

(
G̃

)
for i = 1, ..., M and

d (Tnx0, T
nx) 6

M∑

i=1

ϕn (d (xi−1, xi))

so d (Tnx, Tny) → 0 and we obtain Tnx → x∗.
Now we will prove that x∗ ∈ FT . If (iii.)a holds, then clearly x∗ ∈ FT . If we

suppose that (iii.)b takes place, then since (Tnkx0)k∈N → x∗ and (Tnkx0, x
∗) ∈ E (G)

for all k ∈ N we obtain, from the orbitally G-continuity of T , that Tnk+1x0 → Tx∗

as k →∞. Thus x∗ = Tx∗. If we have Ty = y for some y ∈ X, then from above, we
must have Tny → x∗, so y = x∗.

¤
Remark 2.2. The Theorem 2.1 is a generalization of Theorem 3.3 from [6].

Now if we improve the properties of the operator T then we can drop some of the
conditions of the graph G. From now on we will consider that the function ϕ is a
(c)− comparison function.

In the following we will show that the convergence of successive approximations
for (G, ϕ)− contraction is closely related to the connectivity of a graph. We say that
sequences (xn)n∈N and (yn)n∈N, elements of X, are Cauchy equivalent if each of them
is a Cauchy sequence and d (xn, yn) → 0.

Theorem 2.2. The following statements are equivalent:
(i) G is weakly connected;
(ii) for any (G,ϕ)−contraction T : X → X, given x, y ∈ X, the sequences (Tnx)n∈N

and (Tny)n∈N are Cauchy equivalent;
(iii) for any (G, ϕ)− contraction T : X → X, card (Fix T ) 6 1.

Proof. (i) ⇒ (ii): Let T be a (G,ϕ)−contraction and x, y ∈ X. By hypothesis, [x]G̃ =
X, so y ∈ [x]G̃. Then there is a path (xi)

N
i=0 in G̃ from x to y, i.e., x0 = x, xN = y and

(xi−1, xi) ∈ E
(
G̃

)
for i = 1, ..., N . An easy induction shows (Tnxi−1, T

nxi) ∈ E
(
G̃

)

for i = 1, ..., N and

d (Tnx, Tny) 6
N∑

i=1

ϕn (d (xi−1, xi))
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so d (Tnx, Tny) → 0.
In the same way, there is a path (zi)

M
i=0 in G̃ from x to Tx, i.e., z0 = x, zM = Tx

and (zi−1, zi) ∈ E
(
G̃

)
for i = 1, ..., M . Then we have

d
(
Tnx, Tn+1x

)
6

M∑

i=1

ϕn (d (zi−1, zi))

Hence
∞∑

n=0

d
(
Tnx, Tn+1x

)
=

M∑

i=1

∞∑
n=0

ϕn (d (zi−1, zi)) < ∞

and a standard argument shows (Tnx)n∈N is a Cauchy sequence, so is (Tny)n∈N.
(ii) ⇒ (iii): Let T be a (G,ϕ) − contraction and x, y ∈ FixT . By (ii), (Tnx)n∈N

and (Tny)n∈N are Cauchy equivalent which yields x = y.
(iii) ⇒ (i): Suppose, on the contrary, G is not weakly connected, i.e., G̃ is discon-

nected. So, there exists an x0 ∈ X such that the both sets [x0]G̃ and X\ [x0]G̃ are
nonempty. Let y0 ∈ X\ [x0]G̃ and define

Tx = x0 if x ∈ [x0]G̃ and Tx = y0 if x ∈ X\ [x0]G̃
Clearly, Fix T = {x0, y0}. We show T is a (G,ϕ)−contraction. Let (x, y) ∈ E (G).

Then [x]G̃ = [y]G̃, so either x, y ∈ [x]G̃, or x, y ∈ X\ [x]G̃ . Hence in both cases
Tx = Ty, so (Tx, Ty) ∈ E (G) since E (G) ⊇ ∆, and d (Tx, Ty) = 0 6 ϕ (d (x, y)).
Thus T is a (G,ϕ)− contraction having two fixed points which violates (iii). ¤

As an immediate consequence of Theorem 2.2, we obtain the following

Corollary 2.1. Let (X, d) be a complete metric space and G a graph weakly connected.
For any (G,ϕ) − contraction T : X → X, there is x∗ ∈ X such that lim

n→∞
Tnx = x∗

for all x ∈ X.

The next example shows that one cannot improve Corollary 2.1 by adding that x∗

is a fixed point of T .

Example 2.3. Let X := [0, 1] be endowed with the Euclidean metric dE. Define the
graph G by

E (G) = {(x, y) ∈ (0, 1]× (0, 1] |x > y } ∪ {(0, 0) , (0, 1)}
Set

Tx =
x

4
for x ∈ (0, 1] , and T0 =

1
4

It is easy to verify G is weakly connected and T is a (G,ϕ) − contraction with
ϕ (t) = t

4 . Clearly, Tnx → 0 for all x ∈ X, but T has no fixed points.

The proofs of our fixed point theorems depend on the following

Proposition 2.1. Assume that T : X → X is a (G,ϕ) − contraction such that for
some x0 ∈ X, Tx0 ∈ [x0]G̃. Let G̃x0 be the component of G̃ containing x0. Then [x0]G̃
is T-invariant and T |[x0]G̃

is a
(
G̃x0 , ϕ

)
− contraction. Moreover, if x, y ∈ [x0]G̃ ,

then (Tnx)n∈N and (Tnx)n∈N are Cauchy equivalent.

Proof. Let x ∈ [x0]G̃. Then there is a path (xi)
N
i=0 in G̃ from x0 to x, i.e., xN = x

and (xi−1, xi) ∈ E
(
G̃

)
for i = 1, ..., N . But T is a (G, ϕ)− contraction which yields
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(Txi−1, Txi) ∈ E
(
G̃

)
for i = 1, ..., N , i.e., (Txi)

N
i=0 is a path in G̃ from Tx0 to Tx.

Thus Tx ∈ [Tx0]G̃. Since, by hypothesis, Tx0 ∈ [x0]G̃, i.e., [Tx0]G̃ = [x0]G̃ , we infer
Tx ∈ [x0]G̃ . Thus [x0]G̃ is T-invariant.

Now let (x, y) ∈ E
(
G̃x0

)
. This means there is a path ((xi)

N
i=0 in G̃ from x0 to

y such that xN−1 = x. Let (yi)
M
i=0 be a path in G̃ from x0 to Tx0. Repeating the

argument from the first part of the proof, we infer (y0, y1, ...yM , Tx1, Tx2, ...TxN ) is
a path in G̃ from x0 to Ty; in particular, (TxN−1, TxN ) ∈ E

(
G̃x0

)
, i.e., (Tx, Ty) ∈

E
(
G̃x0

)
. Moreover, since E

(
G̃x0

)
⊆ E

(
G̃

)
and T is a

(
G̃, ϕ

)
− contraction, we

infer T |[x0]G̃
is a

(
G̃x0 , ϕ

)
− contraction. Finally, in view of Theorem 2.2, the second

statement follows immediately from the first one since G̃x0 is connected. ¤

Theorem 2.3. Let (X, d) be complete, and let the triple (X, d, G) have the following
property:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there is
a subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Let T : X → X be a (G,ϕ) − contraction, and XT = {x ∈ X |(x, Tx) ∈ E (G)}.
Then the following statements hold.
(1) cardFix T = card {[x]G̃ |x ∈ XT }.
(2) Fix T 6= ∅ iff XT 6= ∅.
(3) T has a unique fixed point iff there exists x0 ∈ Xf such that XT ⊆ [x0]G̃.
(4) For any x ∈ XT , T

∣∣
[x]G̃

is a PO.
(5) If XT 6= ∅ and G is weakly connected, then T is a PO.
(6) If X ′ := ∪{[x]G̃ |x ∈ G} then T |X′ is a WPO.
(7) If T ⊆ E (G), then T is a WPO.

Proof. We begin with points (4) and (5). Let x ∈ Xf . Then Tx ∈ [x]G̃ , so by
Proposition 2.1, if y ∈ [x]G̃ , then (Tnx)n∈N and (Tny)n∈N are Cauchy equivalent.
By completeness, (Tnx)n∈N converges to some x∗ ∈ X. Clearly, also lim

n→∞
Tny = x∗.

Since (x, Tx) ∈ E (G), then by induction we have that
(
Tnx, Tn+1x

) ∈ E (G) , for alln ∈ N. (4)

By hypothesis, there is a subsequence
(
T knx

)
n∈N such that

(
T knx, x∗

) ∈ E (G) for
all n ∈ N. Hence and by (4), we infer

(
x, Tx, T 2x, ..., T k1x, x∗

)
is a path in G (hence

also in G̃) from x to x∗, i.e., x∗ ∈ [x]G̃. Moreover, because T is a (G,ϕ)− contraction
we have

d
(
T kn+1x, Tx∗

)
6 ϕ

(
d

(
T knx, x∗

))
< d

(
T knx, x∗

)

for all n ∈ N. Hence, letting n tend to ∞ we conclude x∗ = Tx∗. Thus T
∣∣
[x]G̃

is a
PO. Moreover, if G is weakly connected, then [x]G̃ = X, so T is a PO.

Now (6) is an easy consequence of (4). To show (7) observe that T ⊆ E (G) means
XT = X. This yields X ′ = X, so T is a WPO in view of (6).

To prove (1), consider a mapping π defined by

π (x) = [x]G̃ for all x ∈ FixT.

It suffices to show π is a bijection of Fix T onto Ω = { [x]G̃| x ∈ XT }. Since E (G) ⊇ ∆,
we infer Fix T ⊆ XT which yields π (FixT ) ⊆ Ω. On the other hand, if x ∈ XT ,
then by (4), lim

n→∞
Tnx ∈ [x]G̃ ∩ Fix T which implies π

(
lim

n→∞
Tnx

)
∈ [x]G̃. Thus π is
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a surjection of Fix T onto Ω. Now, if x1, x2 ∈ Fix T are such that π (x1) = π (x2),
i.e., [x1]G̃ = [x2]G̃ , then x2 ∈ [x1]G̃, so by (4),

lim
n→∞

Tnx2 ∈ [x1]G̃ ∩ Fix T = {x1} ,

i.e., x2 = x1 since Tnx2 = x2. Consequently, T is injective. Thus (1) is proved.
Finally, observe that (2) and (3) are simple consequences of (1).

¤
Corollary 2.2. Let (X, d) be complete and ε-chainable for some ε > 0, i.e., given
x, y ∈ X, there is N ∈ N and a sequence (xi)

N
i=0 such that

x0 = x, xN = y and d (xi−1, xi) < ε for i = 1, ..., N.

Let T : X → X be a function and ϕ : R+ → R+ be a (c)− comparison function such
that

∀x, y ∈ X (d (x, y) < ε ⇒ d (Tx, Ty) ≤ ϕ (d (x, y))) (5)
Then T is a PO.

Proof. Consider the graph G with V (G) = X, and E (G) = { (x, y) ∈ X ×X| d (x, y) < ε} .
Then ε-chainability of (X, d) means G is connected. If (x, y) ∈ E (G), then

d (Tx, Ty) ≤ ϕ (d (x, y)) < d (x, y) < ε

so (Tx, Ty) ∈ E (G), hence T is a (G,ϕ)− contraction.
Let (xn)n∈N in X with xn → x, then d (xn, x) < ε for sufficiently large n, so there

is (xkn)n∈N such that (xkn , x) ∈ E (G). Thus by Theorem 2.3, T is PO. ¤
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